TEMIC U2733B-C

U2733B-C
Fractional-N Frequency Synthesizer for DAB Tuner
Description
The U2733B-C is a monolithically integrated
fractional-N frequency synthesizer circuit fabricated in
TEMIC’s advanced UHF5S technology. Designed for
applications in DAB receivers, it controls a VCO to
synthesize frequencies in the range of 70 to 500 MHz in
a 16 kHz raster; four different reference divide factors can
be selected. The lock status of the phase detector is
indicated at a special output pin, six switching outputs can
be addressed. An internal frequency doubler provides an
output signal having twice the frequency of the reference
oscillator. All functions of this IC are controlled by
I2C bus.
Features
D Superior phase noise performance
D Microprocessor controlled via I2C bus
D 4 addresses selectable
D Four reference divide factors selectable:
D Deactivation of tuning output programmable
D 6 switching outputs (open collector)
1024, 1120, 1152, 1536
D Effectively
D Programmable 15-bit counter 1:2048 to 1:32767
effectively
D Three state phase detector with programmable charge
pump
D Reference frequency doubler (open collector output)
D Lock status indication (open collector)
D Fully compatible to U2753B-C
D SSO20 package
Block Diagram
FDO
10
NFDO
9
Frequency doubler
x2
3
Lock detector
REF
NREF
PLCK
4
1
PD
Reference counter
5
Three State
Phase
Detector
2
Prog.
charge pump
VD
Fractional N
control
18
RF
NRF
Prog.
13 Bit counter
N/N=1
17
2 Bit
latch
4 Bit latch
7 Bit latch
5 Bit latch
MUX
MUX
I2C Bus – Interface / Control
19
GND
20
VS
6
ADR
Switches
7
8
SCL
SDA
11
12
13
14
15
16
SWC SWD SWE SWF SWG SWH
12476
Figure 1. Block diagram
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96
1 (14)
Preliminary Information
U2733B-C
Pin Description
VS
PD
1
20
VD
2
19 GND
PLCK
3
18 RF
REF
4
17 NRF
NREF
5
16 SWH
ADR
6
15 SWG
SCL
7
14 SWF
SDA
8
13 SWE
NFDO
9
12 SWD
10
11 SWC
FDO
12484
Figure 2. Pinning
Functional Description
The U2733B-C is a low power fractional-N frequency
synthesizer designed for applications in DAB receivers.
Its RF operation range reaches from 70 MHz up to
500 MHz. The device includes input buffers for reference
and RF dividers, a reference divider, a programmable RF
divider using fractional-N technique, a tri-state phase
detector, a programmable charge pump, six switching
outputs, a frequency doubler for the reference input signal
and a control unit. The control unit has to be accessed by
a micro controller via I2C bus. The programming
information is stored in a set of internal registers.
The basic difference of this circuit from the U2753B-C is
the use of a special phase noise shaping technique based
on the fractional-N principle which concentrates the
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Pin
1
2
3
Symbol
PD
VD
PLCK
4
5
6
7
8
9
REF
NREF
ADR
SCL
SDA
NFDO
10
FDO
11
SWC
12
SWD
13
SWE
14
SWF
15
SWG
16
SWH
17
18
19
20
NRF
RF
GND
VS
Function
Three-state charge pump output
Active filter output
Lock indicating output
(open collector)
Reference input
Reference input (inverted)
Address selection
Clock (I2C)
Data (I2C)
Frequency doubler output
(inverted, open collector)
Frequency doubler output
(open collector)
Switching output
(opencollector)
Switching output
(open collector)
Switching output
(open collector)
Switching output
(open collector)
Switching output
(open collector)
Switching output
(open collector)
RF input (inverted)
RF input
Ground
Supply voltage
phase detector’s phase noise contribution to the spectrum
of the controlled VCO at frequency positions where it
doesn’t damage the quality of the received DAB signal.
In critical locations of the VCO’s frequency spectrum the
phase detectors phase noise contribution is reduced by
roughly 12 dB. A special property of the transmission
technique which is used in DAB is that the phase noise
weighting function which measures the influence of the
LO’s phase noise to the phase information of the coded
signal in a DAB receiver has zeros, i.e., if phase noise is
concentrated in the position of such zeros as discrete lines
the DAB signal is not disturbed as long as these lines don’t
exceed a certain limit.
