U2893B Modulation PLL for GSM, DCS and PCS Systems Description The U2893B is a monolithic integrated circuit. It is realized using TEMIC’s advanced silicon bipolar UHF5S technology. The device integrates a mixer, an I/Q modulator, a phase-frequency detector (PFD) with two synchronous-programmable dividers, and a charge pump. The U2893B is designed for cellular phones such as GSM, DCS1800, and PCS1900, applying a transmitter-archi- tecture where the VCO is operated at the TX output frequency. Features Benefits D Supply voltage down to 2.7 V D D D D D D Current consumption 40 mA D Power-down function D Low-current standby mode D High-speed PFD and charge pump U2893B exhibits low power consumption, and the powerdown function extends battery life. The IC is available in a shrinked small-outline 28–pin package (SSO28). High-level RF integration TX architecture saves filter costs Low external part count Small SSO28 package One device for various applications D Integrated dividers Block Diagram PUMIX MDLO I NI NMDO ND NND MIXLO RF Voltage reference 90 grd MDO PU MIXO Q NQ Mixer + NRF I/Q modulator N:1 divider VSP MUX PFD RD NRD R:1 divider MC Mode control CPO VS1 VS2 VS3 GND CPC GNDP 12494 Figure 1. Block diagram TELEFUNKEN Semiconductors Rev. A1, 29-Jan-97 1 (14) Preliminary Information U2893B Pin Description I 1 28 Q NI 2 27 NQ MDLO 3 26 VS3 GND 4 25 MIXO MDO 5 24 GND NMDO 6 23 NRF VS1 7 22 RF VSP 8 21 CPO 9 VS2 20 MIXLO 19 PU 11 18 GND PUMIX 12 17 NND 13 16 ND NRD 14 15 MC GNDP 10 CPC RD 12495 Figure 2. Pinning ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ Pin 1 2 3 4 5 6 7 8 9 10 11 Symbol I NI MDLO GND 1) MDO NMDO VS1 3) VSP CPO GNDP 2) CPC 12 13 14 15 16 17 18 19 PUMIX RD NRD MC ND NND GND 1) PU 20 21 22 23 24 25 26 27 28 MIXLO VS2 3) RF NRF GND 1) MIXO VS3 3) NQ Q Function In-phase baseband input Complementary to I I/Q-modulator LO input Negative supply I/Q-modulator output Complementary to MDO Positive supply (I/Q MOD) Pos. supply charge-pump Charge-pump output Neg. supply charge pump Charge-pump current control (input) Power-up, mixer only R-divider input Complementary to RD Mode control N-divider input Complementary to ND Negative supply Power-up, whole chip except mixer Mixer LO input Positive supply (MISC.) Mixer RF-input Complementary to RF Negative supply Mixer output Positive supply (mixer) Complementary to Q Quad.-phase baseband input 1) All GND pins must be connected to GND potential. No DC voltage between GND pins! 2) Max. voltage between GNDP and GND pins 200 mV 3) The maximum permissible voltage difference between pins VS1, VS2 and VS3 is 200 mV. v 2 (14) Preliminary Information TELEFUNKEN Semiconductors Rev. A1, 29-Jan-76 U2893B Absolute Maximum Ratings ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ v ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ v v ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Parameters Supply voltage VS1, VS2, VS3 Supply voltage charge pump VSP Voltage at any input Current at any input / output pin except CPC CPC output currents Ambient temperature Storage temperature Symbol VVS# VVSP VVi# | II# | | IO# | | ICPC | Tamb Tstg Value VVSP 5.5 VVS +0.5 2 –0.5 Unit V V V mA 5.5 5 –20 to +85 –40 to +125 mA °C °C Operating Range ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Parameters Symbol VVS#, VVSP Tamb Supply voltage Ambient temperature Value 2.7 to 5.5 –20 to +85 Unit V °C Thermal Resistance ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Electrical Characteristics: General Data ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ m ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ m ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ m ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ m ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ W ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ W ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ W ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ Parameters Junction ambient SSO28 Symbol RthJA Value 130 Unit K/W Tamb = 25°C, VS = 2.7 to 5.5 V Parameters DC supply