VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT ® HIGH SIDE DRIVER TYPE VN820 RDS(on) IOUT VCC 10 VN820SP VN820-B5 40 mΩ 9A 1 36 V PowerSO-10™ VN820SO P2PAK PPAK VN820PT CMOS COMPATIBLE INPUT ON STATE OPEN LOAD DETECTION ■ OFF STATE OPEN LOAD DETECTION ■ SHORTED LOAD PROTECTION ■ UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN ■ PROTECTION AGAINST LOSS OF GROUND ■ VERY LOW STAND-BY CURRENT ■ ■ ■ REVERSE BATTERY PROTECTION (*) DESCRIPTION The VN820, VN820SP, VN820-B5, VN820SO, VN820PT are monolithic devices made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient BLOCK DIAGRAM PENTAWATT SO-16L ORDER CODES PACKAGE TUBE T&R VN820 PowerSO-10™ VN820SP P2PAK VN820-B5 SO-16L VN820SO PPAK VN820PT PENTAWATT VN820SP13TR VN820-B513TR VN820SO13TR VN820PT13TR compatibility table). Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. The device detects open load condition both is on and off state. Output shorted to VCC is detected in the off state. Device automatically turns off in case of ground pin disconnection. VCC OVERVOLTAGE DETECTION VCC CLAMP UNDERVOLTAGE DETECTION GND Power CLAMP DRIVER INPUT OUTPUT LOGIC CURRENT LIMITER ON STATE OPENLOAD DETECTION STATUS OVERTEMPERATURE DETECTION OFF STATE OPENLOAD AND OUTPUT SHORTED TO VCC DETECTION (*) See application schematic at page 9 June 2003 1/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT ABSOLUTE MAXIMUM RATING Symbol VCC - VCC - IGND IOUT - IOUT IIN ISTAT Value Unit PowerSO-10™ PENTAWATT P2PAK SO-16L PPAK 41 V - 0.3 V - 200 mA Internally Limited A -9 A +/- 10 mA +/- 10 mA Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current DC Status Current Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF) VESD EMAX EMAX EMAX Ptot Tj Tc Tstg - INPUT 4000 V - STATUS 4000 V - OUTPUT 5000 V - VCC Maximum Switching Energy (L=4mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=13A) Maximum Switching Energy (L=3.7mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=13A) Maximum Switching Energy (L=4.48mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=13A) Power Dissipation TC=25°C Junction Operating Temperature Case Operating Temperature Storage Temperature 5000 V 481 481 mJ 438 65.8 65.8 65.8 Internally Limited - 40 to 150 - 55 to 150 mJ 8.3 526 mJ 65.8 W °C °C °C CONNECTION DIAGRAM (TOP VIEW) 1 VCC GROUND INPUT STATUS N.C. N.C. 16 OUTPUT GND OUTPUT 6 5 OUTPUT 7 4 OUTPUT 8 3 N.C. INPUT OUTPUT 9 2 OUTPUT 10 1 OUTPUT STATUS N.C. OUTPUT OUTPUT 11 VCC PPAK / P2PAK / PENTAWATT PowerSO-10™ OUTPUT N.C. VCC 8 9 SO-16L CURRENT AND VOLTAGE CONVENTIONS IS IIN VCC INPUT ISTAT IOUT STATUS V CC OUTPUT GND V IN V STAT 2/34 VCC N.C. IGND V OUT VCC VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT THERMAL DATA Symbol Rthj-case Rthj-lead Rthj-amb Value PowerSO-10™ PENTAWATT P2PAK SO-16L PPAK Thermal Resistance Junction-case Max 1.9 1.9 1.9 1.9 Thermal Resistance Junction-lead Max 15 Thermal Resistance Junction-ambient Max 51.9 (*) 61.9 (*) 51.9 (*) 65 (**) 76.9 (*) Parameter Unit °C/W °C/W °C/W (*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick). (**) When mounted on FR4 printed circuit board with 0.5cm2 of Cu (at least 35µ thick) connected to all VCC pins. ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified) POWER Symbol VCC VUSD VUSDhyst VOV RON IS Parameter Operating Supply Voltage Undervoltage Shut-down Undervoltage Shut-down hysteresis Overvoltage Shut-down On State Resistance Supply Current Test Conditions Min 5.5 3 Off State Output Current Off State Output Current Off State Output Current Off State Output Current Max 36 5.5 0.5 IOUT=3A; VCC>8V Unit V V V 36 IOUT=3A; Tj=25°C; VCC>8V 40 V mΩ Off State; VCC=13V; VIN=VOUT=0V 10 80 25 mΩ µA Off State; VCC=13V; VIN=VOUT=0V; Tj=25°C 10 20 µA 2 3.5 50 0 5 3 mA µA µA µA µA Typ Max Unit On State; VCC=13V; VIN=5V; IOUT=0A IL(off1) IL(off2) IL(off3) IL(off4) Typ 13 4 VIN=VOUT=0V VIN=0V; VOUT=3.5V VIN=VOUT=0V; Vcc=13V; Tj =125°C VIN=VOUT=0V; Vcc=13V; Tj =25°C 0 -75 Test Conditions RL=4.3Ω from VIN rising edge to VOUT=1.3V RL=4.3Ω from VIN falling edge to VOUT=11.7V Min SWITCHING (VCC=13V) Symbol Parameter td(on) Turn-on Delay Time td(off) Turn-off Delay Time dVOUT/dt(on) Turn-on Voltage Slope RL=4.3Ω from VOUT=1.3 to VOUT=10.4V dVOUT/dt(off) Turn-off Voltage Slope RL=4.3Ω from VOUT=11.7 to VOUT=1.3V 30 µs 30 µs See relative diagram See relative diagram V/µs V/µs INPUT PIN Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Clamp Voltage Test Conditions VIN=1.25V Min Typ 1 3.25 VIN=3.25V IIN=1mA IIN=-1mA Max 1.25 10 0.5 6 6.8 -0.7 8 Unit V µA V µA V V V 3/34 1 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT ELECTRICAL CHARACTERISTICS (continued) STATUS PIN Symbol VSTAT ILSTAT CSTAT VSCL Parameter Test Conditions Status Low Output Voltage ISTAT=1.6mA Status Leakage Current Normal Operation VSTAT=5V Status Pin Input Normal Operation VSTAT=5V Capacitance ISTAT=1mA Status Clamp Voltage ISTAT=-1mA Min Typ 6 Max 0.5 10 Unit V µA 100 pF 8 V 6.8 -0.7 V PROTECTIONS Symbol TTSD TR Thyst tSDL Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis Status delay in overload condition Ilim Current limitation Vdemag Turn-off Output Clamp Voltage Test Conditions Min 150 135 7 Typ 175 Unit °C °C °C 20 µs 20 A 20 A 15 Tj>TTSD 9 13 5.5V<VCC<36V IOUT=3A; VIN=0V; L=6mH Max 200 VCC-41 VCC-48 VCC-55 V OPENLOAD DETECTION Symbol IOL tDOL(on) VOL tDOL(off) Parameter Openload ON State Detection Threshold Openload ON State Detection Delay Openload OFF State Voltage Detection Test Conditions VIN=5V VIN=0V Max Unit 70 150 300 mA 200 µs 3.5 V 1000 µs 1.5 Threshold Openload Detection Delay at Turn Off 2.5 OVERTEMP STATUS TIMING Tj > TTSD VIN VIN VSTAT VSTAT tDOL(off) 2 Typ IOUT=0A OPEN LOAD STATUS TIMING (with external pull-up) IOUT< IOL VOUT > VOL 4/34 Min tDOL(on) tSDL tSDL VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT Switching time Waveforms VOUT 90% 80% dVOUT/dt(off) dVOUT/dt(on) 10% t VIN td(on) td(off) t TRUTH TABLE CONDITIONS Normal Operation Current Limitation Overtemperature Undervoltage Overvoltage Output Voltage > VOL Output Current < IOL INPUT L H L H H L H L H L H L H L H OUTPUT L H L X X L L L L L L H H L H STATUS H H H (Tj < TTSD) H (Tj > TTSD) L H L X X H H L H H L 5/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT OPEN LOAD DETECTION IN OFF STATE 2) no misdetection when load is disconnected: in this case the VOUT has to be higher than VOLmax; this results in the following condition RPU<(VPU–VOLmax)/ IL(off2). Because Is(OFF) may significantly increase if Vout is pulled high (up to several mA), the pull-up resistor RPU should be connected to a supply that is switched OFF when the module is in standby. The values of VOLmin, VOLmax and IL(off2) are available in the Electrical Characteristics section. Off state open load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to supply the microprocessor. The external resistor has to be selected according to the following