VND830LSP-E DOUBLE CHANNEL HIGH SIDE DRIVER Table 1. General Features Figure 1. Package Type RDS(on) Iout VCC VND830LSP-E 60mΩ (*) 18A (*) 36V (*) Per each channel CMOS COMPATIBLE INPUTS OPEN DRAIN STATUS OUTPUTS ■ ON STATE OPEN LOAD DETECTION ■ OFF STATE OPEN LOAD DETECTION ■ SHORTED LOAD PROTECTION ■ UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN ■ LOSS OF GROUND PROTECTION ■ VERY LOW STAND-BY CURRENT ■ ■ 10 1 PowerSO-10™ REVERSE BATTERY PROTECTION (**) ■ IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE ■ compatibility table). Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device detects open load condition both in on and off state. The openload threshold is aimed at detecting the 5W/12V standard bulb as an openload fault in the on state. Device automatically turns off in case of ground pin disconnection. DESCRIPTION The VND830LSP-E is a monolithic device made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active V CC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient Table 2. Order Codes Package PowerSO-10™ Tube VND830LSP-E Tape and Reel VND830LSPTR-E Note: (**) See application schematic at page 9 Rev. 1 October 2004 1/20 VND830LSP-E Figure 2. Block Diagram VCC VCC CLAMP OVERVOLTAGE UNDERVOLTAGE GND CLAMP 1 OUTPUT1 INPUT1 DRIVER 1 CLAMP 2 STATUS1 CURRENT LIMITER 1 OVERTEMP. 1 DRIVER 2 LOGIC OUTPUT2 OPENLOAD ON 1 CURRENT LIMITER 2 INPUT2 OPENLOAD OFF 1 OPENLOAD ON 2 STATUS2 OPENLOAD OFF 2 OVERTEMP. 2 Table 3. Absolute Maximum Ratings Symbol VCC Parameter DC Supply Voltage Value Unit 41 V - VCC Reverse DC Supply Voltage - 0.3 V - IGND DC Reverse Ground Pin Current - 200 mA Internally Limited A -6 A DC Input Current +/- 10 mA DC Status Current +/- 10 mA 4000 V 4000 V 5000 V 5000 V 74 W 52 mJ Internally Limited °C IOUT - IOUT IIN ISTAT DC Output Current Reverse DC Output Current Electrostatic Discharge R=1.5KΩ; C=100pF) (Human Body Model: - INPUT VESD - STATUS - OUTPUT - VCC Ptot Power Dissipation TC=25°C Maximum Switching Energy EMAX Tj Junction Operating Temperature Tc Case Operating Temperature - 40 to 150 °C Storage Temperature - 55 to 150 °C Tstg 2/20 (L=0.14mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=14A) VND830LSP-E Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins OUTPUT 1 OUTPUT 1 N.C. OUTPUT 2 OUTPUT 2 5 4 3 6 7 8 9 10 GROUND INPUT 1 STATUS 1 STATUS 2 INPUT 2 2 1 11 VCC Connection / Pin Status Floating X To Ground N.C. X X Output X Input X Through 10KΩ resistor Figure 4. Current and Voltage Conventions IS VF1 (*) IIN1 IOUT1 ISTAT1 VIN1 OUTPUT 1 STATUS 1 VSTAT1 VCC VCC INPUT 1 VOUT1 IIN2 INPUT 2 IOUT2 VIN2 ISTAT2 OUTPUT 2 STATUS 2 VSTAT2 VOUT2 GND IGND (*) VFn = VCCn - VOUTn during reverse battery condition Table 4. Thermal Data Symbol Rthj-case Rthj-amb Parameter Thermal Resistance Junction-case Thermal Resistance Junction-ambient Value 2 52 (1) 37 (2) Unit °C/W °C/W Note: 1. When mounted on a standard single-sided FR-4 board with 0.5 cm 2 of Cu (at least 35µm thick). Horizontal mounting and no artificial air flow. Note: 2. When mounted on a standard single-sided FR-4 board with 6 cm 2 of Cu (at least 35µm thick). Horizontal mounting and no artificial air flow. 3/20 VND830LSP-E ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C< Tj <150°C, unless otherwise specified) (Per each channel) Table 5. Power Output Symbol Parameter VCC (**) Min. Typ. Max. Unit Operating Supply Voltage 5.5 13 36 V VUSD (**) Undervoltage Shut-down 3 4 5.5 V VOV (**) Overvoltage Shut-down 36 RON IS (**) Test Conditions On State Resistance IOUT =2A; Tj=25°C IOUT =2A; VCC> 8V Off State; VCC=13V; VIN=VOUT=0V Supply Current Off State; VCC=13V; Tj =25°C; VIN=VOUT =0V On State; VCC=13V V 60 mΩ 120 mΩ 12 40 µA 12 25 µA 5 7 mA 0 50 µA -75 0 µA IL(off1) Off State Output Current VIN=VOUT=0V; VCC=36V; Tj=125°C IL(off2) Off State Output Current VIN=0V; VOUT =3.5V IL(off3) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =125°C 5 µA IL(off4) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =25°C 3 µA Note: (**) Per device. Table 6. Protection (see note 1) Symbol Parameter TTSD Min. Typ. Max. Unit Shut-down Temperature 150 175 200 °C TR Reset Temperature 135 Thyst Thermal Hysteresis 7 tSDL Status Delay in Overload Conditions Ilim Current limitation Vdemag Turn-off Output Clamp Voltage Test Conditions °C 15 Tj>TTSD VCC=13V 18 23 5.5V < VCC < 36V IOUT =2A; L= 6mH VCC-41 °C 20 µs 29 A 29 A VCC-48 VCC-55 V Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles Table 7. VCC - Output Diode Symbol VF 4/20 Parameter Forward on Voltage Test Conditions -IOUT=1.3A; Tj=150°C Min Typ Max 0.6 Unit V VND830LSP-E ELECTRICAL CHARACTERISTICS (continued) Table 8. Status Pin Symbol VSTAT ILSTAT CSTAT VSCL Parameter Test Conditions Status Low Output Voltage ISTAT = 1.6 mA Status Leakage Current Normal Operation; VSTAT= 5V Status Pin Input Normal Operation; VSTAT= 5V Capacitance ISTAT = 1mA Status Clamp Voltage ISTAT = - 1mA Min 6 Typ 6.8 Max 0.5 10 Unit V µA 100 pF 8 -0.7 V V Table 9. Switching (V CC=13V) Symbol Parameter td(on) Turn-on Delay Time td(off) Turn-off Delay Time Test Conditions RL=13Ω from VIN rising edge to VOUT=1.3V RL=13Ω from VIN falling edge to VOUT=11.7V dVOUT /dt(on) Turn-on Voltage Slope RL=13Ω from VOUT=1.3V to VOUT=10.4V dVOUT /dt(off) Turn-off Voltage Slope RL=13Ω from VOUT=11.7V to VOUT=1.3V Min Typ Max Unit 30 µs 30 µs See relative diagram See relative diagram V/µs V/µs Table 10. Openload Detection Symbol IOL tDOL(on) VOL TDOL(off) Parameter Openload ON State Detection Threshold Openload ON State Detection Delay Openload OFF State Voltage Detection Threshold Openload Detection Delay at Turn Off Test Conditions VIN=5V Min Typ Max Unit 0.6 0.9 1.2 A 200 µs 3.5 V 1000 µs Max 1.25 Unit V µA V µA V V IOUT=0A VIN=0V 1.5 2.5 Table 11. Logic Input Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Clamp Voltage Test Conditions VIN = 1.25V Min Typ 1 3.25 VIN = 3.25V IIN = 1mA IIN = -1mA 10 0.5 6 6.8 -0.7 8 V 5/20 VND830LSP-E Figure 5. OPEN LOAD STATUS TIMING (with external pull-up) OVER TEMP STATUS TIMING IOUT< IOL VOUT > VOL Tj > TTSD VINn VINn VSTATn VSTATn tSDL tDOL(off) tSDL tDOL(on) Table 12. Truth Table CONDITIONS INPUT OUTPUT SENSE Normal Operation L H L H H H Current Limitation L H H L X X H (Tj < TTSD) H (Tj > TTSD) L Overtemperature L H L L H L Undervoltage L H L L X X Overvoltage L H L L H H Output Voltage > VOL L H H H L H Output Current < IOL L H L H H L 6/20 VND830LSP-E Figure 6. Switching Time Waveforms VOUTn 90% 80% dVOUT/dt(off) dVOUT/dt(on) 10% t VINn td(on) td(off) t Table 13. Electrical Transient Requirements On V CC Pin ISO T/R 7637/1 Test Pulse I 1 2 3a 3b 4 5 -25 V +25 V -25 V +25 V -4 V +26.5 V ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I C C C C C C II TEST LEVELS III IV -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V TEST LEVELS RESULTS II III C C C C C C C C C C E E Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device. 