Supply voltages VS# Supply voltage VSP Test Conditions / Pin VVS1 = VVS2 = VVS3 Supply pp y current IVS1 Active (VPU = VS) Standby (VPU = 0) Supply pp y current IVS2 Active (VPU = VS) Standby (VPU = 0) Supply pp y current IVS3 Active (VPUMIX = VS) Standby (VPUMIX = 0) Supply current IVSP 1) Active (VPU = VS, CPO open) Standby (VPU = 0) N & R divider inputs ND, NND & RD, NRD N:1 divider frequency 50- source R:1 divider frequency 50- source Input impedance Active & standby Input sensitivity 50- source Symbol Min. VVS# VVSP 2.7 VVS# – 0.3 IVS1A IVS1Y IVS2A IVS2Y IVS3A IVS3Y IVSPA Typ. 5.5 5.5 V V 30 20 mA A mA A mA A mA 20 A 650 400 2 pF 200 MHz MHz – mV 20 21 20 11 2) 100 100 1 kΩ 30 1) 100-MHz PFD operation, pump current set to 4 mA, zero phase difference (steady state) 2) See chapter “Supply Current of the Charge Pump i(VSP) vs. Time”, page 6. TELEFUNKEN Semiconductors Rev. A1, 29-Jan-97 Unit 16 IVSPY FND FRD ZRD, ZND VRDeff, VNDeff Max. 3 (14) Preliminary Information U2893B Electrical Characteristics: General Data (continued) Tamb = 25°C, VS = 2.7 to 5.5 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ W ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ Á ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ W ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ W ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Parameters Test Conditions / Pin Phase-frequency detector (PFD) PFD operation FND = 650 MHz, n = 5 FRD = 300 MHz, r = 2 Frequency comparison FND = 650 MHz, n = 5 only FRD = 300 MHz, r = 2 I/Q modulator baseband inputs I, NI & Q, NQ DC voltage Referred to GND MD_IQ AC voltage 3) Symbol Min. FMPFD 150 MHz FMFD 200 MHz VI, VNI, VQ, VNQ 1.35 FRIO ACI, ACNI, ACQ, ACNQ ACDI, ACDQ DC FMDLO ZMDLO PMDLO 50 Frequency range Referred to GND Differential (preferres) I/Q modulator LO input MDLO MDLO Frequency range Input impedance Active & standby Input level 50- source I/Q modulator outputs MDO, NMDO DC current VMDO, VNMDO = VS Voltage compliance VMDO, VNMDO = VC MDO output level 500 to VS 4) (differential) Carrier suppression 4) Sideband suppression 4) IF spurious 4) f_LO +/– 3 f_mod 4) Noise @ 400 kHz off carrier Frequency range Mixer (900 MHz) RF input level 900 MHz LO-spurious at @ P9MIXLO = –10 dBm RF/NRF port @ P9RF = –15 dBm MIXLO input level 0.05 to 2 GHz MIXO (100- load) Frequency range ... Output level 5) @ P9MIXLO = –15 dBm ... Carrier suppression @ P9MIXLO = –15 dBm Typ. VS1/2 Max. VS1/2 + 0.1 1 V 200 MHz mVpp 400 mVpp 350 250 –12 IMDO, INMDO VCMDO, VCNMDO PMDOeff 120 CSMDO SSMDO SPMDO NMDO FRMDO –30 –35 –45 –115 50 –35 –40 –50 P9RF SP9RF tbd –15 P9MIXLO FRMIXO P9MIXOeff CS9MIXO tbd 50 –5 2.4 MHz W dBm mA 150 mV 350 dBc dBc dBc dBc/Hz MHz –40 dBm dBm –10 350 70 –20 Unit dBm MHz mV dBc 3) Single-ended operation (complementary baseband input is AC-grounded) leads to reduced linearity degrading suppression of odd harmonics 4) With typical drive levels at MDLO- & I/Q-inputs 5) –1 dB compression point (CP-1) 4 (14) Preliminary Information TELEFUNKEN Semiconductors Rev. A1, 29-Jan-76 U2893B Electrical Characteristics: General Data (continued) Tamb = 25°C, VS = 2.7 to 5.5 V ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ W ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ D ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ D ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ m ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ m ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ m ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ Parameters Test Conditions / Pin Mixer (1900 MHz) RF input level 0.5 to 2 GHz LO-spurious at @ P19MIXLO = –10 dBm RF/NRF ports @ P19RF = –15 dBm MIXLO input level 0.05 to 2 GHz MIXO (100 load) ... Output level 5) @ P19MIXLO = –17 dBm ... Carrier suppression @ P19MIXLO = –17 dBm Charge pump output CPO Pump CPC open p current ppulse 2.23 kΩ CPC to GND 760 Ω CPC to GND TK pump current Mismatch source / sink (ICPOSI – ICPOSO)/ICPOSI ICPOSO = Isourc current ICPOSI = Isink Sensivity to VSP I | CPO | | VSP | VSP I CPO Symbol Typ. Max. Unit –40 