TEMIC U2893B

U2893B
Modulation PLL for GSM, DCS and PCS Systems
Description
The U2893B is a monolithic integrated circuit. It is
realized using TEMIC’s advanced silicon bipolar UHF5S
technology. The device integrates a mixer, an I/Q modulator, a phase-frequency detector (PFD) with two
synchronous-programmable dividers, and a charge pump.
The U2893B is designed for cellular phones such as GSM,
DCS1800, and PCS1900, applying a transmitter-archi-
tecture where the VCO is operated at the TX output
frequency.
Features
Benefits
D Supply voltage down to 2.7 V
D
D
D
D
D
D Current consumption 40 mA
D Power-down function
D Low-current standby mode
D High-speed PFD and charge pump
U2893B exhibits low power consumption, and the powerdown function extends battery life.
The IC is available in a shrinked small-outline 28–pin
package (SSO28).
High-level RF integration
TX architecture saves filter costs
Low external part count
Small SSO28 package
One device for various applications
D Integrated dividers
Block Diagram
PUMIX
MDLO
I
NI
NMDO
ND
NND
MIXLO
RF
Voltage
reference
90
grd
MDO
PU MIXO
Q NQ
Mixer
+
NRF
I/Q modulator
N:1
divider
VSP
MUX
PFD
RD
NRD
R:1
divider
MC
Mode
control
CPO
VS1
VS2
VS3
GND
CPC GNDP
12494
Figure 1. Block diagram
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-97
1 (14)
Preliminary Information
U2893B
Pin Description
I
1
28
Q
NI
2
27
NQ
MDLO
3
26
VS3
GND
4
25
MIXO
MDO
5
24
GND
NMDO
6
23 NRF
VS1 7
22 RF
VSP 8
21
CPO
9
VS2
20 MIXLO
19
PU
11
18
GND
PUMIX 12
17
NND
13
16
ND
NRD 14
15
MC
GNDP 10
CPC
RD
12495
Figure 2. Pinning
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Pin
1
2
3
4
5
6
7
8
9
10
11
Symbol
I
NI
MDLO
GND 1)
MDO
NMDO
VS1 3)
VSP
CPO
GNDP 2)
CPC
12
13
14
15
16
17
18
19
PUMIX
RD
NRD
MC
ND
NND
GND 1)
PU
20
21
22
23
24
25
26
27
28
MIXLO
VS2 3)
RF
NRF
GND 1)
MIXO
VS3 3)
NQ
Q
Function
In-phase baseband input
Complementary to I
I/Q-modulator LO input
Negative supply
I/Q-modulator output
Complementary to MDO
Positive supply (I/Q MOD)
Pos. supply charge-pump
Charge-pump output
Neg. supply charge pump
Charge-pump current control
(input)
Power-up, mixer only
R-divider input
Complementary to RD
Mode control
N-divider input
Complementary to ND
Negative supply
Power-up, whole chip except
mixer
Mixer LO input
Positive supply (MISC.)
Mixer RF-input
Complementary to RF
Negative supply
Mixer output
Positive supply (mixer)
Complementary to Q
Quad.-phase baseband input
1)
All GND pins must be connected to GND
potential. No DC voltage between GND pins!
2)
Max. voltage between GNDP and GND pins
200 mV
3)
The maximum permissible voltage difference
between pins VS1, VS2 and VS3 is 200 mV.