7/20 VND830LSP-E Figure 7. Waveforms NORMAL OPERATION INPUTn OUTPUT VOLTAGEn STATUSn UNDERVOLTAGE VUSDhyst VCC VUSD INPUTn OUTPUT VOLTAGEn STATUSn undefined OVERVOLTAGE VCC<VOV VCC>VOV VCC INPUTn OUTPUT VOLTAGEn STATUSn OPEN LOAD with external pull-up INPUTn VOUT >VOL OUTPUT VOLTAGEn VOL STATUSn OPEN LOAD without external pull-up INPUTn OUTPUT VOLTAGEn STATUSn OVERTEMPERATURE Tj TTSD TR INPUTn OUTPUT CURRENTn STATUSn 8/20 VND830LSP-E Figure 8. Application Schematic +5V +5V +5V VCC Rprot STATUS1 Dld µC Rprot INPUT1 OUTPUT1 Rprot STATUS2 Rprot INPUT2 OUTPUT2 GND RGND VGND GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / IS(on)max. 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same DGND resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. µC I/Os PROTECTION: If a ground protection network is used and negative transient are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. 9/20 VND830LSP-E The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. 1) no false open load indication when load is connected: in this case we have to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT=(VPU/(RL+RPU))RL<VOlmin. 2) no misdetection when load is disconnected: in this case the VOUT has to be higher than VOLmax; this results in the following condition RPU<(VPU–VOLmax)/ IL(off2). Because Is(OFF) may significantly increase if Vout is pulled high (up to several mA), the pull-up resistor RPU should be connected to a supply that is switched OFF when the module is in standby. The values of VOLmin, VOLmax and IL(off2) are available in the Electrical Characteristics section. Recommended Rprot value is 10kΩ. OPEN LOAD DETECTION IN OFF STATE Off state open load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to supply the microprocessor. The external resistor has to be selected according to the following requirements: Figure 9. Open Load detection in off state V batt. VPU VCC RPU INPUT DRIVER + LOGIC IL(off2) OUT + R STATUS VOL GROUND 10/20 RL VND830LSP-E Figure 13. High Level Input Current Figure 10. Off State Output Current Iih (µA) IL(off1) 6 1.35 1.2 5.25 Off State Vcc=13V Vin=Vout=0V 1.05 Vin=3.25V 4.5 0.9 3.75 0.75 3 0.6 2.25 0.45 1.5 0.3 0.75 0.15 0 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 125 150 175 125 150 175 Tc (ºC) Tc (ºC) Figure 14. Status Leakage Current Figure 11. Input Clamp Voltage Vicl (V) Ilstat (µA) 8 0.07 7.75 0.06 Iin=1mA Vstat=5V 7.5 0.05 7.25 0.04 7 0.03 6.75 0.02 6.5 0.01 6.25 6 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 50 75 100 Tc (ºC) Figure 12. Status Low Output Voltage Figure 15. Status Clamp Voltage Vstat (V) Vscl (V) 0.8 8 0.7 7.75 Istat=1.6mA Istat=1mA 0.6 7.5 0.5 7.25 0.4 7 0.3 6.75 0.2 6.5 0.1 6.25 0 6 -50 -25 0 25 50 75 Tc (ºC) 100 125 150 175 -50 -25 0 25 50 75 100 Tc (ºC) 11/20 VND830LSP-E Figure 16. On State Resistance Vs Tcase Figure 19. On State Resistance Vs VCC Ron (mOhm) Ron (mOhm) 100 160 90 140 Iout=2A Vcc=13V 80 Iout=2A 120 70 100 60 50 Tc=150ºC 80 40 60 Tc=25ºC 30 40 Tc= -40ºC 20 20 10 0 0 -50 -25 0 25 50 75 100 125 150 175 0 5 10 15 Tc (ºC) 20 25 30 35 40 Vcc (V) Figure 17. Openload On State Detection Threshold Figure 20. Openload Off State Detection Threshold Iol (A) Vol (V) 2 5 4.5 1.75 Vin=0V Vin=5V 4 1.5 3.5 1.25 3 1 2.5 2 0.75 1.5 0.5 1 0.25 0.5 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 50 75 100 125 150 175 125 150 175 Tc (ºC) Figure 18. Input High Level Figure 21. Input Low Level Vih (V) Vil (V) 4 2.25 3.8 2.125 3.6 2 3.4 1.875 3.2 3 1.75 2.8 1.625 2.6 1.5 2.4 1.375 2.2 2 1.25 -50 -25 0 25 50 75 Tc (ºC) 12/20 100 