dBm dBm P19RF SP19RF –17 P19MIXLO –8 dBm P19MIXO CS19MIXO 55 mVeff dBc | ICPO | | ICPO 2 | | ICPO_4 | Tk_| ICPC | MICPO –20 0.8 1.6 3.6 1 2 4 SICPO Charge pump control input CPC Compensation capacitor CCPC Short circuit current 6) CPC grounded | ICPCK | Mode control Sink current VMC = VS IMC Power-up input PU (power-up for all functions, except mixer) Settling time Output power within SPU 10% of steady state values High level Active VPUH Low level Standby VPUL High-level current Active, VPUH = 2.7 V IPUH Low-level current Standby, VPUL = 0.4 V IPUL Power-up input PUMIX (power-up for mixer only) Settling time Output power within 10% of steady state values High level Active VPUMIXH Low level Standby VPUMIXL High-level current Active, VPUMIXH = 2.7 V IPUMIXH Low-level current Standby, IPUMIXL VPUMIXL = 0.4 V 6) Min. 500 2 2.7 1.2 2.4 4.4 15 10 mA mA mA %/100 k % 0.1 – 3.7 pF mA 20 5 2.5 0 0.1 –10 5 2.5 0 0.1 –10 A 10 s 0.4 0.6 0 V V mA mA 10 s 0.4 0.6 0 V V mA mA See figures 6 and 14. TELEFUNKEN Semiconductors Rev. A1, 29-Jan-97 5 (14) Preliminary Information U2893B Supply Current of the Charge Pump i(VSP) vs. Time Initial Charge Pump Current after Power-Up Due to the pulsed operation of the charge pump, the current into the charge-pump supply pin VSP is not constant. Depending on I (see figure 6) and the phase difference at the phase detector inputs, the current i(VSP) over time varies. Basically, the total current is the sum of the quiescent current, the charge-/discharge current, and – after each phase comparison cycle – a current spike (see figure 3). Due to stability reasons, the reference current generator for the charge pump needs an external capacitor (>500 pF from CPC to GND). After power-up, only the on-chip generated current I = ICPCK is available for charging the external capacitor. Due to the charge pump’s architecture, the charge pump current will be 2 I = 2 ICPCK until the voltage on CPC has reached the reference voltage (1.1 V). The following figures illustrate this behavior. The behavior of I(CPO) after power-up can be very advantageous for a fast settling of the loop. By using larger capacitors (>1 nF), an even longer period with maximum charge pump current is possible. up down V(CPC) ICPCK 5I i(VSP) 3I RCPC I t Vref 2I i(CPO) t –2I Figure 3. Supply current of the charge pump = f(t) Internal current, I, vs. current out of pin CPC I vs. I(CPC) CPC open 2.23 kW to GND 743 W to GND CPC shorted to GND ICPC 0 –0.5 mA –1.5 mA ICPCK I 0.5 mA 1.0 mA 2.0 mA >2.0 mA 2 t t t 1 0 2 t I(CPC) ICPCK I t 1 t [ ³ [ [ ³ [ Time t1 can be calculated as t1 (1.1 V CCPC)/ICPCK e.g., CCPC = 1 nF, Imax = 3.5 A t1 0.3 ms. Time t2 can be calculated as t2 (RCPC/2230 W) CCPC e.g., CCPC = 1 nF, RCPC = 2230 W t2 1.1 ms Figure 4. 6 (14) Preliminary Information TELEFUNKEN Semiconductors Rev. A1, 29-Jan-76 U2893B Mode Selection The device can be programmed to different modes via an external resistor (including short, open) connected between Pin MC and VS2. The mode selection controls the N-, R-divider ratios, and the polarity of the charge pump current. Mode Selection Mode N-Divider Resistance between Pin MC and Pin VS2 2.7 kW (±5%) 2 10 kW (±5%) 3 36 kW (±5%) 4 CPO Current Polarity fN < fR 0 (<50 W) 1 R 5 (>1 MW) Frequencies referred to PFD input! 1) R-Divider 1) fN < fR 3:1 5:1 Sink Source GSM 2:1 5:1 Source Sink PCS 2:1 6:1 Source Sink DCS 3:1 6:1 Source Sink GSM 3:1 6:1 Sink Source GSM Equivalent Circuits at the IC’s Pins ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ Vbias_MDLO 2230 I, Q 2230 250 MDLO NI, NQ Vref_input Vref_MDLO Vref_output 30p Baseband input LO input Output Figure 5. I/Q modulator RF Ï Ï Ï Ï Ï Ï 1k 890 Vbias_RF 890 MIXLO NRF Vref_RF Ï Ï Ï Ï Ï Ï Application 1) Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï VS1 MDO NMDO GND VS3 1k Vbias_LO 1.6k 1.6k 40p Vref_LO 6.3 MIXO GND RF input LO input Output Figure 6. Mixer TELEFUNKEN Semiconductors Rev. A1, 29-Jan-97 7 (14) Preliminary Information U2893B VS2 CPC Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï 4 4 I ICPCK /4 4 gm up ref ref 1.1 