requirements: 1) no false open load indication when load is connected: in this case we have to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT=(VPU/(RL+RPU))RL<VOlmin. Open Load detection in off state V batt. VPU VCC RPU INPUT DRIVER + LOGIC IL(off2) OUT + R STATUS VOL GROUND 6/34 RL VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT ELECTRICAL TRANSIENT REQUIREMENTS ON VCC PIN ISO T/R 7637/1 Test Pulse I II TEST LEVELS III IV 1 2 3a 3b 4 5 -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I C C C C C C TEST LEVELS RESULTS II III C C C C C C C C C C E E Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. 7/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT Figure 1: Waveforms NORMAL OPERATION INPUT LOAD VOLTAGE STATUS UNDERVOLTAGE VUSDhyst VCC VUSD INPUT LOAD VOLTAGE STATUS undefined OVERVOLTAGE VCC<VOV VCC>VOV VCC INPUT LOAD VOLTAGE STATUS OPEN LOAD with external pull-up INPUT VOUT>VOL LOAD VOLTAGE VOL STATUS OPEN LOAD without external pull-up INPUT LOAD VOLTAGE STATUS Tj INPUT LOAD CURRENT STATUS 8/34 TTSD TR OVERTEMPERATURE VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT APPLICATION SCHEMATIC +5V +5V VCC Rprot STATUS Dld µC Rprot INPUT OUTPUT GND VGND GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / (IS(on)max). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggest to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. RGND DGND This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. µC I/Os PROTECTION: If a ground protection network is used and negative transient are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot ) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. 9/34 1 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT High Level Input Current Off State Output Current IL(off1) (µA) Iih (uA) 5 5 4.5 4.5 Off state Vcc=36V Vin=Vout=0V 4 3.5 Vin=3.25V 4 3.5 3 3 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 50 75 100 125 150 175 100 125 150 175 100 125 150 175 Tc (°C) Input Clamp Voltage Input High Level Vih (V) Vicl (V) 3.6 8 7.8 3.4 Iin=1mA 7.6 3.2 7.4 3 7.2 2.8 7 6.8 2.6 6.6 2.4 6.4 2.2 6.2 2 6 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 Tc (°C) Tc (°C) Input Low Level Input Hysteresis Voltage Vil (V) Vhyst (V) 2.6 1.5 1.4 2.4 1.3 2.2 1.2 2 1.1 1.8 1 0.9 1.6 0.8 1.4 0.7 1.2 0.6 1 0.5 -50 -25 0 25 50 75 Tc (°C) 10/34 100 125 150 175 -50 -25 0 25 50 75 Tc (°C) VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT ILIM Vs Tcase Overvoltage Shutdown Vov (V) Ilim (A) 50 25 48 22.5 46 20 44 17.5 Vcc=13V 42 15 40 12.5 38 10 36 7.5 34 5 32 2.5 30 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 Tc (°C) 75 100 125 150 175 100 125 150 175 Tc (ºC) Turn-on Voltage Slope Turn-off Voltage Slope dVout/dt(on) (V/ms) dVout/dt(off) (V/ms) 1000 1000 900 900 Vcc=13V Rl=4.3Ohm 800 Vcc=13V Rl=4.3Ohm 800 700 700 600 600 500 500 400 400 300 300 200 200 100 100 0 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 Tc (ºC) Tc (ºC) On State Resistance Vs Tcase On State Resistance Vs VCC Ron (mOhm) Ron (mOhm) 100 100 90 90 Iout=3A Vcc=8V; 13V; 36V 80 80 Tc= 150ºC 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 Tc= 25ºC Tc= - 40ºC 0 -50 -25 0 25 50 75 Tc (ºC) 100 125 150 175 5 10 15 20 25 30 35 40 Vcc (V) 11/34 1 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT Status Leakage Current Status Clamp Voltage Vscl (V) Ilstat (uA) 8 0.05 7.8 Istat=1mA 7.6 0.04 7.4 Vstat=5V 7.2 0.03 7 6.8 0.02 6.6 0.01 6.4 6.2 6 