ETC TS914ID

TS914
RAIL TO RAIL
CMOS QUAD OPERATIONAL AMPLIFIER
■ RAIL TO RAIL INPUT AND OUTPUT VOLT■
■
■
■
■
■
AGE RANGES
SINGLE (OR DUAL) SUPPLY OPERATION
FROM 2.7V TO 16V
EXTREMELY LOW INPUT BIAS CURRENT :
1pA typ
LOW INPUT OFFSET VOLTAGE : 2mV max.
SPECIFIED FOR 600Ω AND 100Ω LOADS
LOW SUPPLY CURRENT : 200µA/Ampli
(VCC = 3V)
LATCH-UP IMMUNITY
N
DIP-14
(Plastic Package)
■ SPICE MACROMODEL INCLUDED IN THISSPECIFICATION
DESCRIPTION
D
SO-14
(Plastic Micropackage)
The TS914 is a RAIL TO RAIL CMOS quad operational amplifier designed to operate with a single
or dual supply voltage.
The input voltage range Vicm includes the two supply rails VCC+ and VCC-.
PIN CONNECTIONS (top view)
The output reaches :
❑ VCC- +50mV VCC+ -50mV with RL = 10kΩ
❑ VCC- +350mV VCC+ -350mV with RL = 600Ω
This product offers a broad supply voltage operating range from 2.7V to 16V and a supply current of
only 200µA/amp. (VCC = 3V).
Source and sink output current capability is typically 40mA (at VCC = 3V), fixed by an internal limitation circuit.
ORDER CODE
Package
Part Number
TS914I/AI
Output 1
1
Inve rting Input 1
2
-
-
13 Inverting Input 4
Non-inverting Input 1
3
+
+
12 Non-inve rting Input 4
+
4
Non-inverting Input 2
5
+
+
Inverting Input 2
6
-
-
Output 2
7
V CC
14 Output 4
11 VCC 10 Non-inve rting Input 3
9
Inverting Input 3
8
Output 3
Temperature Range
-40, +125°C
N
D
•
•
N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
December 2001
1/12
TS914
SCHEMATIC DIAGRAM (1/2 TS914)
VCC
Inte rna l
Vref
Non-inve rting
Input
Inve rting
Input
Output
VCC
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
Parameter
Value
1)
Unit
18
V
±18
V
-0.3 to 18
V
Current on Inputs
±50
mA
Current on Outputs
±130
mA
Supply voltage
Vid
Differential Input Voltage
Vi
Input Voltage 3)
Iin
Io
2)
Toper
Operating Free Air Temperature Range
TS914I/AI
-40 to + 125
Tstg
Storage Temperature
-65 to +150
°C
Value
Unit
°C
1. All voltages values, except differential voltage are with respect to network ground terminal.
2. Differential voltagesare non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed VCC+ +0.3V.
OPERATING CONDITIONS
Symbol
VCC
Vicm
2/12
Parameter
Supply voltage
Common Mode Input Voltage Range
2.7 to 16
-
V
+
VCC -0.2 to VCC +0.2
V
TS914
ELECTRICAL CHARACTERISTICS
VCC+ = 3V, Vcc- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Input Offset Voltage (Vic = Vo = VCC/2)
Vio
Tmin. ≤ Tamb ≤ Tmax.
Min.
Typ.
TS914
TS914A
TS914
TS914A
∆Vio
Input Offset Voltage Drift
5
Iio
Input Offset Current 1)
Tmin. ≤ Tamb ≤ Tmax.
1
Iib
Input Bias Current 1)
Tmin. ≤ Tamb ≤ Tmax.
ICC
Supply Current (per amplifier, A VCL = 1, no load)
T min. ≤ Tamb ≤ Tmax.
Max.
Unit
10
5
12
7
mV
µV/°C
100
200
pA
1
150
300
pA
200
300
400
µA
CMR
Common Mode Rejection Ratio
Vic = 0 to 3V, V o = 1.5V
70
dB
SVR
Supply Voltage Rejection Ratio (VCC+ = 2.7 to 3.3V, Vo = VCC/2)
80
dB
Avd
Large Signal Voltage Gain (RL = 10kΩ, Vo = 1.2V to 1.8V)
T min. ≤ Tamb ≤ Tmax.