2 (14)
Preliminary Information
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96
U2733B-C
For DAB mode I this phase noise weighting function is
shown in the following figure:
1,80
1,60
division ratio is either N or N+1 according to the control
of a special control unit. On average the scaling factors
SF = N+k/ 4 can be selected where k = 0, 1, 2, 3. In this
way VCO frequencies
1,40
fVCO = 4
PNWF
1,20
(N+k/4)
fref/(4
SFref)
1,00
can be synthesized starting from a reference frequency
fref.. If we define SFeff = 4 N+k and SFref, eff = 4 SFref
we end up with
0,80
0,60
0,40
0,20
0,00
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
df / Hz
12477
Figure 3.
It is important to realize that this function shows zeros in
all distances from the center line which are multiples of
the carrier spacing. The technique of concentrating the
phase noise in the positions of such zeros is protected by
a patent.
In this circuit the phase detector is operated at a frequency
which is four times the desired frequency raster spacing
(e.g., 16 kHz in case of DAB) and the well known
fractional-N technique is used to synthesize the raster. As
a result of this technique in the VCO’s frequency
spectrum spurious occur not only in multiples of the phase
detectors input comparison frequency (64 kHz) but also
in multiples of the raster frequency (16 kHz). As
described above for all DAB modes these spurious are
placed in spectral positions where the phase noise
weighting function is zero. Therefore no measures are
necessary to suppress these lines.
fref/SFref,eff,
where SFeff is defined by 15 bits. In the following this
circuit is described in terms of SFeff and SFref,eff. SFeff has
to be programmed via the I2C bus interface. An effective
scaling factor from 2048 up to 32767 can be selected. By
setting of the I2C bus bit ‘T’ a test signal representing the
divided input signal can be monitored at the switching
output SWF.
When the supply voltage is switched on both the reference
divider and the programmable divider are kept in
RESET state till a complete scaling factor is written onto
the chip. Changes in the setting of the programmable
divider become active when the corresponding I2C bus
transmission is completed. By an internal synchronization procedure is ensured that such changes don’t
become active while the charge pump is sourcing or
sinking current at its output pin. This behavior allows a
smooth tuning of the output frequency without disturbing
the controlled VCO’s frequency spectrum.
Phase Comparator and Charge Pump
Reference Divider
Four different scaling factors SFref of the reference
divider can be selected by means of the bits ‘RD1’ and
‘RD2’ in the I2C bus instruction code: 256, 280, 288, and
384. Starting from a reference oscillator frequency of
16.384 MHz/ 17.92 MHz/ 18.432 MHz/ 24.576 MHz
these scaling factors provide a frequency raster of
64 kHz. By changing the division ratio of the main
divider from N to N+1 in an appropriate way
(fractional-N technique) this frequency raster is
interpolated to deliver a frequency spacing of 16 kHz
according to the DAB specification. So effectively the
reference divide factors 1024, 1120, 1152 and 1536 can
be selected. By setting of the I2C bus bit ‘T’ a test signal
representing the divided input signal can be monitored at
the switching output SWC.
Main Divider
The main divider consists of a fully programmable 13-bit
divider which defines a division ratio N. The applied
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96
fVCO = SFeff
The tri-state phase detector causes the charge pump to
source or to sink current at the output pin PD depending
on the phase relation of its input signals which are
provided by the reference and the main divider
respectively. Four different values of this current can be
selected by means of the I2C bus bits ‘I50’ and ‘I100’. By
use of this option for example changes of the loop
characteristics due to the variation of the VCO gain as a
function of the tuning voltage can be reduced. The charge
pump current can be switched off using the I2C bus bit
‘TRI’. A change in the setting of the charge pump current
becomes active when the corresponding I2C bus
transmission is completed. As described for the setting of
the scaling factor of the programmable divider an internal
synchronization procedure ensures that such changes
don’t become active while the charge pump is sourcing or
sinking current at its output pin. This behavior allows a
change in the charge pump current without disturbing the
controlled VCO’s frequency spectrum.
3 (14)
Preliminary Information
U2733B-C
A high gain amplifier (output pin: VD) which is
implemented in order to construct a loop filter as shown
in the application circuit can be switched off by means of
the I2C bus bit ‘OS’.
An internal lock detector checks if the phase difference of
the input signals of the phase detector is smaller than
approximately 250 ns in seven subsequent comparisons.
If phase lock is detected the open collector output pin
PLCK is set ‘H’ (logical value!). It should be noted that
the output current of this pin must be limited by external
circuitry as it is not limited internally. If the I2C bus bit
‘TRI’ is set ‘H’ the lock detector function is deactivated
and the logical value of the PLCK output is undefined.
