STMICROELECTRONICS TS914

TS914

RAIL TO RAIL
CMOS QUAD OPERATIONAL AMPLIFIER
.
.
.
..
.
.
RAIL TO RAIL INPUT AND OUTPUT
VOLTAGE RANGES
SINGLE (OR DUAL) SUPPLY OPERATION
FROM 2.7V TO 16V
EXTREMELY LOW INPUT BIAS CURRENT :
1pA TYP
LOW INPUT OFFSET VOLTAGE : 5mV max.
SPECIFIED FOR 600Ω AND 100Ω LOADS
LOW SUPPLY CURRENT : 200µA/Ampli
SPICE MACROMODEL INCLUDED IN THIS
SPECIFICATION
N
DIP14
(Plastic Package)
D
SO14
(Plastic Micropackage)
ORDER CODES
Part Number
Temperature Range
o
-40, +125 C
TS914I/AI
Package
N
D
•
•
PIN CONNECTIONS (top view)
DESCRIPTION
The TS914 is a RAIL TO RAIL quad CMOS operational amplifier designed to operate with a single or
dual supply voltage.
The input voltage range Vicm includes the two
supply rails VCC+ and VCC-.
The output reaches :
• VCC- +50mV
VCC+ -50mV
with RL = 10kΩ
• VCC- +350mV VCC+ -350mV with RL = 600Ω
This product offers a broad supply voltage operating range from 2.7V to 16V and a supply current of
only 200µA/amp. (VCC = 3V).
Source and sink output current capability is typically 40mA (at VCC = 3V), fixed by an internal
limitation circuit.
STMicroelectronics is offering a dual op-amp with
the same features : TS912.
April 1999
Output 1
1
14
Output 4
Inverting Input 1
2
-
-
13
Invertin g Input 4
Non-inve rtin g Input 1
3
+
+
12
Non-inve rtin g Input 4
V CC +
4
11
VCC -
Non-inve rting Input 2
Non-inve rtin g Input 3
5
+
+
10
Invert ing Input 2
6
-
-
9
Invertin g Input 3
Output 2
7
8
Output 3
1/13
TS914
SCHEMATIC DIAGRAM (1/4 TS914)
VCC
Inte rnal
Vre f
Non-inverting
Input
Inverting
Input
O utput
VCC
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
VCC
Supply Voltage - (note 1)
18
V
Vid
Differential Input Voltage - (note 2)
±18
V
Vi
Input Voltage - (note 3)
Iin
Current on Inputs
Io
Current on Outputs
-0.3 to 18
V
±50
mA
±130
mA
Toper
Operating Free Air Temperature RangeI
-40 to +125
o
Tstg
Storage Temperature
-65 to +150
o
Notes :
C
C
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed VCC+ +0.3V.
OPERATING CONDITIONS
Symbol
2/13
Parameter
VCC
Supply Voltage
Vicm
Common Mode Input Voltage Range
Value
Unit
2.7 to 16
-
V
+
VCC -0.2 to VCC +0.2
V
TS914
ELECTRICAL CHARACTERISTICS
VCC+ = 3V, VCC- = 0V, RL,CL connected to VCC/2, Tamb = 25oC (unless otherwise specified)
Symbol
Vio
Parameter
Input Offset Voltage (V ic = Vo = VCC/2)
Tmin. ≤ Tamb ≤ Tmax.
DVio
Iio
Iib
ICC
CMR
SVR
Avd
VOH
TS914
TS914A
TS914
TS914A
Input Offset Voltage Drift
Input Offset Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Input Bias Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Supply Current (per amplifier, AVCL = 1, no load)
Tmin. ≤ Tamb ≤ Tmax.
Common Mode Rejection Ratio
Vic = 0 to 3V, Vo = 1.5V
Supply Voltage Rejection Ratio (VCC+ = 2.7 to 3.3V, VO = VCC /2)
Large Signal Voltage Gain (RL = 10kΩ, VO = 1.2V to 1.8V)
Tmin. ≤ Tamb ≤ Tmax.
High Level Output Voltage (V id = 1V)
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Tmin. ≤ Tamb ≤ Tmax.
VOL
Min.
RL = 10kΩ
RL = 600Ω
Tmin. ≤ Tamb ≤ Tmax.