High Level Output Voltage (Vid = 1V)
VOH
T min. ≤ Tamb ≤ Tmax.
Low Level Output Voltage (Vid = -1V)
R L = 10kΩ
R L = 600Ω
R L = 100Ω
R L = 10kΩ
R L = 600Ω
3
2
10
2.9
2.2
2.97
2.7
2
V/mV
V
2.8
2.1
R L = 10kΩ
R L = 600Ω
R L = 100Ω
R L = 10kΩ
R L = 600Ω
50
300
900
Source (Vo = VCC)
40
40
mA
Gain Bandwith Product
(AVCL = 100, RL = 10kΩ, C L = 100pF, f = 100kHz)
0.8
MHz
SR
Slew Rate
(AVCL = 1, RL = 10kΩ, CL = 100pF, V i = 1.3V to 1.7V)
0.5
V/µs
φm
Phase Margin
30
Degrees
en
Equivalent Input Noise Voltage (R s = 100Ω, f = 1kHz)
30
nV/√Hz
120
dB
VOL
Io
GBP
T min. ≤ Tamb ≤ Tmax.
Output Short Circuit Current (Vid = ±1V)
Sink (Vo = VCC+)
VO1 /VO2 Channel Separation (f = 1kHz)
100
600
mV
150
900
1. Maximum values including unavoidable inaccuracies of the industrial test
3/12
TS914
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, Vcc- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Input Offset Voltage (Vic = Vo = VCC/2)
Vio
Tmin. ≤ Tamb ≤ Tmax.
Min.
Typ.
TS914
TS914A
TS914
TS914A
∆Vio
Input Offset Voltage Drift
5
Iio
Input Offset Current 1)
Tmin. ≤ Tamb ≤ Tmax.
1
Iib
Input Bias Current 1)
Tmin. ≤ Tamb ≤ Tmax.
ICC
Supply Current (per amplifier, A VCL = 1, no load)
T min. ≤ Tamb ≤ Tmax.
Max.
Unit
10
5
12
7
mV
µV/°C
100
200
pA
1
150
300
pA
230
350
450
µA
CMR
Common Mode Rejection Ratio
Vic = 1.5 to 3.5V, Vo = 2.5V
85
dB
SVR
Supply Voltage Rejection Ratio (VCC+ = 3 to 5V, V o = VCC/2)
80
dB
Avd
Large Signal Voltage Gain (RL = 10kΩ, Vo = 1.5V to 3.5V)
T min. ≤ Tamb ≤ Tmax.
High Level Output Voltage (Vid = 1V)
VOH
T min. ≤ Tamb ≤ Tmax.
Low Level Output Voltage (Vid = -1V)
VOL
Io
T min. ≤ Tamb ≤ Tmax.
Output Short Circuit Current (Vid = ±1V)
R L = 10kΩ
R L = 600Ω
R L = 100Ω
R L = 10kΩ
R L = 600Ω
R L = 10kΩ
R L = 600Ω
R L = 100Ω
R L = 10kΩ
R L = 600Ω
Source (Vo = VCC)
Sink (Vo = VCC+)
10
7
40
4.85
4.20
4.95
4.65
3.7
V/mV
V
4.8
4.1
50
350
1400
100
680
mV
150
900
60
60
mA
GBP
Gain Bandwith Product
(AVCL = 100, RL = 10kΩ, C L = 100pF, f = 100kHz)
1
MHz
SR
Slew Rate
(AVCL = 1, RL = 10kΩ, CL = 100pF, V i = 1V to 4V)
0.8
V/µs
φm
Phase Margin
30
Degrees
en
Equivalent Input Noise Voltage (R s = 100Ω, f = 1kHz)
30
nV/√Hz
120
dB
VO1 /VO2 Channel Separation (f = 1kHz)
1. Maximum values including unavoidable inaccuracies of the industrial test
4/12
TS914
ELECTRICAL CHARACTERISTICS
VCC+ = 10V, VDD = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Input Offset Voltage (Vic = Vo = VCC/2)
Vio
Tmin. ≤ Tamb ≤ Tmax.
Min.
Typ.
TS914
TS914A
TS914
TS914A
∆Vio
Input Offset Voltage Drift
5
Iio
Input Offset Current 1)
Tmin. ≤ Tamb ≤ Tmax.
1
Iib
Input Bias Current 1)
Tmin. ≤ Tamb ≤ Tmax.