125 150 175 -50 -25 0 25 50 75 Tc (ºC) 100 VND830LSP-E Figure 22. Input Hysteresis Voltage Figure 25. Overvoltage Shutdown Vihyst (V) Vov 1.4 50 1.3 47.5 1.2 45 1.1 42.5 1 40 0.9 37.5 0.8 35 0.7 32.5 0.6 0.5 30 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 100 125 150 175 150 175 Figure 26. Turn-off Voltage Slope dVout/dt(on) (V/ms) dVout/dt(off) (V/ms) 800 800 700 Vcc=13V Rl=6.5Ohm 600 75 Tc (ºC) Figure 23. Turn-on Voltage Slope 700 50 Vcc=13V Rl=6.5Ohm 600 500 500 400 400 300 300 200 200 100 100 0 0 -50 -25 0 25 50 75 100 125 150 175 Tc (ºC) -50 -25 0 25 50 75 100 125 Tc (ºC) Figure 24. ILIM Vs Tcase Ilim (A) 35 32.5 Vcc=13V 30 27.5 25 22.5 20 17.5 15 12.5 10 -50 -25 0 25 50 75 100 125 150 175 Tc (ºC) 13/20 VND830LSP-E Figure 27. Maximum turn off current versus load inductance ILMAX (A) 100 10 A B C 1 0.01 0.1 A = Single Pulse at TJstart=150ºC B= Repetitive pulse at T Jstart=100ºC C= Repetitive Pulse at T Jstart=125ºC Conditions: VCC=13.5V 1 L(mH) 10 100 Values are generated with R L=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 14/20 VND830LSP-E PowerSO-10™ Thermal Data Figure 28. PowerSO-10™ PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2). Figure 29. Rthj-amb Vs PCB copper area in open box free air condition RTHj_amb (°C/W) 55 Tj-Tamb=50°C 50 45 40 35 30 0 2 4 6 8 10 PCB Cu heatsink area (cm^2) 15/20 VND830LSP-E Figure 30. PowerSO-10 Thermal Impedance Junction Ambient Single Pulse ZTH (°C/W) 1000 100 Footprint 6 cm2 10 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 Time (s) Figure 31. Thermal fitting model of a double channel HSD in PowerSO-10 10 100 1000 Pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Table 14. Thermal Parameter Tj_1 C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd1 Tj_2 C1 C2 R1 R2 Pd2 T_amb 16/20 Area/island (cm2) R1 (°C/W) R2 (°C/W) R3( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1 (W.s/°C) C2 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) Footprint 0.05 0.3 0.3 0.8 12 37 0.001 5.00E-03 0.02 0.3 0.75 3 6 22 5 VND830LSP-E PACKAGE MECHANICAL Table 15. PowerSO-10™ Mechanical Data millimeters Symbol Min A A (*) A1 B B (*) C C (*) D D1 E E2 E2 (*) E4 E4 (*) e F F (*) H H (*) h L L (*) a α (*) Typ Max 3.35 3.4 0.00 0.40 0.37 0.35 0.23 9.40 7.40 9.30 7.20 7.30 5.90 5.90 3.65 3.6 0.10 0.60 0.53 0.55 0.32 9.60 7.60 9.50 7.60 7.50 6.10 6.30 1.27 1.25 1.20 13.80 13.85 1.35 1.40 14.40 14.35 0.50 1.20 0.80 0º 2º 1.80 1.10 8º 8º Note: (*) Muar only POA P013P Figure 32. PowerSO-10™ Package Dimensions B 0.10 A B 10 H E E2 E4 1 SEATING PLANE e B DETAIL "A" h A C 0.25 D = D1 = = = SEATING PLANE A F A1 A1 L DETAIL "A" α P095A 17/20 VND830LSP-E Figure 33. PowerSO-10™ Suggested Pad Layout And Tube Shipment (No Suffix) CASABLANCA 14.6 - 14.9 MUAR B 10.8 - 11 C 6.30 C A A B 0.67 - 0.73 1 9.5 2 3 4 5 10 9 8 7 6 0.54 - 0.6 All dimensions are in mm. 1.27 Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) Casablanca 50 1000 532 10.4 16.4 0.8 Muar 50 1000 532 4.9 17.2 0.8 Figure 34. Tape And Reel Shipment (suffix “TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 600 600 330 1.5 13 20.2 24.4 60 30.4 All dimensions are in mm. TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) 24 4 24 1.5 1.5 11.5 6.5 2 End All dimensions are in mm. Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 18/20 500mm min VND830LSP-E REVISION HISTORY Date Oct. 2004 Revision 1 - First Issue. Description of Changes 19/20 VND830LSP-E Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 20/20