STMICROELECTRONICS VN820PT

VN820 / VN820SO
/ VN820SP / VN820-B5 / VN820PT
®
HIGH SIDE DRIVER
TYPE
VN820
RDS(on)
IOUT
VCC
10
VN820SP
VN820-B5
40 mΩ
9A
1
36 V
PowerSO-10™
VN820SO
P2PAK
PPAK
VN820PT
CMOS COMPATIBLE INPUT
ON STATE OPEN LOAD DETECTION
■ OFF STATE OPEN LOAD DETECTION
■ SHORTED LOAD PROTECTION
■ UNDERVOLTAGE AND OVERVOLTAGE
SHUTDOWN
■ PROTECTION AGAINST LOSS OF GROUND
■ VERY LOW STAND-BY CURRENT
■
■
■
REVERSE BATTERY PROTECTION (*)
DESCRIPTION
The VN820, VN820SP, VN820-B5, VN820SO,
VN820PT are monolithic devices made by using
STMicroelectronics VIPower M0-3 Technology,
intended for driving any kind of load with one side
connected to ground.
Active VCC pin voltage clamp protects the device
against low energy spikes (see ISO7637 transient
BLOCK DIAGRAM
PENTAWATT
SO-16L
ORDER CODES
PACKAGE
TUBE
T&R
VN820
PowerSO-10™ VN820SP
P2PAK
VN820-B5
SO-16L
VN820SO
PPAK
VN820PT
PENTAWATT
VN820SP13TR
VN820-B513TR
VN820SO13TR
VN820PT13TR
compatibility table). Active current limitation
combined with thermal shutdown and automatic
restart protect the device against overload.
The device detects open load condition both is on
and off state. Output shorted to VCC is detected in
the off state. Device automatically turns off in case
of ground pin disconnection.
VCC
OVERVOLTAGE
DETECTION
VCC
CLAMP
UNDERVOLTAGE
DETECTION
GND
Power CLAMP
DRIVER
INPUT
OUTPUT
LOGIC
CURRENT LIMITER
ON STATE OPENLOAD
DETECTION
STATUS
OVERTEMPERATURE
DETECTION
OFF STATE OPENLOAD
AND OUTPUT SHORTED TO VCC
DETECTION
(*) See application schematic at page 9
June 2003
1/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
ABSOLUTE MAXIMUM RATING
Symbol
VCC
- VCC
- IGND
IOUT
- IOUT
IIN
ISTAT
Value
Unit
PowerSO-10™ PENTAWATT P2PAK SO-16L PPAK
41
V
- 0.3
V
- 200
mA
Internally Limited
A
-9
A
+/- 10
mA
+/- 10
mA
Parameter
DC Supply Voltage
Reverse DC Supply Voltage
DC Reverse Ground Pin Current
DC Output Current
Reverse DC Output Current
DC Input Current
DC Status Current
Electrostatic Discharge
(Human Body Model: R=1.5KΩ; C=100pF)
VESD
EMAX
EMAX
EMAX
Ptot
Tj
Tc
Tstg
- INPUT
4000
V
- STATUS
4000
V
- OUTPUT
5000
V
- VCC
Maximum Switching Energy (L=4mH; RL=0Ω;
Vbat=13.5V; Tjstart=150ºC; IL=13A)
Maximum Switching Energy (L=3.7mH;
RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=13A)
Maximum Switching Energy (L=4.48mH;
RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=13A)
Power Dissipation TC=25°C
Junction Operating Temperature
Case Operating Temperature
Storage Temperature
5000
V
481
481
mJ
438
65.8
65.8
65.8
Internally Limited
- 40 to 150
- 55 to 150
mJ
8.3
526
mJ
65.8
W
°C
°C
°C
CONNECTION DIAGRAM (TOP VIEW)
1
VCC
GROUND
INPUT
STATUS
N.C.
N.C.
16
OUTPUT
GND
OUTPUT
6
5
OUTPUT
7
4
OUTPUT
8
3
N.C.
INPUT
OUTPUT
9
2
OUTPUT
10
1
OUTPUT
STATUS
N.C.
OUTPUT
OUTPUT
11
VCC
PPAK / P2PAK / PENTAWATT
PowerSO-10™
OUTPUT
N.C.