µV/°C
100
200
pA
150
300
pA
90
75
dB
Supply Voltage Rejection Ratio (VCC+ = 5 to 10V, V o = VCC/2)
90
dB
SVR
Large Signal Voltage Gain (RL = 10kΩ, Vo = 2.5V to 7.5V)
T min. ≤ Tamb ≤ Tmax.
High Level Output Voltage (Vid = 1V)
T min. ≤ Tamb ≤ Tmax.
Low Level Output Voltage (Vid = -1V)
T min. ≤ Tamb ≤ Tmax.
R L = 10kΩ
R L = 600Ω
R L = 100Ω
R L = 10kΩ
R L = 600Ω
R L = 10kΩ
R L = 600Ω
R L = 100Ω
R L = 10kΩ
R L = 600Ω
15
10
60
9.85
9
9.95
9.35
7.8
50
650
2300
60
ICC
Supply Current (per amplifier, A VCL = 1, no load)
T min. ≤ Tamb ≤ Tmax.
400
(AVCL = 100, RL = 10kΩ, C L = 100pF, f = 100kHz)
V
180
800
mV
150
900
Output Short Circuit Current (Vid = ±1V)
Gain Bandwith Product
V/mV
9.8
9
Io
GBP
mV
Common Mode Rejection Ratio
Vic = 3 to 7V, V o = 5V
Vic = 0 to 10V, V o = 5V
CMR
VOL
10
5
12
7
V
Common Mode Input Voltage Range
VOH
Unit
VDD - 0.2 to VCC+ 0.2
Vicm
Avd
1
Max.
mA
600
700
µA
1.4
MHz
SR
Slew Rate
(AVCL = 1, RL = 10kΩ, CL = 100pF, V i = 2.5V to 7.5V)
1
V/µs
φm
Phase Margin
40
Degrees
Equivalent Input Noise Voltage (R s = 100Ω, f = 1kHz)
en
30
nV/√Hz
Total Harmonic Distortion
(AVCL = 1, RL = 10kΩ, CL = 100pF, V o = 4.75V to 5.25V, f = 1kHz)
0.02
%
Cin
Input Capacitance
1.5
pF
Rin
Input Resistance
>10
Tera Ω
120
dB
THD
VO1 /VO2 Channel Separation (f = 1kHz)
1. Maximum values including unavoidable inaccuracies of the industrial test
5/12
TS914
TYPICAL CHARACTERISTICS
Supply Current (each amplifier)
vs Supply Voltage
Figure 2 :
Ta m b = 25 C
A VCL = 1
VO = VCC / 2
500
400
300
200
VCC = 10V
V i = 5V
No load
10
1
100
0
4
8
12
16
25
Figure 3a : High Level Output Voltage vs High
Level Output Current
OUTPUT VOLTAGE, VOH (V)
OUTPUT VOLTAGE, VOH (V)
VCC = +5V
3
2
VCC = +3V
12
VCC = +10V
8
4
0
-70
-40
-20
0
-70
OUTP UT CURRENT, IO H (mA)
Figure 4a : Low Level Output Voltage vs Low
Level Output Current
3
T a m b = 25 C
V id = -100mV
VCC = +5V
VCC = +3V
2
1
0
-20
0
OUTP UT CURRENT, IOH (mA)
Figure 4b : Low Level Output Voltage vs Low
Level Output Current
30
50
70
90
OUTP UT CURRENT, I OL (mA)
OUTPUT VOLTAGE, VOL (V)
4
-40
10
5
OUTPUT VOLTAGE, V OL (V)
125
VCC = +1 6V
16
0
6/12
100
T a m b = 25 C
Vid = 100mV
20
1
75
Figure 3b : High Level Output Voltage vs High
Level Output Current
5
T a mb = 25 C
V id = 100mV
50
TEMPERATURE, Ta mb ( C)
S UP P LY VOLTAGE, V CC (V)
4
Input Bias Current vs Temperature
100
600
INPUT BIAS CURRENT, I ib (pA)
SUPPLY CURRENT, I CC ( µ A)
Figure 1 :
8
T a mb = 25 C
V id = -100mV
6
4
VCC = 16V
VCC = 10V
2
0
30
50
70
90
OUTP UT C URR ENT, I OL (mA)
TS914
Figure 5a : Gain and Phase vs Frequency
Figure 5b : Gain and Phase vs Frequency
50
GAIN
40
45
Pha s e
Margin
90
Tamb = 25 C
VCC = 10V
R L = 10k Ω
C L = 100pF
AVCL = 100
10
0
135
Gain
Bandwidth
P roduct
180
GAIN (dB)
P HASE
20
PHASE (Degrees)
GAIN (dB)
30
10
3
4
5
6
10
10
10
FRE QUENCY, f (Hz)
10
7