Switching Outputs
I2C
Six switching outputs controlled by the
bus bits
‘SWC’, ‘SWD’, ‘SWE’, ‘SWF’, ‘SWG’, ‘SWH’ can be
used for any switching task on the front end board. The
currents of these outputs are not limited internally. They
have to be limited by external circuitry.
Frequency Doubler
An internal frequency doubler provides a signal at twice
the frequency of the reference signal appearing at the
input pins REF and NREF. If the I2C bus bit ‘OFD’ = ‘H’
the current of its open collector outputs FDO and NFDO
is doubled. By means of the I2C bus bit ‘OFD’ the
frequency doubler function can be switched off.
As shown on page 15 (Integration in TEMIC DAB
Receiver Concept) the output signal of the frequency
doubler can be used in order to construct the LO signal of
the IF circuit (U2759B).
I2C Bus Interface
Via its I2C bus interface various functions can be
controlled by a microprocessor. These functions are
overviewed in the following sections ‘I2C bus instruction
codes’ and ‘I2C bus functions’. By means of the ADR pin
four different I2C bus addresses can be selected as
described in the section ‘Electrical characteristics’.
4 (14)
Preliminary Information
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96
U2733B-C
I2C Bus Instruction Codes
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Description
Address byte
Divider byte 1
Divider byte 2
Divider byte 3
Control byte 1
Control byte 2
Control byte 3
MSB
1
0
X
X
1
OFD
X
1
RD1
X
X
X
2IFD
0
0
RD2
n11
n5
0
SWC
0
I2C Bus Functions
define the I2C bus address
RD1, RD2
define the effective scaling factor of the
reference divider:
AS1
n14
n8
n2
TRI
SWF
0
AS2
n13
n7
n1
I100
SWG
0
LSB
0
n12
n6
n0
I50
SWH
0
Format
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
RD1
RD2
0
1
0
1
0
0
1
1
Effective
Scaling
Factor
1120
1152
1024
1536
ni
effective scaling factor (SFeff) of the main
divider
SFeff = SUM(ni 2i)
OS
OS = ‘H’ switches off tuning output
T
for T = ‘H’ reference signals describing the
output frequencies of reference reference divider
and programmable divider are monitored at SWF
(prog. div.) and SWC (ref. div.)
TRI = ‘H’ switches off charge pump
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
I50, I100
0
X
n9
n3
T
SWE
0
I2C Bus Data Transfer
AS1, AS2
TRI
0
X
n10
n4
OS
SWD
0
START – ADR – ACK – <instruction set> – STOP
The <instruction set> consists of a sequence of divider
bytes and control bytes each followed by ACK. Divider
byte i must be followed by divider byte i+1 (control byte
1 if i = 3) or the instruction set must be finished. Control
bytes have to be handled accordingly.
Examples
START – ADR – ACK – DB1 – ACK – DB2 – ACK – DB3
– ACK – CB1 – ACK – CB2 –ACK – CB3 – ACK – STOP
START – ADR – ACK – CB1 – ACK – CB2 – ACK –
STOP
However
START – ADR – ACK – DB1 – ACK – CB1 –ACK –
STOP
is not allowed.
define the charge pump current:
I50
I100
’L’
’H’
’L’
’H’
’L’
’L’
’H’
’H’
Charge Pumup Current
(nominal)/A
50
102
151
203
Description
START
start condition
STOP
stop condition
ACK
acknoledge
OFD
OFD = ‘H’ switches off frequency doubler
ADR
address byte
2IFD
2IFD = ‘H’ doubles the frequency doubler output
current
DBi
divider byte i (i = 1, 2, 3)
SWa
SWa = ‘H’ switches on output current
CBi
control byte i (i = 1, 2, 3)
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96
5 (14)
Preliminary Information
U2733B-C
I2C Bus Timing
(I2C Bus Description)’. Please note: due to the I2C bus
specification the MSB of a byte is transmitted first, the
LSB last.
The values of the drawn periods are specified in the section ‘Electrical Characteristics’. More detailed
informations can be taken from ‘Application Note 1.0
SDA
t buf
tr
t hdstat
tr
SCL
t hdsta
STOP
t
t low
t hddat
t high
t susta
t sudat
START
t sustp
STOP
12478
START
Figure 4.
Typical Pulse Diagram
START
Address byte
ACK
Divider byte
ACK
Divider byte 2
ACK
SDA
SCL
Divider byte 3
ACK
Control byte 1
ACK
Control byte 2
ACK STOP
SDA
SCL
12479
Figure 5.