GBP
Output Short Circuit Current (Vid = ±1V)
40
3
2
µV/oC
pA
pA
µA
dB
V/mV
2.96
2.6
2
2.8
2.1
mV
RL = 10kΩ
RL = 600Ω
−
Source (Vo = VCC )
+
Sink
(Vo = VCC )
50
300
900
100
400
150
600
40
40
mA
MHz
SR∅m
0.5
0.4
30
en
Equivalent Input Noise Voltage (Rs = 100Ω, f = 1kHz)
30
Channel Separation (f = 1kHz)
120
VO1/VO2
mV
V
2.9
2.3
Gain Bandwidth Product
(AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
Positive Slew Rate
AVCL = 1, RL = 10kΩ, Vi =1.3V to 1.7V, CL = 100pF
Negative Slew Rate
Phase Margin
SR+
Unit
dB
70
70
10
Low Level Output Voltage (Vid = -1V)
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Io
TS914I/AI
Typ.
Max.
10
5
12
7
5
1
100
200
1
150
300
200
300
400
0.8
V/µs
V/µs
Degrees
nV

√
Hz
dB
Note 1 : Maximum values including unavoidable inaccuracies of the industrial test.
3/13
TS914
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, VCC- = 0V, RL,CL connected to VCC/2, Tamb = 25oC (unless otherwise specified)
Symbol
Vio
Parameter
Input Offset Voltage (V ic = Vo = VCC/2)
Tmin. ≤ Tamb ≤ Tmax.
DVio
Iio
Iib
ICC
CMR
SVR
Avd
VOH
TS914
TS914A
TS914
TS914A
Input Offset Voltage Drift
Input Offset Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Input Bias Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Supply Current (per amplifier, AVCL = 1, no load)
Tmin. ≤ Tamb ≤ Tmax.
Common Mode Rejection Ratio
Vic = 1.5 to 3.5V, Vo = 2.5V
Supply Voltage Rejection Ratio (VCC+ = 3 to 5V, VO = VCC /2)
Large Signal Voltage Gain (RL = 10kΩ, VO = 1.5V to 3.5V)
Tmin. ≤ Tamb ≤ Tmax.
High Level Output Voltage (V id = 1V)
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Tmin. ≤ Tamb ≤ Tmax.
VOL
Min.
RL = 10kΩ
RL = 600Ω
75
80
30
GBP
SR+
SR∅m
Output Short Circuit Current (Vid = ±1V)
µV/oC
pA
pA
µA
4.90
4.25
4.95
4.65
3.7
V
4.8
4.1
mV
RL = 10kΩ
RL = 600Ω
−
Source (Vo = VCC )
+
Sink
(Vo = VCC )
Gain Bandwidth Product
(AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
Positive Slew Rate
AVCL = 1, RL = 10kΩ, Vi =1V to 4V, CL = 100pF
Negative Slew Rate
Phase Margin
Note 1 : Maximum values including unavoidable inaccuracies of the industrial test.
4/13
mV
dB
V/mV
Low Level Output Voltage (Vid = -1V)
Tmin. ≤ Tamb ≤ Tmax.
Unit
dB
50
50
10
7
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Io
TS914I/AI
Typ.
Max.
10
5
12
7
5
1
100
200
1
150
300
230
350
450
50
350
1400
100
500
150
750
45
45
60
60
mA
MHz
0.9
V/µs
0.8
0.5
30
V/µs
Degrees
TS914
ELECTRICAL CHARACTERISTICS
VCC+ = 10V, VCC- = 0V, RL,CL connected to VCC/2, Tamb = 25oC (unless otherwise specified)
Symbol
Vio
Parameter
Input Offset Voltage (Vic = Vo = VCC/2)
Tmin. ≤ Tamb ≤ Tmax.
DVio
Iio
Iib
ICC
CMR
SVR
Avd
VOH
TS914
TS914A
TS914
TS914A
Input Offset Voltage Drift
Input Offset Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Input Bias Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Supply Current (per amplifier, A VCL = 1, no load)
Tmin. ≤ Tamb ≤ Tmax.
Common Mode Rejection Ratio
Vic = 3 to 7V, Vo = 5V
Vic = 0 to 10V, Vo = 5V
Supply Voltage Rejection Ratio (VCC+ = 5 to 10V, VO = VCC /2)
Large Signal Voltage Gain (RL = 10kΩ, VO = 2.5V to 7.5V)
Tmin. ≤ Tamb ≤ Tmax.