v
2 (14)
Preliminary Information
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-76
U2893B
Absolute Maximum Ratings
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
v
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
v
v
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
Parameters
Supply voltage VS1, VS2, VS3
Supply voltage charge pump VSP
Voltage at any input
Current at any input / output pin
except CPC
CPC output currents
Ambient temperature
Storage temperature
Symbol
VVS#
VVSP
VVi#
| II# | | IO# |
| ICPC |
Tamb
Tstg
Value
VVSP
5.5
VVS +0.5
2
–0.5
Unit
V
V
V
mA
5.5
5
–20 to +85
–40 to +125
mA
°C
°C
Operating Range
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
Parameters
Symbol
VVS#, VVSP
Tamb
Supply voltage
Ambient temperature
Value
2.7 to 5.5
–20 to +85
Unit
V
°C
Thermal Resistance
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
Electrical Characteristics: General Data
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
m
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
m
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
m
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
m
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
W
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
W
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
W
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Parameters
Junction ambient SSO28
Symbol
RthJA
Value
130
Unit
K/W
Tamb = 25°C, VS = 2.7 to 5.5 V
Parameters
DC supply
Supply voltages VS#
Supply voltage VSP
Test Conditions / Pin
VVS1 = VVS2 = VVS3
Supply
pp y current IVS1
Active (VPU = VS)
Standby (VPU = 0)
Supply
pp y current IVS2
Active (VPU = VS)
Standby (VPU = 0)
Supply
pp y current IVS3
Active (VPUMIX = VS)
Standby (VPUMIX = 0)
Supply current IVSP 1)
Active
(VPU = VS, CPO open)
Standby (VPU = 0)
N & R divider inputs ND, NND & RD, NRD
N:1 divider frequency
50- source
R:1 divider frequency
50- source
Input impedance
Active & standby
Input sensitivity
50- source
Symbol
Min.
VVS#
VVSP
2.7
VVS#
– 0.3
IVS1A
IVS1Y
IVS2A
IVS2Y
IVS3A
IVS3Y
IVSPA
Typ.
5.5
5.5
V
V
30
20
mA
A
mA
A
mA
A
mA
20
A
650
400
2 pF
200
MHz
MHz
–
mV
20
21
20
11
2)
100
100
1 kΩ
30
1)
100-MHz PFD operation, pump current set to 4 mA, zero phase difference (steady state)
2)
See chapter “Supply Current of the Charge Pump i(VSP) vs. Time”, page 6.
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-97
Unit
16
IVSPY
FND
FRD
ZRD, ZND
VRDeff, VNDeff
Max.
3 (14)
Preliminary Information
U2893B
Electrical Characteristics: General Data (continued)
Tamb = 25°C, VS = 2.7 to 5.5 V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
W
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
W
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Á
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
W
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Parameters
Test Conditions / Pin
Phase-frequency detector (PFD)
PFD operation
FND = 650 MHz, n = 5
FRD = 300 MHz, r = 2
Frequency comparison
FND = 650 MHz, n = 5
only
FRD = 300 MHz, r = 2
I/Q modulator baseband inputs I, NI & Q, NQ
DC voltage
Referred to GND
MD_IQ
AC voltage 3)
Symbol
Min.
FMPFD
150
MHz
FMFD
200
MHz
VI, VNI, VQ, VNQ
1.35
FRIO
ACI, ACNI,
ACQ, ACNQ
ACDI, ACDQ
DC
FMDLO
ZMDLO
PMDLO
50
Frequency range
Referred to GND
Differential (preferres)
I/Q modulator LO input MDLO
MDLO
Frequency range
Input impedance
Active & standby
Input level
50- source
I/Q modulator outputs MDO, NMDO
DC current
VMDO, VNMDO = VS
Voltage compliance
VMDO, VNMDO = VC
MDO output level
500 to VS 4)
(differential)
Carrier suppression 4)
Sideband suppression 4)
IF spurious 4)
f_LO +/– 3 f_mod
4)
Noise
@ 400 kHz off carrier
Frequency range
Mixer (900 MHz)
RF input level
900 MHz
LO-spurious at
@ P9MIXLO = –10 dBm
RF/NRF port
@ P9RF = –15 dBm
MIXLO input level
0.05 to 2 GHz
MIXO (100- load)
Frequency range
... Output level 5)
@ P9MIXLO = –15 dBm
... Carrier suppression
@ P9MIXLO = –15 dBm
Typ.
VS1/2
Max.