VCC
8
9
SO-16L
CURRENT AND VOLTAGE CONVENTIONS
IS
IIN
VCC
INPUT
ISTAT
IOUT
STATUS
V CC
OUTPUT
GND
V IN
V STAT
2/34
VCC
N.C.
IGND
V OUT
VCC
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
THERMAL DATA
Symbol
Rthj-case
Rthj-lead
Rthj-amb
Value
PowerSO-10™ PENTAWATT P2PAK SO-16L PPAK
Thermal Resistance Junction-case
Max
1.9
1.9
1.9
1.9
Thermal Resistance Junction-lead
Max
15
Thermal Resistance Junction-ambient Max
51.9 (*)
61.9 (*)
51.9 (*) 65 (**) 76.9 (*)
Parameter
Unit
°C/W
°C/W
°C/W
(*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick).
(**) When mounted on FR4 printed circuit board with 0.5cm2 of Cu (at least 35µ thick) connected to all VCC pins.
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified)
POWER
Symbol
VCC
VUSD
VUSDhyst
VOV
RON
IS
Parameter
Operating Supply Voltage
Undervoltage Shut-down
Undervoltage Shut-down
hysteresis
Overvoltage Shut-down
On State Resistance
Supply Current
Test Conditions
Min
5.5
3
Off State Output Current
Off State Output Current
Off State Output Current
Off State Output Current
Max
36
5.5
0.5
IOUT=3A; VCC>8V
Unit
V
V
V
36
IOUT=3A; Tj=25°C; VCC>8V
40
V
mΩ
Off State; VCC=13V; VIN=VOUT=0V
10
80
25
mΩ
µA
Off State; VCC=13V; VIN=VOUT=0V;
Tj=25°C
10
20
µA
2
3.5
50
0
5
3
mA
µA
µA
µA
µA
Typ
Max
Unit
On State; VCC=13V; VIN=5V; IOUT=0A
IL(off1)
IL(off2)
IL(off3)
IL(off4)
Typ
13
4
VIN=VOUT=0V
VIN=0V; VOUT=3.5V
VIN=VOUT=0V; Vcc=13V; Tj =125°C
VIN=VOUT=0V; Vcc=13V; Tj =25°C
0
-75
Test Conditions
RL=4.3Ω from VIN rising edge to
VOUT=1.3V
RL=4.3Ω from VIN falling edge to
VOUT=11.7V
Min
SWITCHING (VCC=13V)
Symbol
Parameter
td(on)
Turn-on Delay Time
td(off)
Turn-off Delay Time
dVOUT/dt(on) Turn-on Voltage Slope
RL=4.3Ω from VOUT=1.3 to
VOUT=10.4V
dVOUT/dt(off) Turn-off Voltage Slope
RL=4.3Ω from VOUT=11.7 to
VOUT=1.3V
30
µs
30
µs
See
relative
diagram
See
relative
diagram
V/µs
V/µs
INPUT PIN
Symbol
VIL
IIL
VIH
IIH
VI(hyst)
VICL
Parameter
Input Low Level
Low Level Input Current
Input High Level
High Level Input Current
Input Hysteresis Voltage
Input Clamp Voltage
Test Conditions
VIN=1.25V
Min
Typ
1
3.25
VIN=3.25V
IIN=1mA
IIN=-1mA
Max
1.25
10
0.5
6
6.8
-0.7
8
Unit
V
µA
V
µA
V
V
V
3/34
1
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
ELECTRICAL CHARACTERISTICS (continued)
STATUS PIN
Symbol
VSTAT
ILSTAT
CSTAT
VSCL
Parameter
Test Conditions
Status Low Output Voltage ISTAT=1.6mA
Status Leakage Current
Normal Operation VSTAT=5V
Status Pin Input
Normal Operation VSTAT=5V
Capacitance
ISTAT=1mA
Status Clamp Voltage
ISTAT=-1mA
Min
Typ
6
Max
0.5
10
Unit
V
µA
100
pF
8
V
6.8
-0.7
V
PROTECTIONS
Symbol
TTSD
TR
Thyst
tSDL
Parameter
Shut-down Temperature
Reset Temperature
Thermal Hysteresis
Status delay in overload
condition
Ilim
Current limitation
Vdemag
Turn-off Output Clamp
Voltage
Test Conditions
Min
150
135
7
Typ
175
Unit
°C
°C
°C
20
µs
20
A
20
A
15
Tj>TTSD
9
13
5.5V<VCC<36V
IOUT=3A; VIN=0V; L=6mH
Max
200
VCC-41 VCC-48 VCC-55
V
OPENLOAD DETECTION
Symbol
IOL
tDOL(on)
VOL
tDOL(off)
Parameter
Openload ON State
Detection Threshold
Openload ON State
Detection Delay
Openload OFF State
Voltage Detection
Test Conditions
VIN=5V
VIN=0V
Max
Unit
70
150
300
mA
200
µs
3.5
V
1000
µs
1.5
Threshold
Openload Detection Delay
at Turn Off
2.5
OVERTEMP STATUS TIMING
Tj > TTSD
VIN
VIN
VSTAT
VSTAT
tDOL(off)
2
Typ
IOUT=0A
OPEN LOAD STATUS TIMING (with external pull-up)