6 (14)
Preliminary Information
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96
U2733B-C
Absolute Maximum Ratings
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
Parameter
Supply voltage
RF input voltage (AC)
Reference input voltage (AC)
I2C bus input/ output voltage
SDA output current
Address select voltage
Switch output current
Switch output voltage
PLCK output current
PLCK output voltage
Frequency doubler output
Junction temperature
Storage temperature
Pin
VS
RF, NRF
REF,
NREF
SCL, SDA
SDA
ADR
SWa
SWa
PLCK
PLCK
FDO,
NFDO
Tj
Tstg
Conditions
Open collector
Open collector
Open collector
Open collector
Open collector
Value
–0.3 to 5.5
1
1
Unit
V
Vpp
Vpp
–0.3 to VS
5
–0.3 to VS
4
–0.3 to 5.5
0.5
–0.3 to 5.5
VS –1 to 5.5
V
mA
V
mA
V
mA
V
V
125
–40 to 125
°C
°C
Operating Range
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
Parameter
Supply voltage
Ambient temperature range
Pin
Vs
Tamb
Conditions
Value
4.5 to 5.5
–30 to+85
Unit
V
°C
Thermal Resistance
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
Parameter
Junction ambient
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96
Pin
RthJA
Conditions
SSO20
Value
140
Unit
K/W
7 (14)
Preliminary Information
U2733B-C
Electrical Characteristics
Test conditions: VS = 5 V, Tamb = 27°C, unless otherwise specified
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Characteristics
Supply current
Pin
Vs
Symbol
Is
Iso
Effective scaling factor
of programmable
divider
Effective scaling factor
of reference divider
SFeff
SFref,eff
Tuning step
RF input
Input frequency range
frast
Min.
13.2
Typ.
16.5
Max
19.8
14.6
2048
frf
Vrfs
Vrfmax
Zrf
VSWRrf
mA
32767
RD1=‘L’,RD2=‘L’
RD1=‘H’,RD2=‘L’
RD1=‘L’,RD2=‘H’
RD1=‘H’,RD2=‘H’
17.920 MHz/
18.432 MHz/
16.384 MHz/
24.576 MHz
ref. frequency
1120
1152
1024
1536
16
kHz
VS = 4.5 V,
Tamb = 20°C
70
10
Differential
500
MHz
20
300
mVrms
mVrms
30
MHz
200
2
REF,
NREF
Input frequency range
fref
Input sensitivity
Max. input signal
Input impedance
Vrefs
Vrefmax
Zref
VS = 4.5 V,
Tamb = 20°C
5
17.92
18.432
10
300
Single ended
2.7
2.5
ø
Phase detector
Charge pump current
Effective phase noise *)
Lock indication
Unit
mA
RF, NRF
Input sensitivity
Max. input signal
Input impedance
VSWR
REF input
Conditions
SWa=‘L’,TRI=‘L’,
PLCK=‘L’,OS=‘L’,
I50=‘H’, I100=‘H’,
OFD=‘L’,2IFD=‘L’
SWa=‘L’,TRI=‘L’,
PLCK=‘L’,OS=‘L’,
I50=‘H’, I100=‘H’,
OFD=‘H’,2IFD=‘L’
mVrms
mVrms
k
pF
PD
±
± 160
± 203
± 240
I100=’H’, I50=’L’
± 120
± 151
± 180
I100=’L’, I50=’H’
± 80
± 102
± 120
I100=’L’, I50=’L’
± 40
± 50
± 60
IPD4
± IPD3
± IPD2
± IPD1
± IPD,tri
I100=’H’, I50=’H’
LPD
IPD=203A
± 100
TRI = ’H’
–163
A
A
A
A
nA
dBc/Hz
PLCK
8 (14)
Preliminary Information
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96
U2733B-C
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Characteristics
Leakage current
Saturation voltage
Frequency doubler
Pin
Symbol
IPLCK,L
Conditions
VPLCK = 5.5 V
VPLCK,sat
IPLCK = 0.5 mA
IFDOL,
INFDOL
VFDO = VS,
VNFDO = VS,
2IFD = ’L’
VFDO = VS,
VNFDO = VS,
2IFD = ’H’
VS = 5 V
IFDOH,
INFDOH
Saturation voltage
Address selection
AS1=0, AS2=0
AS1=0, AS2=1
AS1=1, AS2=0
AS1=1, AS2=1
I2C bus
Input
p voltage
g SCL/SDA
Typ.