VS1/2
+ 0.1
1
V
200
MHz
mVpp
400
mVpp
350
250
–12
IMDO, INMDO
VCMDO, VCNMDO
PMDOeff
120
CSMDO
SSMDO
SPMDO
NMDO
FRMDO
–30
–35
–45
–115
50
–35
–40
–50
P9RF
SP9RF
tbd
–15
P9MIXLO
FRMIXO
P9MIXOeff
CS9MIXO
tbd
50
–5
2.4
MHz
W
dBm
mA
150
mV
350
dBc
dBc
dBc
dBc/Hz
MHz
–40
dBm
dBm
–10
350
70
–20
Unit
dBm
MHz
mV
dBc
3)
Single-ended operation (complementary baseband input is AC-grounded) leads to reduced linearity degrading
suppression of odd harmonics
4)
With typical drive levels at MDLO- & I/Q-inputs
5)
–1 dB compression point (CP-1)
4 (14)
Preliminary Information
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-76
U2893B
Electrical Characteristics: General Data (continued)
Tamb = 25°C, VS = 2.7 to 5.5 V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
W
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
D
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
D
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
m
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
m
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
m
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Parameters
Test Conditions / Pin
Mixer (1900 MHz)
RF input level
0.5 to 2 GHz
LO-spurious at
@ P19MIXLO = –10 dBm
RF/NRF ports
@ P19RF = –15 dBm
MIXLO input level
0.05 to 2 GHz
MIXO (100 load)
... Output level 5)
@ P19MIXLO = –17 dBm
... Carrier suppression
@ P19MIXLO = –17 dBm
Charge pump output CPO
Pump
CPC open
p current ppulse
2.23 kΩ CPC to GND
760 Ω CPC to GND
TK pump current
Mismatch source / sink
(ICPOSI – ICPOSO)/ICPOSI
ICPOSO = Isourc
current
ICPOSI = Isink
Sensivity to VSP
I
| CPO |
| VSP |
VSP
I CPO
Symbol
Typ.
Max.
Unit
–40
dBm
dBm
P19RF
SP19RF
–17
P19MIXLO
–8
dBm
P19MIXO
CS19MIXO
55
mVeff
dBc
| ICPO |
| ICPO 2 |
| ICPO_4 |
Tk_| ICPC |
MICPO
–20
0.8
1.6
3.6
1
2
4
SICPO
Charge pump control input CPC
Compensation capacitor
CCPC
Short circuit current 6)
CPC grounded
| ICPCK |
Mode control
Sink current
VMC = VS
IMC
Power-up input PU (power-up for all functions, except mixer)
Settling time
Output power within
SPU
10% of steady state
values
High level
Active
VPUH
Low level
Standby
VPUL
High-level current
Active, VPUH = 2.7 V
IPUH
Low-level current
Standby, VPUL = 0.4 V
IPUL
Power-up input PUMIX (power-up for mixer only)
Settling time
Output power within
10% of steady state
values
High level
Active
VPUMIXH
Low level
Standby
VPUMIXL
High-level current
Active, VPUMIXH = 2.7 V
IPUMIXH
Low-level current
Standby,
IPUMIXL
VPUMIXL = 0.4 V
6)
Min.
500
2
2.7
1.2
2.4
4.4
15
10
mA
mA
mA
%/100 k
%
0.1
–
3.7
pF
mA
20
5
2.5
0
0.1
–10
5
2.5
0
0.1
–10
A
10
s
0.4
0.6
0
V
V
mA
mA
10
s
0.4
0.6
0
V
V
mA
mA
See figures 6 and 14.
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-97
5 (14)
Preliminary Information
U2893B
Supply Current of the Charge Pump
i(VSP) vs. Time
Initial Charge Pump Current after
Power-Up
Due to the pulsed operation of the charge pump, the current into the charge-pump supply pin VSP is not constant.
Depending on I (see figure 6) and the phase difference at
the phase detector inputs, the current i(VSP) over time varies. Basically, the total current is the sum of the quiescent
current, the charge-/discharge current, and – after each
phase comparison cycle – a current spike (see figure 3).
Due to stability reasons, the reference current generator
for the charge pump needs an external capacitor (>500 pF
from CPC to GND). After power-up, only the on-chip
generated current I = ICPCK is available for charging the
external capacitor. Due to the charge pump’s architecture,
the charge pump current will be 2 I = 2 ICPCK until
the voltage on CPC has reached the reference voltage
(1.1 V). The following figures illustrate this behavior.