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 Tc (°C) Status Low Output Voltage Open Load Off State Voltage Detection Threshold Vol (V) Vstat (V) 5 0.8 4.5 0.7 Vin=0V Istat=1.6mA 4 0.6 3.5 0.5 3 2.5 0.4 2 0.3 1.5 0.2 1 0.1 0.5 0 0 -50 -25 0 25 50 75 100 125 150 175 Open Load On State Detection Threshold Iol (mA) 200 190 Vcc=13V Vin=5V 180 170 160 150 140 130 120 110 100 90 80 -50 -25 0 25 50 75 Tc (ºC) 12/34 -50 -25 0 25 50 75 Tc (°C) Tc (°C) 100 125 150 175 100 125 150 175 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT PowerSO-10, P2PAK, PENTAWATT Maximum turn off current versus load inductance ILMAX (A) 100 A 10 B C 1 0.1 1 10 100 L(mH ) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at TJstart=100ºC C= Repetitive Pulse at TJstart=125ºC Conditions: VCC=13.5V Values are generated with RL=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 13/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT PPAK Maximum turn off current versus load inductance ILMAX (A) 100 A B 10 C 1 0.1 1 10 100 L(mH ) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at TJstart=100ºC C= Repetitive Pulse at TJstart=125ºC Conditions: VCC=13.5V Values are generated with RL=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 14/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT SO-16L Maximum turn off current versus load inductance ILM AX (A) 100 A B 10 C 1 0.1 1 10 100 L(mH) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at TJstart=100ºC C= Repetitive Pulse at TJstart=125ºC Conditions: VCC=13.5V Values are generated with RL=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 15/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT SO-16L THERMAL DATA SO-16L PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 41mm x 48mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.5cm2, 6cm2). Rthj-amb Vs PCB copper area in open box free air condition 70 RTH j-amb (°C/W) 65 60 55 50 45 40 0 1 2 3 4 5 PCB Cu heatsink area (cm^2) 16/34 6 7 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT P2PAK THERMAL DATA P2PAK PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.97cm2, 8cm2). Rthj-amb Vs PCB copper area in open box free air condition RTHj_amb (°C/W) 55 Tj-Tamb=50°C 50 45 40 35 30 0 2 4 6 8 10 PCB Cu heatsink area (cm^2) 17/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT PPAK THERMAL DATA PPAK PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.44cm2, 8cm2). Rthj-amb Vs PCB copper area in open box free air condition RTHj_amb (ºC/W) 90 80 70 60 50 40 30 20 10 0 0 2 4 6 PCB Cu heatsink area (cm^2) 18/34 8 10 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT PowerSO-10™ THERMAL DATA PowerSO-10™ PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2). Rthj-amb Vs PCB copper area in open box free air condition RTHj_amb (°C/W) 55 Tj-Tamb=50°C 50 45 40 35 30 0 2 4 6 8 10 PCB Cu heatsink area (cm^2) 19/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT PowerSO-10 Thermal Impedance Junction Ambient Single Pulse ZTH (°C/W) 100 0.5 cm2 6 cm2 10 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 10 100 1000 Time (s) Thermal fitting model of a single channel HSD in PowerSO-10 Pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Thermal Parameter Tj C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd T_amb 20/34 Area/island (cm2) R1 (°C/W) R2 (°C/W) R3( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1 (W.s/°C) C2 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) 0.5 0.04 0.25 0.25 