NM27LV210 1,048,576-Bit (64K x 16) Low Voltage EPROM General Description Features The NM27LV210 is a high performance Low Voltage Electrical Programmable read only memory. It is manufactured using Fairchild’s latest EPROM technology. This technology allows the part to operate at high speeds. ■ 3.0V to 3.6V operation ■ 200 ns, 250 ns maximum access time ■ Low current operation — 20mA ICC active current @ 5 MHz — 50µA ICC standby current @ 5 MHz This Low Voltage and Low Power EPROM is designed with power sensitive hand held and portable battery products in mind. This allows for code storage of firmware for applications like notebook computers, palm top computers, cellular phones, and HDD. ■ Ultra low power operation — 60 µA standby power @ 3.3V — 50 mW active power @ 3.3V The NM27LV210 is one member of Fairchild’s growing Low Voltage product family. ■ Surface mount package option — 44-Pin PLCC Block Diagram Vcc Data Outputs O0 - O15 GND Vpp OE PGM CE Output Enable Chip Enable, and Program Logic Output Buffers Y Decoder A0 - A15 Address Inputs 1,048,576-Bit Cell Matrix X Decoder DS011376-1 © 1998 Fairchild Semiconductor Corporation 1 www.fairchildsemi.com NM27LV210 1,048,576-Bit (64K x 16) Low Voltage EPROM July 1998 7 8 9 10 11 12 13 14 15 16 1 O12 O11 O10 O9 O8 GND NC O7 O6 O5 O4 29 CE XX/VPP NC VCC XX/PGM NC A15 A14 O13 O14 O15 38 37 36 35 34 33 32 31 30 18 19 20 21 22 23 24 25 26 27 28 1 A13 A12 A11 A10 A9 GND NC A8 A7 A6 A5 44 43 42 41 40 39 38 37 36 35 34 33 A13 A12 A11 A10 A9 GND NC A8 A7 A6 A5 32 31 30 29 28 27 26 25 24 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 11 O3 O2 O1 O0 OE NC A0 A1 A2 A3 A4 17 39 44 43 42 41 40 6 5 4 3 2 23 O3 O2 O1 O0 OE NC A0 A1 A2 A3 A4 O12 O11 O10 O9 O8 GND NC O7 O6 O5 O4 CE XX/VPP NC VCC XX/PGM NC A15 A14 O13 O14 O15 PLCC Pin Configuration DS011376-3 Top View DS011376-7 Commercial Temperature Range Extended Temperature Range (0°C to +70°C) VCC = 3.3V ± 0.3 (-40°C to +85°C) VCC = 3.3V ±0.3 Parameter/Order Number Access Time (ns) NM27LV210 V 200 200 NM27LV210 V 250 250 Parameter/Order Number NM27LV210 VE 250 250 • All packages conform to JEDEC standard. • All versions are guaranteed to function in slower applications. Pin Names A0–A15 Access Time (ns) • Consult the FSC representative for newly released products/ packages. Addresses CE Chip Enable OE Output Enable O0–O15 Outputs PGM Program XX Don’t Care (During Read) NC No Connect VPP Programming Voltage 2 www.fairchildsemi.com NM27LV210 1,048,576-Bit (64K x 16) Low Voltage EPROM Connection Diagrams Storage Temperature All Output Voltages with Respect to Ground (Note 11) -65°C to +150°C All Input Voltages except A9 with Respect to Ground (Note 12) VPP and A9 with Respect to Ground VCC Supply Voltage with Respect to Ground Operating Range -0.6V to +7V Range -0.6V to +14V Commercial Extended -0.6V to +7V ESD Protection VCC + 1.0V to GND - 0.6V Temperature VCC Tolerance 0°C to +70°C 3.3 ±0.3 -40°C to +85°C 3.3 ±0.3 Min Max Units >2000V DC Read Characteristics Over Operating Range with VPP = VCC Symbol Parameter Test Conditions VIL Input Low Level -0.3 0.7 V VIH Input High Level 2.0 VCC + 0.3 V 0.4 V VOL1 Output Low Voltage (TTL) VOH1 Output High Voltage (TTL) VOL2 Output Low Voltage (CMOS) VOH2 Output High Voltage (CMOS) ISB1 VCC Standby Current (TTL) CE = VIH ISB2 VCC Standby Current (CMOS) CE = VCC ±0.3V ICC VCC Active Current CE = OE = VIL, I/O = 0 µA IPP VPP Supply Current VPP = VCC ILI Input Load Current VIN = 3.3 or GND ILO Output Leakage Current VOUT = 3.3V or GND 2.4 V 0.2 VCC - 0.3 V V 150 µA 50 µA 20 mA 10 µA -1 1 µA -1 10 µA f = 5 MHz AC Read Characteristics Over Operating Range with VPP = VCC Symbol Parameter 200 Min 250 Max Min Units Max tACC Address to Output Delay 200 250 tCE CE to Output Delay 200 250 tOE OE to Output Delay 70 tDF (Note 3) Output Disable to Output Float 0 tOH (Note 3) Output Hold from Addresses, CE or OE , Whichever Occurred First 0 75 50 0 60 ns 0 Capacitance (Note 3) TA = +25˚C, f = 1 MHz Symbol CIN COUT Parameter Conditions Typ Max Units Input Capacitance VIN = 0V 12 20 pF Output Capacitance VOUT = 0V 13 20 pF 3 www.fairchildsemi.com NM27LV210 1,048,576-Bit (64K x 16) Low Voltage EPROM Absolute Maximum Ratings (Note 2) Output Load 1 TTL Gate and CL = 100 pF (Note 9) ≤5 ns Input Rise and Fall Times Input Pulse Levels 0.45V to 2.4V Timing Measurement Reference Level Inputs Outputs 0.8V and 2V 0.8V and 2V AC Waveforms (Note 7) (Note 8) (Note 10) ADDRESS 2.0V 0.8V CE 2.0V 0.8V Address Valid ,, , t CF (Note 4, 5) t CE OE 2.0V 0.8V t DF t OE (Note 4, 5) (Note 3) OUTPUT Hi-Z 2.0V 0.8V Hi-Z Valid Output t ACC t DH (Note 3) DS011376-4 Note 2: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note 3: This parameter is only sampled and is not 100% tested. Note 4: OE may be delayed up to tACC - tOE after the falling edge of CE without impacting tACC. Note 5: The tDF and tCF compare level is determined as follows: High to TRI-STATE™, the measured VOH1 (DC) - 0.10V; Low to TRI-STATE, the measured VOL1 (DC) + 0.10V. Note 6: TRI-STATE may be attained using OE or CE. Note 7: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at least a 0.1 µF ceramic capacitor be used on every device between VCC and GND. Note 8: The outputs must be restricted to VCC + 1.0V to avoid latch-up and device damage. Note 9: 1 TTL Gate: IOL = 1.6 mA, IOH = -400 µA. CL: 100 pF includes fixture capacitance. Note 10: VPP may be connected to VCC except during programming. Note 11: Inputs and outputs can undershoot to -2.0V for 20 ns Max. Programming Characteristics (Note 12) (Note 13) (Note 14) (Note 15) Symbol Parameter Conditions Min Typ Max Units tAS Address Setup Time 1 µs tOES OE Setup Time 1 µs tCES CE Setup Time 1 µs tDS Data Setup Time 1 µs tVPS VPP Setup Time 1 µs tVCS VCC Setup Time 1 µs tAH Address Hold Time 0 µs tDH Data Hold Time 1 µs tDF Output Enable to Output Float Delay OE = VIH CE = VIL 4 0 60 ns www.fairchildsemi.com NM27LV210 1,048,576-Bit (64K x 16) Low Voltage EPROM AC Test Conditions Symbol Parameter Conditions Min Typ Max 45 50 Units tPW Program Pulse Width 105 µs tOE Data Valid from OE CE = VIL 100 ns IPP VPP Supply Current during Programming Pulse CE = VIL PGM = VIL 40 mA ICC VCC Supply Current 50 mA TA Temperature Ambient 20 25 30 °C VCC Power Supply Voltage 6.25 6.5 6.75 V VPP Programming Supply Voltage 12.5 12.75 13.0 V tFR Input Rise, Fall Time VIL Input Low Voltage VIH Input High Voltage 2.4 tIN Input Timing Reference Voltage 0.8 2.0 V Output Timing Reference Voltage 0.8 2.0 V tOUT 5 ns 0.0 0.45 4.0 V V Programming Waveforms (Note 14) Program Addresses 2.0V 0.8V Program Verify Address N t AS 2.0V Data t DS 6.25V VCC VPP CE 12.75V Hi-Z Data In Stable ADD N 0.8V Data Out Valid ADD N t DF t DH t VCS t VPS 0.8V t CES PGM 2.0V 0.8V t OES t PW OE t OE 2.0V 0.8V DS011376-5 Note 12: Fairchild’s standard product warranty applies only to devices programmed to specifications described herein. Note 13: VCC must be applied simultaneously or before VPP and removed simultaneously or after VPP. The EPROM must not be inserted into or removed from a board with voltage applied to VPP or VCC. Note 14: The maximum absolute allowable voltage which may be applied to the VPP pin during programming is 14V. Care must be taken when switching the VPP supply to prevent any overshoot from exceeding this 14V maximum specification. At least a 0.1 µF capacitor is required across VPP, VCC to GND to suppress spurious voltage transients which may damage the device. Note 15: During power up the PGM pin must be brought high (≥VIH) either coincident with or before power is applied to VPP. 5 www.fairchildsemi.com NM27LV210 1,048,576-Bit (64K x 16) Low Voltage EPROM Programming Characteristics (Note 12) (Note 13) (Note 14) (Note 15) (Continued) NM27LV210 1,048,576-Bit (64K x 16) Low Voltage EPROM Turbo LV Programming Algorithm Flow Chart VCC = 6.5V VPP = 12.75V n=0 ADDRESS = FIRST LOCATION PROGRAM ONE 50µs PULSE INCREMENT n NO DEVICE FAILED YES n = 10? FAIL VERIFY BYTE PASS LAST ADDRESS ? NO INCREMENT ADDRESS n=0 YES ADDRESS = FIRST LOCATION VERIFY BYTE FAIL PASS INCREMENT ADDRESS NO PROGRAM ONE 50 µs PULSE LAST ADDRESS ? YES CHECK ALL BYTES 1ST: VCC = VPP = 5.0V 2ND: VCC = VPP = 3.0V DS011376-6 Note: The standard National Semiconductor algorithm may also be used but it will have longer programming time. FIGURE 1. 