The behavior of I(CPO) after power-up can be very
advantageous for a fast settling of the loop. By using
larger capacitors (>1 nF), an even longer period with
maximum charge pump current is possible.
up
down
V(CPC)
ICPCK
5I
i(VSP)
3I
RCPC
I
t
Vref
2I
i(CPO)
t
–2I
Figure 3. Supply current of the charge pump = f(t)
Internal current, I, vs. current out of pin CPC
I vs. I(CPC)
CPC open
2.23 kW to GND
743 W to GND
CPC shorted to GND
ICPC
0
–0.5 mA
–1.5 mA
ICPCK
I
0.5 mA
1.0 mA
2.0 mA
>2.0 mA
2
t
t
t
1
0
2
t
I(CPC)
ICPCK
I
t
1
t
[
³ [
[
³ [
Time t1 can be calculated as t1 (1.1 V CCPC)/ICPCK
e.g., CCPC = 1 nF, Imax = 3.5 A t1 0.3 ms.
Time t2 can be calculated as t2 (RCPC/2230 W) CCPC
e.g., CCPC = 1 nF, RCPC = 2230 W t2 1.1 ms
Figure 4.
6 (14)
Preliminary Information
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-76
U2893B
Mode Selection
The device can be programmed to different modes via an external resistor (including short, open) connected between
Pin MC and VS2. The mode selection controls the N-, R-divider ratios, and the polarity of the charge pump current.
Mode Selection
Mode
N-Divider
Resistance between Pin MC
and Pin VS2
2.7 kW (±5%)
2
10 kW (±5%)
3
36 kW (±5%)
4
CPO Current Polarity
fN < fR
0 (<50 W)
1
R
5
(>1 MW)
Frequencies referred to PFD input!
1)
R-Divider
1)
fN < fR
3:1
5:1
Sink
Source
GSM
2:1
5:1
Source
Sink
PCS
2:1
6:1
Source
Sink
DCS
3:1
6:1
Source
Sink
GSM
3:1
6:1
Sink
Source
GSM
Equivalent Circuits at the IC’s Pins
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
Vbias_MDLO
2230
I, Q
2230
250
MDLO
NI, NQ
Vref_input
Vref_MDLO
Vref_output
30p
Baseband input
LO input
Output
Figure 5. I/Q modulator
RF
Ï
Ï
Ï
Ï
Ï
Ï
1k
890
Vbias_RF
890
MIXLO
NRF
Vref_RF
Ï
Ï
Ï
Ï
Ï
Ï
Application
1)
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
VS1
MDO
NMDO
GND
VS3
1k
Vbias_LO
1.6k
1.6k
40p
Vref_LO
6.3
MIXO
GND
RF input
LO input
Output
Figure 6. Mixer
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-97
7 (14)
Preliminary Information
U2893B
VS2
CPC
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
4
4
I
ICPCK /4
4
gm
up
ref
ref
1.1 V
2I
down
2I
2230
2
2
GND
n
= Transistor with an emitter area-factor of n
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
VSP
CPO
GNDP
Figure 7. Charge pump
ND/RD
NND/NRD
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
VS2
2k
2k
Vref_div
PU, PUMIX
20k
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
GND
Figure 9. Power-up
GND
MC
GND
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
^
C (U)
2.5 pF @ 2 V
N-divider
Logic
VS2
Figure 8. Dividers
Figure 11. ESD-protection diodes
R-divider
MUX
60 m A
Figure 10. Mode control
8 (14)
Preliminary Information
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-76
U2893B
Application Hints
For some of the baseband ICs it may be necessary to
reduce the I/Q voltage swing so that it can be handled by
the U2893B. In those cases, the following circuitry can be
used.
U2893B
GND
CPC
R1 = 2230 R
R1
R1
R2
R2 = 1160 R (incl. rds_on of FET)
I
I
1 nF
R2
R1
NI
NI
Baseband IC
Q
U2893B
2 mA
Q
R1
12497
R2
NQ
4 mA
Figure 14. Programming the charge pump current
NQ
R1
12496
Figure 12. Interfacing the U2893B to I/Q baseband circuits
RMODE
Application examples for programming different modes.