High Level Output Voltage (Vid = 1V)
R L = 10kΩ
R L = 600Ω
R L = 100Ω
Tmin. ≤ Tamb ≤ Tmax.
VOL
Min.
R L = 10kΩ
R L = 600Ω
50
50
20
15
GBP
SR +
SR∅m
en
THD
Cin
VO1/VO2
Output Short Circuit Current (Vid = ±1V)
mV
µV/oC
pA
pA
µA
dB
dB
V/mV
9.95
9.35
7.8
9.8
9
Low Level Output Voltage (Vid = -1V)
Tmin. ≤ Tamb ≤ Tmax.
Unit
V
9.85
9.2
mV
R L = 10kΩ
R L = 600Ω
R L = 100Ω
Io
TS914I/AI
Typ.
Max.
10
5
12
7
5
1
100
200
1
150
300
400
600
700
75
70
80
60
R L = 10kΩ
R L = 600Ω
−
Source (Vo = VCC )
+
Sink
(Vo = VCC )
50
650
2300
150
900
45
45
60
60
mA
MHz
Gain Bandwidth Product
(AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
Positive Slew Rate
AVCL = 1, RL = 10kΩ, Vi = 2.5V to 7.5V, CL = 100pF
Negative Slew Rate
Phase Margin
1.3
0.8
40
Equivalent Input Noise Voltage (Rs = 100Ω, f = 1kHz)
30
Total Harmonic Distortion
(AVCL = 1, RL = 10kΩ, CL = 100pF, VO = 4.75V to 5.25V, f = 1kHz)
Input Capacitance
Channel Separation (f = 1kHz)
150
800
1.3
V/µs
0.024
1.5
120
V/µs
Degrees
nV

√
Hz
%
pF
dB
Note 1 : Maximum values including unavoidable inaccuracies of the industrial test.
5/13
TS914
TYPICAL CHARACTERISTICS
Figure 1 : Supply Current (each amplifier)
vs Supply Voltage
Figure 2 : Input Bias Current vs Temperature
10 0
INPUT BIAS CURRENT, I ib (pA)
SUPPLY CURRENT, I CC ( µ A)
600
Tamb = 25 C
A VC L = 1
V O = VCC / 2
500
400
300
200
VCC = 10V
V i = 5V
No load
10
1
100
0
4
8
12
16
25
50
Figure 3a : High Level Output Voltage vs High
Level Output Current
OUTPUT VOLTAGE, VOH (V)
OUTPUT VOLTAGE, VOH (V)
T amb = 25 C
Vid = 100mV
20
VCC = +5V
3
2
VCC = +3V
1
VCC = +16V
16
12
VCC = +10V
8
4
0
0
-70
-40
-20
0
-70
OUTPUT CURRENT, IOH (mA)
Figure 4a : Low Level Output Voltage vs Low
Level Output Current
3
10
T amb = 25 C
V id = -100mV
VCC = +5V
VCC = +3V
2
1
0
-20
Figure 4b : Low Level Output Voltage vs Low
Level Output Current
30
50
70
90
OUTP UT CURRENT, I OL (mA)
OUTPUT VOLTAGE, VOL (V)
OUTPUT VOLTAGE, V OL (V)
4
-40
OUTP UT CURRENT, IOH (mA)
5
6/13
125
Figure 3b : High Level Output Voltage vs High
Level Output Current
5
4
10 0
TEMPERATURE, T amb ( C)
SUPP LY VOLTAGE, V CC (V)
T amb = 25 C
V id = 100mV
75
8
T a mb = 25 C
V id = -100mV
6
4
VCC = 16V
VCC = 10V
2
0
30
50
70
90
OUTP UT CURRENT, I OL (mA)
0
TS914
Figure 5a : Gain and Phase vs Frequecy
Figure 5b : Gain and Phase vs Frequecy
50
GAIN
PHASE
45
P ha s e
Ma rgin
20
90
Ta mb = 25 C
VCC = 10V
R L = 10k Ω
C L = 100pF
AVCL = 100
10
0
135
Ga in
Ba ndwidth
P roduct
180
GAIN (dB)
30
2
4
5
6
10
10
10
FREQUENCY, f (Hz)
10
10
P has e
Margin
Tamb = 25 C
VCC = 1 0V
R L = 600 Ω
C L = 100pF
A VCL = 100
20
0
10
7
45
P HASE
2
10
3
135
4
5
10
10
10
FREQUENCY, f (Hz)
180
6
10
Figure 6a : Gain Bandwidth Product vs
Supply Voltage
Figure 6b : Gain bandwidth Product vs
Supply Voltage
1800
Ta mb = 25 C
R L = 10kΩ
C L = 100pF
1400
1000
600
200