IOUT< IOL
VOUT > VOL
4/34
Min
tDOL(on)
tSDL
tSDL
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
Switching time Waveforms
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
10%
t
VIN
td(on)
td(off)
t
TRUTH TABLE
CONDITIONS
Normal Operation
Current Limitation
Overtemperature
Undervoltage
Overvoltage
Output Voltage > VOL
Output Current < IOL
INPUT
L
H
L
H
H
L
H
L
H
L
H
L
H
L
H
OUTPUT
L
H
L
X
X
L
L
L
L
L
L
H
H
L
H
STATUS
H
H
H
(Tj < TTSD) H
(Tj > TTSD) L
H
L
X
X
H
H
L
H
H
L
5/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
OPEN LOAD DETECTION IN OFF STATE
2) no misdetection when load is disconnected: in this
case the VOUT has to be higher than VOLmax; this
results in the following condition RPU<(VPU–VOLmax)/
IL(off2).
Because Is(OFF) may significantly increase if Vout is pulled
high (up to several mA), the pull-up resistor RPU should
be connected to a supply that is switched OFF when the
module is in standby.
The values of VOLmin, VOLmax and IL(off2) are available in
the Electrical Characteristics section.
Off state open load detection requires an external pull-up
resistor (RPU) connected between OUTPUT pin and a
positive supply voltage (VPU) like the +5V line used to
supply the microprocessor.
The external resistor has to be selected according to the
following requirements:
1) no false open load indication when load is connected:
in this case we have to avoid VOUT to be higher than
VOlmin; this results in the following condition
VOUT=(VPU/(RL+RPU))RL<VOlmin.
Open Load detection in off state
V batt.
VPU
VCC
RPU
INPUT
DRIVER
+
LOGIC
IL(off2)
OUT
+
R
STATUS
VOL
GROUND
6/34
RL
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
ELECTRICAL TRANSIENT REQUIREMENTS ON VCC PIN
ISO T/R 7637/1
Test Pulse
I
II
TEST LEVELS
III
IV
1
2
3a
3b
4
5
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
CLASS
C
E
I
C
C
C
C
C
C
TEST LEVELS RESULTS
II
III
C
C
C
C
C
C
C
C
C
C
E
E
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
IV
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
7/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
Figure 1: Waveforms
NORMAL OPERATION
INPUT
LOAD VOLTAGE
STATUS
UNDERVOLTAGE
VUSDhyst
VCC
VUSD
INPUT
LOAD VOLTAGE
STATUS
undefined
OVERVOLTAGE
VCC<VOV
VCC>VOV
VCC
INPUT
LOAD VOLTAGE
STATUS
OPEN LOAD with external pull-up
INPUT
VOUT>VOL
LOAD VOLTAGE
VOL
STATUS
OPEN LOAD without external pull-up
INPUT
LOAD VOLTAGE
STATUS
Tj
INPUT
LOAD CURRENT
STATUS
8/34
TTSD
TR
OVERTEMPERATURE
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
APPLICATION SCHEMATIC
+5V
+5V
VCC
Rprot
STATUS
Dld
µC
Rprot
INPUT
OUTPUT
GND
VGND
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the of
the device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on many devices are ON in the case of several
high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor
or several devices have to share the same resistor then
the ST suggest to utilize Solution 2 (see below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
RGND
DGND
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating. The
same applies if the device will be subject to transients on
the VCC line that are greater than the ones shown in the
ISO T/R 7637/1 table.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transient are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot )
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up limit
of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
9/34
1
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
High Level Input Current
Off State Output Current
IL(off1) (µA)
Iih (uA)
5
5
4.5
4.5
Off state
Vcc=36V
Vin=Vout=0V
4
3.5
Vin=3.25V
4
3.5
3
3
2.5
2.5
2
2
1.5
1.5
1
1
0.5
0.5
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (ºC)
50
75
100
125
150
175
100
125
150
175
100
125
150
175
Tc (°C)
Input Clamp Voltage
Input High Level
Vih (V)
Vicl (V)
3.6
8
7.8
3.4
Iin=1mA
7.6
3.2
7.4
3
7.2
2.8
7
6.8
2.6
6.6
2.4
6.4
2.2
6.2
2
6
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
Tc (°C)
Tc (°C)
Input Low Level
Input Hysteresis Voltage
Vil (V)
Vhyst (V)
2.6
1.5
1.4
2.4
1.3
2.2
1.2
2
1.1
1.8
1
0.9
1.6
0.8
1.4
0.7
1.2
0.6
1
0.5
-50
-25
0
25
50
75
Tc (°C)
10/34
100
125
150
175
-50
-25
0
25
50
75
Tc (°C)
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
ILIM Vs Tcase
Overvoltage Shutdown
Vov (V)
Ilim (A)
50
25
48
22.5
46
20
44
17.5
Vcc=13V
42
15
40
12.5
38
10
36
7.5
34
5
32
2.5
30
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
50
Tc (°C)
75
100
125
150
175
100
125
150
175
Tc (ºC)
Turn-on Voltage Slope
Turn-off Voltage Slope
dVout/dt(on) (V/ms)
dVout/dt(off) (V/ms)
1000
1000
900
900
Vcc=13V
Rl=4.3Ohm
800
Vcc=13V
Rl=4.3Ohm
800
700
700
600
600
500
500
400
400
300
300
200
200
100
100
0
0
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
Tc (ºC)
Tc (ºC)
On State Resistance Vs Tcase
On State Resistance Vs VCC
Ron (mOhm)
Ron (mOhm)
100
100
90
90
Iout=3A
Vcc=8V; 13V; 36V
80
80
Tc= 150ºC
70
70
60
60
50
50
40
40
30
30
20
20
10
10
0
Tc= 25ºC
Tc= - 40ºC
0
-50
-25
0
25
50
75
Tc (ºC)
100
125
150
175
5
10
15
20
25
30
35
40
Vcc (V)
11/34
1
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
Status Leakage Current
Status Clamp Voltage
Vscl (V)
Ilstat (uA)
8
0.05
7.8
Istat=1mA
7.6
0.04
7.4
Vstat=5V
7.2
0.03
7
6.8
0.02
6.6
0.01
6.4
6.2
6
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
150
175
Tc (°C)
Status Low Output Voltage
Open Load Off State Voltage Detection Threshold
Vol (V)
Vstat (V)
5
0.8
4.5
0.7
Vin=0V
Istat=1.6mA
4
0.6
3.5
0.5
3
2.5
0.4
2
0.3
1.5
0.2
1
0.1
0.5
0
0
-50
-25
0
25
50
75
100
125
150
175
Open Load On State Detection Threshold
Iol (mA)
200
190
Vcc=13V
Vin=5V
180
170
160
150
140
130
120
110
100
90
80
-50
-25
0
25
50
75
Tc (ºC)
12/34
-50
-25
0
25
50
75
Tc (°C)
Tc (°C)
100
125
150
175
100
125
150
175
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
PowerSO-10, P2PAK, PENTAWATT Maximum turn off current versus load inductance
ILMAX (A)
100
A
10
B
C
1
0.1
1
10
100
L(mH )
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
13/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
PPAK Maximum turn off current versus load inductance
ILMAX (A)
100
A
B
10
C
1
0.1
1
10
100
L(mH )
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
14/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
SO-16L Maximum turn off current versus load inductance
ILM AX (A)
100
A
B
10
C
1
0.1
1
10
100
L(mH)
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
15/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
SO-16L THERMAL DATA
SO-16L PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 41mm x 48mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.5cm2, 6cm2).