GAIN BANDW. PROD., GBP (kHz)
Figure 6a : Gain Bandwidth Product vs Supply
Voltage
1800
Tamb = 25 C
R L = 10kΩ
C L = 1 00pF
1400
1000
600
200
0
4
8
12
16
2
Ta mb = 25 C
R L = 10kΩ
C L = 100pF
40
30
20
8
12
S UPP LY VOLTAGE, VCC (V)
4
18 0
5
10
10
10
FREQUENCY, f (Hz)
6
10
7
1800
Ta mb = 25 C
R L = 6 00Ω
C L = 100pF
1400
1000
600
200
0
4
8
12
16
Figure 7b : Phase Margin vs Supply Voltage
PHASE MARGIN, φm (Degrees)
PHASE MARGIN, φ m (Degrees)
60
4
3
13 5
Gain
Bandwidth
P rod uct
SUP PLY VOLTAGE, VCC (V)
Figure 7a : Phase Margin vs Supply Voltage
0
10
90
Figure 6b : Gain Bandwidth Product vs Supply
Voltage
S UPP LY VOLTAGE, VCC (V)
50
P ha s e
Margin
Tamb = 25 C
VCC = 10V
R L = 600Ω
C L = 100pF
A VCL = 100
20
10
45
P HASE
0
10
GAIN BANDW. PROD., GBP (kHz)
2
0
30
10
-10
10
GAIN
40
0
PHASE (Degrees)
50
16
60
Ta mb = 25 C
R L = 600Ω
C L = 100pF
50
40
30
20
0
4
8
12
16
SUP PLY VOLTAGE , VCC (V)
7/12
TS914
EQUIVALENT INPUT
VOLTAGE NOISE (nV/VHz)
Figure 8 :
8/12
Input Voltage Noise vs Frequency
150
100
VCC = 10V
Tamb = 25 C
R S = 100 Ω
50
0
10
1 000
100
FREQUENCY (Hz)
10000
TS914
MACROMODEL
Applies to : TS914i,AI,BI (VCC = 3V)
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TS914_3 1 3 2 4 5 (analog)
**********************************************************
.MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 1.271505E+01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
IPOL 13 5 4.000000E-05
CPS 11 15 2.125860E-08
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.000000E+00
FCP 4 5 VOFP 5.000000E+00
FCN 5 4 VOFN 5.000000E+00
* AMPLIFYING STAGE
FIP 5 19 VOFP 2.750000E+02
FIN 5 19 VOFN 2.750000E+02
RG1 19 5 1.916825E+05
RG2 19 4 1.916825E+05
CC 19 29 2.200000E-08
HZTP 30 29 VOFP 1.3E+03
HZTN 5 30 VOFN 1.3E+03
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 3800
VIPM 28 4 150
HONM 21 27 VOUT 3800
VINM 5 27 150
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 75
COUT 3 5 1.000000E-12
DOP 19 68 MDTH 400E-12
VOP 4 25 1.724
HSCP 68 25 VSCP1 0.8E8
DON 69 19 MDTH 400E-12
VON 24 5 1.7419107
HSCN 24 69 VSCN1 0.8E+08
VSCTHP 60 61 0.0875
** VSCTHP = le seuil au dessus de vio
* 500
** c.a.d 275U-000U dus a l’offset
DSCP1 61 63 MDTH 400E-12
VSCP1 63 64 0
ISCP 64 0 1.000000E-8
DSCP2 0 64 MDTH 400E-12
DSCN2 0 74 MDTH 400E-12
ISCN 74 0 1.000000E-8
VSCN1 73 74 0
DSCN1 71 73 MDTH 400E-12
VSCTHN 71 70 -0.55
** VSCTHN = le seuil au dessous de vio
* 2000
** c.a.d -375U-000U dus a l’offset
ESCP 60 0 2 1 500
ESCN 70 0 2 1 -2000
.ENDS
ELECTRICAL CHARACTERISTICS
VCC+ = 3V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Conditions
Vio
Value
Unit
0
mV
Avd
R L = 10kΩ
10
V/mV
ICC
No load, per operator
100
µA
-0.2 to 3.2
V
V icm
VOH
R L = 600Ω
2.96
V
VOL
R L = 60Ω
300
mV
Isink
VO = 3V
40
mA
Isource
VO = 0V
40
mA
GBP
R L = 10kΩ, CL = 100pF
0.8
MHz
SR
R L = 10kΩ, CL = 100pF