6 www.fairchildsemi.com Programming DEVICE OPERATION CAUTION: Exceeding 14V on the VPP or A9 pin will damage the EPROM. The six modes of operation of the EPROM are listed in . It should be noted that all inputs for the six modes are at TTL levels. The power supplies required are VCC and VPP. The VPP power supply must be at 12.75V during the three programming modes, and must be at 3.3V in the other three modes. The VCC power supply must be at 6.5V during the three programming modes, and at 3.3V in the other three modes. Initially, and after each erasure, all bits of the EPROM are in the “1’s” state. Data is introduced by selectively programming “0’s” into the desired bit locations. Although only “0’s” will be programmed, both “1’s” and “0’s” can be presented in the data word. The only way to change a “0” to a “1” is by ultraviolet light erasure. The EPROM is in the programming mode when the VPP power supply is at 12.75V and OE is at VIH. It is required that at least a 0.1 µF capacitor be placed across VPP, VCC to ground to suppress spurious voltage transients which may damage the device. The data to be programmed is applied 16 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. Read Mode The EPROM has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that the addresses are stable, address access time (tACC) is equal to the delay from CE to output (tCE). Data is available at the outputs tOE after the falling edge of OE, assuming that CE has been low and addresses have been stable for at least tACC – tOE. When the address and data are stable, an active low, TTL program pulse is applied to the PGM input. A program pulse must be applied at each address location to be programmed. The EPROM is programmed with the Turbo Programming Algorithm shown in Figure 1. Each Address is programmed with a series of 50 µs pulses until it verifies good, up to a maximum of 10 pulses. Most memory cells will program with a single 50 µs pulse. (The standard National Semiconductor Algorithm may also be used but it will have longer programming time.) Standby Mode The EPROM has a standby mode which reduces the active power dissipation by over 99%, from 66 mW to 66 µW. The EPROM is placed in the standby mode by applying a CMOS high signal to the CE input. When in standby mode, the outputs are in a high impedance state, independent of the OE input. The EPROM must not be programmed with a DC signal applied to the PGM input. Programming multiple EPROM in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the parallel EPROM may be connected together when they are programmed with the same data. A low level TTL pulse applied to the PGM input programs the paralleled EPROM. Output Disable The EPROM is placed in output disable by applying a TTL high signal to the OE input. When in output disable all circuitry is enabled, except the outputs are in a high impedance state (TRISTATE). Output OR-Tying Because the EPROM is usually used in larger memory arrays, Fairchild has provided a 2-line control function that accommodates this use of multiple memory connections. The 2-line control function allows for: 1. the lowest possible memory power dissipation, and 2. complete assurance that output bus contention will not occur. To most efficiently use these two control lines, it is recommended that CE be decoded and used as the primary device selecting function, while OE be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low power standby modes and that the output pins are active only when data is desired from a particular memory device. 7 www.fairchildsemi.com NM27LV210 1,048,576-Bit (64K x 16) Low Voltage EPROM Functional Description MODE SELECTION The modes of operation of the NM27LV210 are listed in Table 1. A single power supply is required in the read mode. All inputs are TTL levels except for VPP and A9 for device signature. TABLE 1. Modes Selection Pins CE OE PGM VPP VCC Outputs VIL VIL X (Note 16) X 3.3V DOUT X VIH X X 3.3V High Z Standby VIH X X X 3.3V High Z Programming VIL VIH VIL 12.75V 6.25V DIN Program Verify VIL VIL VIH 12.75V 6.25V DOUT Program Inhibit VIH X X 12.75V 6.25V High Z Mode Read Output Disable Note 16: X can be VIL or VIH. The code is accessed by applying 12V ±0.5V to address pin A9 . Addresses A1 –A8 ,A10 –A15 , and all