Rthj-amb Vs PCB copper area in open box free air condition
70
RTH j-amb (°C/W)
65
60
55
50
45
40
0
1
2
3
4
5
PCB Cu heatsink area (cm^2)
16/34
6
7
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
P2PAK THERMAL DATA
P2PAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.97cm2, 8cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (°C/W)
55
Tj-Tamb=50°C
50
45
40
35
30
0
2
4
6
8
10
PCB Cu heatsink area (cm^2)
17/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
PPAK THERMAL DATA
PPAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.44cm2, 8cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb
(ºC/W)
90
80
70
60
50
40
30
20
10
0
0
2
4
6
PCB Cu heatsink area (cm^2)
18/34
8
10
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
PowerSO-10™ THERMAL DATA
PowerSO-10™ PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (°C/W)
55
Tj-Tamb=50°C
50
45
40
35
30
0
2
4
6
8
10
PCB Cu heatsink area (cm^2)
19/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
PowerSO-10 Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
100
0.5 cm2
6 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
10
100
1000
Time (s)
Thermal fitting model of a single channel HSD
in PowerSO-10
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
20/34
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.5
0.04
0.25
0.25
0.8
12
37
0.0008
7.00E-03
0.015
0.3
0.75
3
6
22
5
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
P2PAK Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
1000
100
0.97 cm2
6 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
T ime (s)
Thermal fitting model of a single channel HSD
in P2PAK
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.97
0.04
0.25
0.3
4
9
37
0.0008
0.007
0.015
0.4
2
3
6
22
5
21/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
PPAK Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
1000
100
0.44 cm2
6 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
Time (s)
Thermal fitting model of a single channel HSD
in PPAK
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
22/34
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.44
0.04
0.25
0.3
2
15
61
0.0008
0.007
0.02
0.3
0.45
0.8
6
24
5
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
SO-16L Thermal Impedance Junction Ambient Single Pulse
ZT H (°C/W)
1000
100
0.5 cm2
6 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
T ime (s)
Thermal fitting model of a single channel HSD
in SO-16L
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.5
0.04
0.25
2.2
12
15
37
0.0008
7.00E-03
1.50E-02
0.14
1
3
6
22
5
23/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
PowerSO-10™ MECHANICAL DATA
mm.
DIM.
MIN.
A
A (*)
A1
B
B (*)
C
C (*)
D
D1
E
E2
E2 (*)
E4
E4 (*)
e
F
F (*)
H
H (*)
h
L
L (*)
α
α (*)
inch
TYP
3.35
3.4
0.00
0.40
0.37
0.35
0.23
9.40
7.40
9.30
7.20
7.30
5.90
5.90
MAX.
MIN.
3.65
3.6
0.10
0.60
0.53
0.55
0.32
9.60
7.60
9.50
7.60
7.50
6.10
6.30
0.132
0.134
0.000
0.016
0.014
0.013
0.009
0.370
0.291
0.366
0.283
0.287
0.232
0.232
1.35
1.40
14.40
14.35
0.049
0.047
0.543
0.545
1.80
1.10
8º
8º
0.047
0.031
0º
2º
1.27
TYP.
MAX.
0.144
0.142
0.004
0.024
0.021
0.022
0.0126
0.378
0.300
0.374
300
0.295
0.240
0.248
0.050
1.25
1.20
13.80
13.85
0.50
0.053
0.055
0.567
0.565
0.002
1.20
0.80
0º
2º
0.070
0.043
8º
8º
(*) Muar only POA P013P
B
0.10 A B
10
H
E
E
E2
1
SEATING
PLANE
e
B
DETAIL "A"
A
C
0.25
h
E4
D
= D1 =
=
=
SEATING
PLANE
A
F
A1
A1
L
DETAIL "A"
α
P095A
24/34
1
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
PENTAWATT (VERTICAL) MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
inch
MAX.
MIN.
TYP.
4.8
C
MAX.