0
4
8
12
16
Ta mb = 25 C
R L = 600Ω
C L = 100pF
14 00
1 000
6 00
20 0
0
PHASE MARGIN, φm (Degrees)
PHASE MARGIN, φ m (Degrees)
Tamb = 25 C
R L = 10kΩ
C L = 10 0pF
40
30
20
8
12
S UP PLY VOLTAGE, VCC (V)
8
12
16
Figure 7b : Phase Margin vs Supply Voltage
60
4
4
S UP P LY VOLTAGE, VCC (V)
Figure 7a : Phase Margin vs Supply Voltage
0
7
180 0
SUP P LY VOLTAGE, VCC (V)
50
90
Ga in
Ba ndwidth
P roduct
GAIN BANDW. PROD., GBP (kHz)
3
30
GAIN BANDW. PROD., GBP (kHz)
10
0
10
-10
10
GAIN
40
0
PHASE (Degrees)
GAIN (dB)
40
PHASE (Degrees)
50
16
60
Tamb = 25 C
R L = 6 00Ω
C L = 1 00pF
50
40
30
20
0
4
8
12
16
S UP P LY VOLTAGE, VCC (V)
7/13
TS914
EQUIVALENT INPUT
VOLTAGE NOISE (nV/VHz)
Figure 8 : Input Voltage Noise vs Frequency
8/13
150
100
VCC = 10V
Tamb = 25 C
R S = 100 Ω
50
0
10
1000
100
FREQUENCY (Hz)
10000
TS914
.
.
.
MACROMODEL
RAIL TO RAIL INPUT AND OUTPUT
VOLTAGE RANGES
STANDBY POSITION : REDUCED CONSUMPTION (1µA) AND HIGH IMPEDANCE
OUTPUTS
SINGLE (OR DUAL) SUPPLY OPERATION
FROM 2.7V TO 16V (±1.35V to ±8V)
.
.
..
.
EXTREMELY LOW INPUT BIAS CURRENT :
1pA TYP
LOW INPUT OFFSET VOLTAGE :
1.5mV max.
SPECIFIED FOR 600Ω AND 100Ω LOADS
LOW SUPPLY CURRENT : 400µA/Ampli
SPEED : 1.3MHz - 1.3V/µs
Applies to : TS914I,AI,BI
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIV E POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TS914_3 1 3 2 4 5 (analog)
**********************************************************
.MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 1.271505E+01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
IPOL 13 5 4.000000E-05
CPS 11 15 2.125860E-08
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.000000E+00
FCP 4 5 VOFP 5.000000E+00
FCN 5 4 VOFN 5.000000E+00
* AMPLIFYING STAGE
FIP 5 19 VOFP 2.750000E+02
FIN 5 19 VOFN 2.750000E+02
RG1 19 5 1.916825E+05
RG2 19 4 1.916825E+05
CC 19 29 2.200000E-08
HZTP 30 29 VOFP 1.3E+03
HZTN 5 30 VOFN 1.3E+03
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 3800
VIPM 28 4 150
HONM 21 27 VOUT 3800
VINM 5 27 150
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 75
COUT 3 5 1.000000E-12
DOP 19 68 MDTH 400E-12
VOP 4 25 1.724
HSCP 68 25 VSCP1 0.8E8
DON 69 19 MDTH 400E-12
VON 24 5 1.7419107
HSCN 24 69 VSCN1 0.8E+08
VSCTHP 60 61 0.0875
** VSCTHP = le seuil au dessus de vio
* 500
** c.a.d 275U-000U dus a l’offset
DSCP1 61 63 MDTH 400E-12
VSCP1 63 64 0
ISCP 64 0 1.000000E-8
DSCP2 0 64 MDTH 400E-12
DSCN2 0 74 MDTH 400E-12
ISCN 74 0 1.000000E-8
VSCN1 73 74 0
DSCN1 71 73 MDTH 400E-12
VSCTHN 71 70 -0.55
** VSCTHN = le seuil au dessous de vio
* 2000
** c.a.d -375U-000U dus a l’offset
ESCP 60 0 2 1 500
ESCN 70 0 2 1 -2000
.ENDS
9/13
TS914
Applies to : TS914I,AI,BI
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIV E POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
* 6 STANDBY
.SUBCKT TS914_5 1 3 2 4 5 (analog)