0.3
V/µs
φm
Phase Margin
30
Degrees
9/12
TS914
MACROMODEL
Applies to : TS914I,AI,BI (VCC = 5V)
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
* 6 STANDBY
.SUBCKT TS914_5 1 3 2 4 5 (analog)
**********************************************************
.MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 7.322092E+00
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
IPOL 13 5 4.000000E-05
CPS 11 15 2.498970E-08
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.000000E+00
FCP 4 5 VOFP 5.750000E+00
FCN 5 4 VOFN 5.750000E+00
ISTB0 5 4 500N
* AMPLIFYING STAGE
FIP 5 19 VOFP 4.400000E+02
FIN 5 19 VOFN 4.400000E+02
RG1 19 5 4.904961E+05
RG2 19 4 4.904961E+05
CC 19 29 2.200000E-08
10/12
HZTP 30 29 VOFP 1.8E+03
HZTN 5 30 VOFN 1.8E+03
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 3800
VIPM 28 4 230
HONM 21 27 VOUT 3800
VINM 5 27 230
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 82
COUT 3 5 1.000000E-12
DOP 19 68 MDTH 400E-12
VOP 4 25 1.724
HSCP 68 25
VSCP1 0.8E+08
DON 69 19 MDTH 400E-12
VON 24 5 1.7419107
HSCN 24 69
VSCN1 0.8E+08
VSCTHP 60 61 0.0875
** VSCTHP = le seuil au dessus de vio
* 500
** c.a.d 275U-000U dus a l’offset
DSCP1 61 63 MDTH 400E-12
VSCP1 63 64 0
ISCP 64 0 1.000000E-8
DSCP2 0 64 MDTH 400E-12
DSCN2 0 74 MDTH 400E-12
ISCN 74 0 1.000000E-8
VSCN1 73 74 0
DSCN1 71 73 MDTH 400E-12
VSCTHN 71 70 -0.55
** VSCTHN = le seuil au dessous de vio
* 2000
** c.a.d -375U-000U dus a l’offset
ESCP 60 0 2 1 500
ESCN 70 0 2 1 -2000
.ENDS
TS914
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC DIP
Millimeters
Inches
Dim.
Min.
a1
B
b
b1
D
E
e
e3
F
i
L
0.51
1.39
Z
1.27
Typ.
Max.
Min.
1.65
0.020
0.055
0.5
0.25
Typ.
Max.
0.065
0.020
0.010
20
0.787
8.5
2.54
15.24
0.335
0.100
0.600
7.1
5.1
0.280
0.201
3.3
0.130
2.54
0.050
0.100
11/12
TS914
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC MICROPACKAGE (SO)
Millimeters
Inches
Dim.
Min.
A
a1
a2
b
b1
C
c1
D (1)
E
e
e3
F (1)
G
L
M
S
Typ.
Max.
Min.
1.75
0.2
1.6
0.46
0.25
0.1
0.35
0.19
Typ.
0.004
0.014
0.007
0.5
Max.
0.069
0.008
0.063
0.018
0.010
0.020
45° (typ.)
8.55
5.8
8.75
6.2
0.336
0.228
1.27
7.62
3.8
4.6
0.5
0.344
0.244
0.050
0.300
4.0
5.3
1.27
0.68
0.150
0.181
0.020
0.157
0.208
0.050
0.027
8° (max.)
Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibil ity for the
consequences of use of such information nor for any infring ement of patents or other righ ts of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change witho ut notice. This publ ication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life suppo rt devices or
systems withou t express written approval of STMicroelectronics.
 The ST logo is a registered trademark of STMicroelectronics
 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Swit zerland - United Kingdom - United States
 http://www. st.com
12/12