0.189
1.37
0.054
D
2.4
2.8
0.094
0.110
D1
1.2
1.35
0.047
0.053
E
0.35
0.55
0.014
0.022
F
0.8
1.05
0.031
0.041
F1
1
1.4
0.039
G
3.2
3.4
3.6
0.126
0.134
0.142
G1
6.6
6.8
7
0.260
0.268
0.276
H2
H3
0.055
10.4
10.05
10.4
0.409
0.396
0.409
L
17.85
0.703
L1
15.75
0.620
L2
21.4
0.843
L3
22.5
0.886
L5
2.6
3
0.102
0.118
L6
15.1
15.8
0.594
0.622
L7
6
6.6
0.236
M
4.5
M1
Diam.
4
3.65
0.260
0.177
0.157
3.85
0.144
0.152
25/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
P2PAK MECHANICAL DATA
DIM.
mm.
MIN.
TYP
MAX.
A
4.30
4.80
A1
2.40
2.80
A2
0.03
0.23
b
0.80
1.05
c
0.45
0.60
c2
1.17
1.37
D
8.95
D2
E
10.00
E1
e
9.35
8.00
10.40
8.50
3.20
3.60
e1
6.60
7.00
L
13.70
14.50
L2
1.25
1.40
L3
0.90
1.70
L5
1.55
2.40
0.40
R
V2
Package Weight
0º
8º
1.40 Gr (typ)
P010R
26/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
SO-16L MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
a1
inch
MAX.
MIN.
TYP.
2.65
0.1
0.2
b
0.35
b1
0.23
a2
0.104
0.004
0.008
0.49
0.014
0.019
0.32
0.009
0.012
2.45
C
MAX.
0.096
0.5
0.020
c1
45° (typ.)
D
10.1
10.5
0.397
0.413
E
10.0
10.65
0.393
0.419
e
1.27
e3
8.89
F
7.4
L
0.5
M
S
0.050
0.350
7.6
0.291
1.27
0.020
0.75
0.300
0.050
0.029
8° (max.)
27/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
PPAK MECHANICAL DATA
DIM.
MIN.
TYP
MAX.
A
2.20
2.40
A1
0.90
1.10
A2
0.03
0.23
B
0.40
0.60
B2
5.20
5.40
C
0.45
0.60
C2
0.48
0.60
D1
5.1
D
6.00
6.20
E
6.40
6.60
E1
4.7
e
1.27
G
4.90
G1
2.38
2.70
H
9.35
10.10
L2
L4
0.8
0.60
R
V2
Package Weight
5.25
1.00
1.00
0.2
0º
8º
Gr. 0.3
P032T1
28/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
PowerSO-10™ SUGGESTED PAD LAYOUT
TUBE SHIPMENT (no suffix)
14.6 - 14.9
CASABLANCA
B
10.8- 11
MUAR
C
6.30
C
A
A
0.67 - 0.73
10
9
1
9.5
2
3
B
0.54 - 0.6
All dimensions are in mm.
8
7
4
5
1.27
Base Q.ty Bulk Q.ty Tube length (± 0.5)
6
Casablanca
Muar
50
50
1000
1000
532
532
A
B
C (± 0.1)
10.4 16.4
4.9 17.2
0.8
0.8
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
600
600
330
1.5
13
20.2
24.4
60
30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
24
4
24
1.5
1.5
11.5
6.5
2
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
29/34
1
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
PENTAWATT TUBE SHIPMENT (no suffix)
B
C
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
All dimensions are in mm.
A
30/34
50
1000
532
18
33.1
1
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
2
P PAK TUBE SHIPMENT (no suffix)
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
B
C
50
1000
532
18
33.1
1
All dimensions are in mm.
A
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
1000
1000
330
1.5
13
20.2
24.4
60
30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
24
4
16
1.5
1.5
11.5
6.5
2
End
Start
Top
cover
tape
No components
Components
No components
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
31/34
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
SO-16L TUBE SHIPMENT (no suffix)
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
C
B
50
1000
532
3.5
13.8
0.6
All dimensions are in mm.
A
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
1000
1000
330
1.5
13
20.2
16.4
60
22.4
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
16
4
12
1.5
1.5
7.5
6.5
2
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
32/34
1
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
PPAK TUBE SHIPMENT (no suffix)
A
C
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
B
75
3000
532
6
21.3
0.6
All dimensions are in mm.
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
2500
2500
330
1.5
13
20.2
16.4
60
22.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
16
4
8
1.5
1.5
7.5
6.5
2
End
Start
Top
cover
tape
No components
Components
No components
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
33/34
1
VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics
 2003 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
34/34