V 2I down 2I 2230 2 2 GND n = Transistor with an emitter area-factor of n Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï VSP CPO GNDP Figure 7. Charge pump ND/RD NND/NRD Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï VS2 2k 2k Vref_div PU, PUMIX 20k ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ GND Figure 9. Power-up GND MC GND Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï ^ C (U) 2.5 pF @ 2 V N-divider Logic VS2 Figure 8. Dividers Figure 11. ESD-protection diodes R-divider MUX 60 m A Figure 10. Mode control 8 (14) Preliminary Information TELEFUNKEN Semiconductors Rev. A1, 29-Jan-76 U2893B Application Hints For some of the baseband ICs it may be necessary to reduce the I/Q voltage swing so that it can be handled by the U2893B. In those cases, the following circuitry can be used. U2893B GND CPC R1 = 2230 R R1 R1 R2 R2 = 1160 R (incl. rds_on of FET) I I 1 nF R2 R1 NI NI Baseband IC Q U2893B 2 mA Q R1 12497 R2 NQ 4 mA Figure 14. Programming the charge pump current NQ R1 12496 Figure 12. Interfacing the U2893B to I/Q baseband circuits RMODE Application examples for programming different modes. U2893B U2893B VS2 VS2 MC MC RMODE 1 RMODE 2 RMODE a) single mode b) any mode & mode 5 U2893B U2893B VS2 VS2 MC MC c) any mode RMODE 36k or 10k d) mode 5 & mode 3 or mode 4 Figure 13. Mode control TELEFUNKEN Semiconductors Rev. A1, 29-Jan-97 9 (14) Preliminary Information U2893B Test Circuit <450 mVpp <450 mVpp VAC VAC Baseband inputs 1.35 V – VS1/2 + 0.1 V VDC 50 Modulator LO input Modulator outputs 50 VS VSP VDO 50 50 PFD Pulse output PFD input 1 2 3 4 5 1n 50 6 7 8 9 10 11 12 13 14 Ì Ì I NI MDLO GND MDO NMDO VS1 VSP CPO GNDP CPC PUMIX RD NRD Power-up Bias voltage for VS charge pump output: 0.5 V < VDO < VSP – 0.5 V VDC Q NQ VS3 MIXO GND NRF RF VS2 MIXLO PU GND NND ND MC 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1.35 V – VS1/2 + 0.1 V VS 50 Mixer output Mixer input VS Mixer LO input PFD input 50 Mode control VS2 R1 R2 R3 13315 Figure 15. Test circuit 10 (14) Preliminary Information TELEFUNKEN Semiconductors Rev. A1, 29-Jan-76 U2893B Application Circuit (900 MHz) Baseband processor 200 27n 2.7 to 3.5 V I Dr 12p PUMIX PU MIXO MIXLO Dr RF NMDO Voltage reference 90 grd 4.7p MDO 47nH Q NQ NI MDLO 12p LO (–10 dBm) 1192 MHz 50 390 NRF Mixer + I/Q modulator 47nH VCO MQE 550 VSP NND N:1 divider MUX PFD RD f_Ref vrms = 55 mV 50 NRD MC R:1 divider Charge pump ND 1k To PA 6 dB attn. CPO 68p VS1 VS2 U2893B Mode control 2.7 to 3.5 V 10 3.3n 390 2.7 to 3.5 V VS3 GND CPC GNDP 13316 Figure 16. Power-up, charge pump control, and mode control must be connected according to the application used TELEFUNKEN Semiconductors Rev. A1, 29-Jan-97 11 (14) Preliminary Information U2893B Measurements Modulation-Loop Settling Time Modulation Spectrum & Phase Error As valid for all PLL loops the settling time depends on several factors. The following figure is an extraction from measurements performed in an arrangement like the application circuit. It shows that a loop settling time of a few ms can be achieved. The figure of the TX spectrum and the phase error distribution, respectively, shows the suitability of the modulation-loop concept for GSM. Vertical: VRef. level = 28.6 dBm, 10 dBm/Div Horizontal: Center = 900 MHz, VBW, RBW = 30 kHz, 400 kHz/Div CPC: 1 kΩ to GND CPC ‘open’ Vertical: VCO tuning voltage 1 V/Div Horizontal: Time 1 ms/Div Figure 17. Figure 18. Figure 19. 12 (14) Preliminary Information TELEFUNKEN Semiconductors Rev. A1, 29-Jan-76 U2893B Package Information Package SSO28 Dimensions in mm 5.7 5.3 9.10 9.01 4.5 4.3 1.30 0.15 0.15 0.05 0.25 6.6 6.3 0.65 8.45 28 15 technical drawings according to DIN specifications 13018 1 TELEFUNKEN Semiconductors Rev. A1, 29-Jan-97 14 13 (14) Preliminary Information U2893B Ozone Depleting Substances Policy Statement It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs). The Montreal Protocol ( 1987) and its London Amendments ( 1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423 14 (14) Preliminary Information TELEFUNKEN Semiconductors Rev. A1, 29-Jan-76