control pins are held at VIL. Address pin A0 is held at VIL for the manufacturer’s code, and held at VIH for the device code. The code is read on the lower eight data pins, O0 –07 . Proper code access is only guaranteed at 25°C ± 5°C. Program Inhibit Programming multiple EPROM’s in parallel with different data is also easily accomplished. Except for CE all like inputs (including OE and PGM) of the parallel EPROM may be common. A TTL low level program pulse applied to an EPROM’s PGM input with CE at VIL and VPP at 12.75V will program that EPROM. A TTL high level CE input inhibits the other EPROM’s from being programmed. SYSTEM CONSIDERATION The power switching characteristics of EPROMs require careful decoupling of the devices. The supply current, ICC, has three segments that are of interest to the system designer: the standby current level, the active current level, and the transient current peaks that are produced by voltage transitions on input pins. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. The associated VCC transient voltage peaks can be suppressed by properly selected decoupling capacitors. It is recommended that at least a 0.1 µF ceramic capacitor be used on every device between VCC and GND. This should be a high frequency capacitor of low inherent inductance. In addition, at least a 4.7 µF bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The bulk capacitor should be located near where the power supply is connected to the array. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of the PC board traces. Program Verify A verify should be performed on the programmed bits to determine whether they were correctly programmed. The verify may be performed with VPP at 6.25V. VPP must be at VCC, except during programming and program verify. MANUFACTURER’S IDENTIFICATION CODE The EPROM has a manufacturer’s identification code to aid in programming. When the device is inserted in an EPROM programmer socket, the programmer reads the code and then automatically calls up the specific programming algorithm for the part. This automatic programming control is only possible with programmers which have the capability of reading the code. The Manufacturer’s Identification code, shown in Table 2, specifically identifies the manufacturer and device type. The code for the NM27LV210 is “8FD6”, where “8F” designates that it is made by Fairchild Semiconductor, and “D6” designates a 1 Megabit (64K x 16) part. TABLE 2. Manufacturer’s Identification Code Pins A0 (21) A9 (31) O7 (12) O6 (13) O5 (14) O4 (15) O3 (16) O2 (17) O1 (18) O0 (19) Manufacturer Code VIL 12V 1 0 0 0 1 1 1 1 8F Device Code VIH 12V 1 1 0 1 0 1 1 0 D6 8 Hex Data www.fairchildsemi.com NM27LV210 1,048,576-Bit (64K x 16) Low Voltage EPROM Functional Description (Continued) +0.006 0.650 –0.000 +0.15 16.51 0 45°X 0.045 [1.14] PIN 1 IDENT 6 1 44 17 0.017 ±0.021 TYP [0.43 ±0.10] 0.045 45°X [1.14] 40 39 0.026–0.032 [0.66–0.81] TYP 0.610 ±0.020 [15.49 ±0.51] TYP Seating plane 17 29 18 0.500 TYP [12.70] 28 0.050 TYP [1.27] 0.020 MIN TYP [0.51] 0.690 ± 0.005 TYP [17.53 –0.13] 0.105 ±0.015 TYP [2.67 ±0.38] 0.165–0.180 TYP [4.19–4.57] 0.004 [0.10] 44-Lead Plastic Chip Carrier (V) Order Number NM27LV210XXX Package Number V44A Life Support Policy Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of Fairchild Semiconductor Corporation. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. Fairchild Semiconductor Americas Customer Response Center Tel. 1-888-522-5372 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Fairchild Semiconductor Europe Fax: +44 (0) 1793-856858 Deutsch Tel: +49 (0) 8141-6102-0 English Tel: +44 (0) 1793-856856 Français Tel: +33 (0) 1-6930-3696 Italiano Tel: +39 (0) 2-249111-1 Fairchild Semiconductor Hong Kong 8/F, Room 808, Empire Centre 68 Mody Road, Tsimshatsui East Kowloon. Hong Kong Tel; +852-2722-8338 Fax: +852-2722-8383 Fairchild Semiconductor Japan Ltd. 4F, Natsume Bldg. 2-18-6, Yushima, Bunkyo-ku Tokyo, 113-0034 Japan Tel: 81-3-3818-8840 Fax: 81-3-3818-8841 Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. 9 www.fairchildsemi.com NM27LV210 1,048,576-Bit (64K x 16) Low Voltage EPROM Physical Dimensions inches (millimeters) unless otherwise noted