U2893B
U2893B
VS2
VS2
MC
MC
RMODE 1
RMODE 2
RMODE
a) single mode
b) any mode & mode 5
U2893B
U2893B
VS2
VS2
MC
MC
c) any mode
RMODE
36k or
10k
d) mode 5 & mode 3 or mode 4
Figure 13. Mode control
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-97
9 (14)
Preliminary Information
U2893B
Test Circuit
<450 mVpp
<450 mVpp
VAC
VAC
Baseband inputs
1.35 V –
VS1/2 + 0.1 V VDC
50
Modulator
LO input
Modulator
outputs
50
VS
VSP
VDO
50
50
PFD
Pulse output
PFD input
1
2
3
4
5
1n
50
6
7
8
9
10
11
12
13
14
Ì
Ì
I
NI
MDLO
GND
MDO
NMDO
VS1
VSP
CPO
GNDP
CPC
PUMIX
RD
NRD
Power-up
Bias voltage for
VS
charge pump output:
0.5 V < VDO < VSP – 0.5 V
VDC
Q
NQ
VS3
MIXO
GND
NRF
RF
VS2
MIXLO
PU
GND
NND
ND
MC
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1.35 V –
VS1/2 + 0.1 V
VS
50
Mixer
output
Mixer
input
VS
Mixer
LO input
PFD input
50
Mode control
VS2
R1
R2
R3
13315
Figure 15. Test circuit
10 (14)
Preliminary Information
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-76
U2893B
Application Circuit (900 MHz)
Baseband processor
200
27n
2.7 to 3.5 V
I
Dr
12p
PUMIX PU
MIXO
MIXLO
Dr
RF
NMDO
Voltage
reference
90
grd
4.7p MDO
47nH
Q NQ
NI MDLO
12p
LO (–10 dBm)
1192 MHz
50
390
NRF
Mixer
+
I/Q modulator
47nH
VCO MQE 550
VSP
NND
N:1
divider
MUX
PFD
RD
f_Ref
vrms = 55 mV
50
NRD
MC
R:1
divider
Charge pump
ND
1k
To PA
6 dB
attn.
CPO
68p
VS1
VS2
U2893B
Mode
control
2.7
to 3.5 V
10
3.3n
390
2.7 to 3.5 V
VS3
GND
CPC
GNDP
13316
Figure 16. Power-up, charge pump control, and mode control must be connected according to the application used
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-97
11 (14)
Preliminary Information
U2893B
Measurements
Modulation-Loop Settling Time
Modulation Spectrum & Phase Error
As valid for all PLL loops the settling time depends on
several factors. The following figure is an extraction from
measurements performed in an arrangement like the application circuit. It shows that a loop settling time of a few
ms can be achieved.
The figure of the TX spectrum and the phase error distribution, respectively, shows the suitability of the
modulation-loop concept for GSM.
Vertical: VRef. level = 28.6 dBm, 10 dBm/Div
Horizontal: Center = 900 MHz, VBW, RBW = 30 kHz,
400 kHz/Div
CPC: 1 kΩ to GND
CPC ‘open’
Vertical: VCO tuning voltage 1 V/Div
Horizontal: Time 1 ms/Div
Figure 17.
Figure 18.
Figure 19.
12 (14)
Preliminary Information
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-76
U2893B
Package Information
Package SSO28
Dimensions in mm
5.7
5.3
9.10
9.01
4.5
4.3
1.30
0.15
0.15
0.05
0.25
6.6
6.3
0.65
8.45
28
15
technical drawings
according to DIN
specifications
13018
1
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-97
14
13 (14)
Preliminary Information
U2893B
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems
with respect to their impact on the health and safety of our employees and the public, as well as their impact on
the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs).
The Montreal Protocol ( 1987) and its London Amendments ( 1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of
continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain
such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or
unauthorized use.
TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
14 (14)
Preliminary Information
TELEFUNKEN Semiconductors
Rev. A1, 29-Jan-76