0.8 12 37 0.0008 7.00E-03 0.015 0.3 0.75 3 6 22 5 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT P2PAK Thermal Impedance Junction Ambient Single Pulse ZTH (°C/W) 1000 100 0.97 cm2 6 cm2 10 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 T ime (s) Thermal fitting model of a single channel HSD in P2PAK 10 100 1000 Pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Thermal Parameter Tj C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd T_amb Area/island (cm2) R1 (°C/W) R2 (°C/W) R3( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1 (W.s/°C) C2 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) 0.97 0.04 0.25 0.3 4 9 37 0.0008 0.007 0.015 0.4 2 3 6 22 5 21/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT PPAK Thermal Impedance Junction Ambient Single Pulse ZTH (°C/W) 1000 100 0.44 cm2 6 cm2 10 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 Time (s) Thermal fitting model of a single channel HSD in PPAK 10 100 1000 Pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Thermal Parameter Tj C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd T_amb 22/34 Area/island (cm2) R1 (°C/W) R2 (°C/W) R3( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1 (W.s/°C) C2 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) 0.44 0.04 0.25 0.3 2 15 61 0.0008 0.007 0.02 0.3 0.45 0.8 6 24 5 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT SO-16L Thermal Impedance Junction Ambient Single Pulse ZT H (°C/W) 1000 100 0.5 cm2 6 cm2 10 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 T ime (s) Thermal fitting model of a single channel HSD in SO-16L 10 100 1000 Pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Thermal Parameter Tj C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd T_amb Area/island (cm2) R1 (°C/W) R2 (°C/W) R3( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1 (W.s/°C) C2 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) 0.5 0.04 0.25 2.2 12 15 37 0.0008 7.00E-03 1.50E-02 0.14 1 3 6 22 5 23/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT PowerSO-10™ MECHANICAL DATA mm. DIM. MIN. A A (*) A1 B B (*) C C (*) D D1 E E2 E2 (*) E4 E4 (*) e F F (*) H H (*) h L L (*) α α (*) inch TYP 3.35 3.4 0.00 0.40 0.37 0.35 0.23 9.40 7.40 9.30 7.20 7.30 5.90 5.90 MAX. MIN. 3.65 3.6 0.10 0.60 0.53 0.55 0.32 9.60 7.60 9.50 7.60 7.50 6.10 6.30 0.132 0.134 0.000 0.016 0.014 0.013 0.009 0.370 0.291 0.366 0.283 0.287 0.232 0.232 1.35 1.40 14.40 14.35 0.049 0.047 0.543 0.545 1.80 1.10 8º 8º 0.047 0.031 0º 2º 1.27 TYP. MAX. 0.144 0.142 0.004 0.024 0.021 0.022 0.0126 0.378 0.300 0.374 300 0.295 0.240 0.248 0.050 1.25 1.20 13.80 13.85 0.50 0.053 0.055 0.567 0.565 0.002 1.20 0.80 0º 2º 0.070 0.043 8º 8º (*) Muar only POA P013P B 0.10 A B 10 H E E E2 1 SEATING PLANE e B DETAIL "A" A C 0.25 h E4 D = D1 = = = SEATING PLANE A F A1 A1 L DETAIL "A" α P095A 24/34 1 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT PENTAWATT (VERTICAL) MECHANICAL DATA DIM. mm. MIN. TYP A inch MAX. MIN. TYP. 4.8 C MAX. 0.189 1.37 0.054 D 2.4 2.8 0.094 0.110 D1 1.2 1.35 0.047 0.053 E 0.35 0.55 0.014 0.022 F 0.8 1.05 0.031 0.041 F1 1 1.4 0.039 G 3.2 3.4 3.6 0.126 0.134 0.142 G1 6.6 6.8 7 0.260 0.268 0.276 H2 H3 0.055 10.4 10.05 10.4 0.409 0.396 0.409 L 17.85 0.703 L1 15.75 0.620 L2 21.4 0.843 L3 22.5 0.886 L5 2.6 3 0.102 0.118 L6 15.1 15.8 0.594 0.622 L7 6 6.6 0.236 M 4.5 M1 Diam. 4 3.65 0.260 0.177 0.157 3.85 0.144 0.152 25/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT P2PAK MECHANICAL DATA DIM. mm. MIN. TYP MAX. A 4.30 4.80 A1 2.40 2.80 A2 0.03 0.23 b 0.80 1.05 c 0.45 0.60 c2 1.17 1.37 D 8.95 D2 E 10.00 E1 e 9.35 8.00 10.40 8.50 3.20 3.60 e1 6.60 7.00 L 13.70 14.50 L2 1.25 1.40 L3 0.90 1.70 L5 1.55 2.40 0.40 R V2 Package Weight 0º 8º 1.40 Gr (typ) P010R 26/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT SO-16L MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 2.65 0.1 0.2 b 0.35 b1 0.23 a2 0.104 0.004 0.008 0.49 0.014 0.019 0.32 0.009 0.012 2.45 C MAX. 0.096 0.5 0.020 c1 45° (typ.) D 10.1 10.5 0.397 0.413 E 10.0 10.65 0.393 0.419 e 1.27 e3 8.89 F 7.4 L 0.5 M S 0.050 0.350 7.6 0.291 1.27 0.020 0.75 0.300 0.050 0.029 8° (max.) 27/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT PPAK MECHANICAL DATA DIM. MIN. TYP MAX. A 2.20 2.40 A1 0.90 1.10 A2 0.03 0.23 B 0.40 0.60 B2 5.20 5.40 C 0.45 0.60 C2 0.48 0.60 D1 5.1 D 6.00 6.20 E 6.40 6.60 E1 4.7 e 1.27 G 4.90 G1 2.38 2.70 H 9.35 10.10 L2 L4 0.8 0.60 R V2 Package Weight 5.25 1.00 1.00 0.2 0º 8º Gr. 0.3 P032T1 28/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT PowerSO-10™ SUGGESTED PAD LAYOUT TUBE SHIPMENT (no suffix) 14.6 - 14.9 CASABLANCA B 10.8- 11 MUAR C 6.30 C A A 0.67 - 0.73 10 9 1 9.5 2 3 B 0.54 - 0.6 All dimensions are in mm. 8 7 4 5 1.27 Base Q.ty Bulk Q.ty Tube length (± 0.5) 6 Casablanca Muar 50 50 1000 1000 532 532 A B C (± 0.1) 10.4 16.4 4.9 17.2 0.8 0.8 TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 600 600 330 1.5 13 20.2 24.4 60 30.4 All dimensions are in mm. TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 24 4 24 1.5 1.5 11.5 6.5 2 End Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 29/34 1 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT PENTAWATT TUBE SHIPMENT (no suffix) B C Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) All dimensions are in mm. A 30/34 50 1000 532 18 33.1 1 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT 2 P PAK TUBE SHIPMENT (no suffix) Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) B C 50 1000 532 18 33.1 1 All dimensions are in mm. A TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 24.4 60 30.4 All dimensions are in mm. TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 24 4 16 1.5 1.5 11.5 6.5 2 End Start Top cover tape No components Components No components 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 31/34 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT SO-16L TUBE SHIPMENT (no suffix) Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C B 50 1000 532 3.5 13.8 0.6 All dimensions are in mm. A TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 16.4 60 22.4 TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 16 4 12 1.5 1.5 7.5 6.5 2 End Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 32/34 1 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT PPAK TUBE SHIPMENT (no suffix) A C Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) B 75 3000 532 6 21.3 0.6 All dimensions are in mm. TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 2500 2500 330 1.5 13 20.2 16.4 60 22.4 All dimensions are in mm. TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 16 4 8 1.5 1.5 7.5 6.5 2 End Start Top cover tape No components Components No components 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 33/34 1 VN820 / VN820SO / VN820SP / VN820-B5 / VN820PT Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics 2003 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 34/34