Max
10
Unit
0.5
V
A
FDO,
NFDO
Output current
Minimum output
voltage
Switches
Leakage current
Min.
VFDO,
VNFDO
0.4
0.5
0.6
mApp
0.8
1.0
1.2
mApp
4
V
SWa
ISW,L
VSWa = 5.5 V
10
A
VSW,sat
ISWa = 4 mA
0.5
V
ADR
0
0.1 VS
open
0.4 VS
0.9 VS
0.6 VS
VS
3
5.5
1.5
0.4
V
V
V
0.1
100
1
kHz
300
ns
SCL, SDA
VH
VL
Output voltage SDA
(open collector)
‘High’
‘Low’
ISDA = 2mA
SDA = ‘L’
SCL clock frequency
Rise time (SCL, SDA)
fSCL
tr
Fall time (SCL; SDA)
Time before new
transmission can start
SCL ‘H’ period
tf
tbuf
4.7
s
thigh
4
SCL ‘L’ period
tlow
4.7
Hold time START
thdsta
4
Set up time START
tsusta
4.7
Set up time STOP
tsustp
4.7
Hold time DATA
thddat
0
s
s
s
s
s
s
Set up time DATA
tsudat
250
ns
*)
s
The phase detectors phase noise contribution to the VCO’s frequency spectrum is refered to the operating
frequency of the phase detector divided by 4 according to the fractional-N technique (regularly: 16 kHz).
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96
9 (14)
Preliminary Information
U2733B-C
Application Circuit
+ 8.5 V
Band switches
U2309B/
U2750B
Alternative load circuit:
VCO signal
VS
VS
1n
600ENS-9272Y
(TOKO)
1n
L1, L2: LL1608-F47NJ
(TOKO)
tuning
voltage
20 19 18 17 16 15 14 13 12 11
L1
L2
47nH (5%) 47nH (5%)
for fres = 36MHz
U2733B-C
180p (1%)
+ 17 V
1 2 3 4 5 6 7 8 9 10
22K
1k
1k
10n
10n
15p (5%)
VS
27p (1%)
(18p)
1n
47k
U2759B
1n 1n
1n
470p
mC
4.7n
BC846B
Ref.
OSC.
Address
select voltage
22K
+5V
12480
Figure 6. Application circuit
10 (14)
Preliminary Information
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96
U2733B-C
Phase Noise Performance
(Example:
SFeff = 16899, SFref,eff = 1120,
fref = 17.92 MHz, IPD = 200 A, reference oscillator:
MARCONI INSTRUMENTS signal generator 2042,
spectrum analysis: HP70000, above shown application
circuit, band A oscillator of U2309B)
10.00 dB/DIV
10.00 dB/DIV
–70.5 dBc/Hz
CENTER 270.384 MHz
RB 100 Hz VB 100 Hz
SPAN 10.00 kHz
ST 3.050 sec
CENTER 270.384 MHz
RB 1.00 kHz VB 1.00 kHz
12481
Figure 7.
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96
SPAN 200.0 kHz
ST 600.0 msec
12482
Figure 8.
11 (14)
Preliminary Information
L-Band
Down-converter
X190 ... 230 MHz
PIN
79 ... 240 MHz
12 (14)
Preliminary Information
PLL
AGC
System controller
–
U2733B-C
VCO
U2309B
U2750B
17.92 MHz
35.84 MHz
38.912 MHz
SAW
AGC
U2759B
DCXO
12483
AFC
FSYNCGENERATION
3.072 MHz
IF2 (IF3)
Channel
Decoder
U2733B-C
Integration in TEMIC DAB Receiver Concept
Figure 9. DAB Receiver Frontend
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96
U2733B-C
Package Dimensions
0.25 +/– 0.05
0.65
0.15 +/– 0.05
6.5 +/– 0.1
1.375 +/– 0.125
0.05 min
SSO20 all dimensions in mm
4.40 +/– 0.1
6.45 +/– 0.1
Pin 1
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96
13 (14)
Preliminary Information
U2733B-C
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems
with respect to their impact on the health and safety of our employees and the public, as well as their impact on
the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs).
The Montreal Protocol ( 1987) and its London Amendments ( 1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of
continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain
such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or
unauthorized use.
TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
14 (14)
Preliminary Information
TELEFUNKEN Semiconductors
Rev. A1, 21-Aug-96