**********************************************************
.MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 7.322092E+00
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
IPOL 13 5 4.000000E-05
CPS 11 15 2.498970E-08
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.000000E+00
FCP 4 5 VOFP 5.750000E+00
FCN 5 4 VOFN 5.750000E+00
ISTB0 5 4 500N
* AMPLIFYING STAGE
FIP 5 19 VOFP 4.400000E+02
FIN 5 19 VOFN 4.400000E+02
RG1 19 5 4.904961E+05
RG2 19 4 4.904961E+05
CC 19 29 2.200000E-08
HZTP 30 29 VOFP 1.8E+03
10/13
HZTN 5 30 VOFN 1.8E+03
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 3800
VIPM 28 4 230
HONM 21 27 VOUT 3800
VINM 5 27 230
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 82
COUT 3 5 1.000000E-12
DOP 19 68 MDTH 400E-12
VOP 4 25 1.724
HSCP 68 25
VSCP1 0.8E+08
DON 69 19 MDTH 400E-12
VON 24 5 1.7419107
HSCN 24 69
VSCN1 0.8E+08
VSCTHP 60 61 0.0875
** VSCTHP = le seuil au dessus de vio
* 500
** c.a.d 275U-000U dus a l’offset
DSCP1 61 63 MDTH 400E-12
VSCP1 63 64 0
ISCP 64 0 1.000000E-8
DSCP2 0 64 MDTH 400E-12
DSCN2 0 74 MDTH 400E-12
ISCN 74 0 1.000000E-8
VSCN1 73 74 0
DSCN1 71 73 MDTH 400E-12
VSCTHN 71 70 -0.55
** VSCTHN = le seuil au dessous de vio
* 2000
** c.a.d -375U-000U dus a l’offset
ESCP 60 0 2 1 500
ESCN 70 0 2 1 -2000
.ENDS
TS914
ELECTRICAL CHARACTERISTICS
VCC+ = 3V, VCC- = 0V, RL,CL connected to VCC/2, Tamb = 25oC
(unless otherwise specified)
Symbol
Conditions
Vio
Avd
RL = 10kΩ
ICC
No load, per operator
Vicm
Value
Unit
0
mV
10
V/mV
100
µA
-0.2 to 3.2
V
VOH
RL = 600Ω
2.6
V
VOL
RL = 600Ω
300
mV
Isink
VO = 3V
40
mA
Isource
VO = 0V
40
mA
GBP
RL = 10kΩ, CL = 100pF, F = 100kHz
0.8
MHz
RL = 10kΩ, CL = 100pF
0.5
V/µs
30
Degrees
SR
∅m
11/13
TS914
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC DIP
Dimensions
a1
B
b
b1
D
E
e
e3
F
i
L
Z
12/13
Min.
0.51
1.39
Millimeters
Typ.
Max.
1.65
Min.
0.020
0.055
0.5
0.25
Inches
Typ.
0.065
0.020
0.010
20
0.787
8.5
2.54
15.24
0.335
0.100
0.600
7.1
5.1
0.280
0.201
3.3
1.27
Max.
0.130
2.54
0.050
0.100
TS914
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC MICROPACKAGE (so)
Dimensions
A
a1
a2
b
b1
C
c1
D
E
e
e3
F
G
L
M
S
Min.
Millimeters
Typ.
0.1
0.35
0.19
Max.
1.75
0.2
1.6
0.46
0.25
Min.
Inches
Typ.
0.004
0.014
0.007
0.5
Max.
0.069
0.008
0.063
0.018
0.010
0.020
45o (typ.)
8.55
5.8
8.75
6.2
0.336
0.228
1.27
7.62
3.8
4.6
0.5
0.334
0.244
0.050
0.300
4.0
5.3
1.27
0.68
0.150
0.181
0.020
0.157
0.208
0.050
0.027
o
8 (max.)
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publ ication supersedes and replaces all infor mation
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems
without express written approval of STMicroelectronics.
 The ST logo is a trademark of STMicroelectronics
 1999 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
 http://www.st.com
13/13