FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Features Description Low Total Harmonic Distortion (THD) The FAN7528 is an active power factor correction (PFC) controller for boost PFC applications that operates in critical conduction mode (CRM). It uses voltage mode PWM that compares an internal ramp signal with the error amplifier output to generate MOSFET turn-off signal. Because the voltage mode CRM PFC controller does not need the rectified AC line voltage information, it can save the power loss of the input voltage sensing network necessary for the current mode CRM PFC controller. Dual Output Voltage Control Precise Adjustable Output Over-Voltage Protection Open-Feedback Protection and Disable Function Zero Current Detector 160µs Internal Start-up Timer MOSFET Over-Current Protection Under-Voltage Lockout with 3.5V Hysteresis Low Start-up (40µA) and Operating Current (1.5mA) Totem-Pole Output with High State Clamp ±400mA Peak Gate Drive Current 8-Pin DIP or 8-Pin SOP Applications Adapter Related Application Notes AN-6012: Design of Power Factor Correction Circuit The FAN7528 provides the dual-output voltage control function without the AC line voltage sensing for adapter applications. It changes the PFC output voltage according to the AC line voltage. It provides protection functions such as over-voltage protection, open-feedback protection, over-current protection, and under-voltage lockout protection. The FAN7528 can be disabled if the INV pin voltage is lower than 0.45V and the operating current decreases to 65µA. Using a new variable on-time control method, THD is lower than the conventional CRM boost PFC ICs. Using FAN7528 Ordering Information Part Number Operating Temp. Range Pb-Free Package Packing Method Marking Code FAN7528N -40°C to +125°C Yes 8-DIP Rail FAN7528 FAN7528M -40°C to +125°C Yes 8-SOP Rail FAN7528 FAN7528MX -40°C to +125°C Yes 8-SOP Tape & Reel FAN7528 © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com FAN7528 Dual-Output, Critical Conduction Mode PFC Controller February 2007 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Typical Application Diagrams L D VO AC IN NAUX VAUX R2 RZCD ZCD CO VCC MOT FAN7528 INV CS COMP R1 GND FAN7528 Rev. 1.01 Figure 1. Typical Boost PFC Application Internal Block Diagram 2.5V Ref V CC 8 UVLO 8.5V 12V V ref Vcc Internal Bias Drive Output Disable 160μs Timer ZCD 5 7 OUT 13V S 6.7V 1.4V Q 1.5V R Zero Current Detector CS 4 Disable 40k 8pF 0.8V Ramp Signal MOT 3 OVP OCP Comparator 2.66V 2.55V 0.45V 0.35V V CC =8.5V Reference Set V CC =4.5V Reference Reset Dual-Output Reference Generator 1.5V/2.5V 1V Offset Sawtooth Generator Error Amplifier Gm 1V ~ 5V Range 6 2 GND COMP 1 INV FAN7528 Rev. 1.00 Figure 2. Functional Block Diagram of FAN7528 © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 2 VCC OUT GND ZCD 8 7 6 5 WWW FAN7528 1 2 3 INV COMP MOT 4 CS FAN7528 Rev. 1.00 Figure 3. Pin Configuration (Top View) Pin Definitions Pin # Name Description 1 INV This pin is the inverting input of the error amplifier. The output voltage of the boost PFC converter should be resistively divided to 2.5V at the high line condition and connected to this pin. If this pin voltage is controlled to be lower than 0.45V, the device is disabled. 2 COMP This pin is the output of the transconductance error amplifier. Some components for the output voltage compensation should be connected between this pin and GND. 3 MOT This pin is used to set the slope of the internal ramp. The voltage of this pin is maintained to be 1V. If a resistor is connected between this pin and GND, current flows out of the pin and the slope of the internal ramp is proportional to this current. 4 CS This pin is the input of the over-current protection comparator. The MOSFET current is sensed using a sensing resistor and the resulting voltage is applied to this pin. An internal RC filter is included to filter switching noise. This pin is sensitive to the negative voltage below -0.3V. For proper operation, the stray inductance in the sensing path and the inductance of the sensing resistor must be minimized. 5 ZCD This pin is the input of the zero current detection block. If the voltage of this pin goes higher than 1.5V, then lower than 1.4V, the MOSFET is turned on. 6 GND This pin is used for the ground potential of all the pins. For proper operation, the signal ground and the power ground should be separated. 7 OUT This pin is the gate drive output. The peak sourcing and sinking current level is 400mA. For proper operation, the stray inductance in the gate driving path must be minimized. 8 VCC This pin is the IC supply pin. IC current and MOSFET drive current are supplied using this pin. © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 3 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Pin Assignments Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. TA = 25°C unless otherwise specified. Symbol VCC IOH, IOL Iclamp Parameter Value Unit 23 V Peak Drive Output Current ±400 mA Driver Output Clamping Diodes VO > VCC or VO < -0.3V ±10 mA Supply Voltage ±10 mA -0.3 to 6 V 150 °C Operating Temperature Range -40 to 125 °C Storage Temperature Range Idet Detector Clamping Diodes VIN Error Amp, MOT, CS Input Voltages TJ Operating Junction Temperature TA TSTG ESD -65 to 150 °C Human Body Model 2.0 kV Machine Model 300 V Value Unit 8-DIP 110 °C/W 8-SOP 150 °C/W Thermal Impedance Symbol θJA Parameter Thermal Resistance, Junction-to-Ambient Note: 1. Regarding the test environment and PCB type, please refer to JESD51-2 and JESD51-10. © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 4 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Absolute Maximum Ratings VCC = 14V, TA = -40°C~125°C, unless otherwise specified. Symbol Parameter Condition Min. Typ. Max. Unit 11 12 13 V Under-Voltage Lockout Section Start Threshold Voltage VCC increasing VTH(stop) Stop Threshold Voltage VCC decreasing HY(uvlo) UVLO Hysteresis VTH(start) 8.0 8.5 9.0 V 3.0 3.5 4.0 V VCC = VTH(start) – 0.2V 40 70 μA Supply Current Section IST Start-up Supply Current ICC Operating Supply Current Output no switching 1.5 3.0 mA IDCC Dynamic Operating Supply Current 50kHz, CL=1nF 2.5 4.0 mA Operating Current at Disable Vinv = 0V 40 65 90 μA TA = 25°C 2.465 2.500 2.535 V 2.435 2.500 2.565 V 1.45 1.50 1.55 V 0.1 10.0 mV ICC(dis) Error Amplifier Section Vref1 Voltage Feedback Input Threshold1 Vref2 Voltage Feedback Input Threshold2 ΔVref1 Line Regulation VCC = 14V~23V Vref1(1) ΔVref3 Temperature Stability of Ib(ea) Input Bias Current Vinv = 1V~4V Isource Output Source Current Vinv = 2.4V -12 μA Output Sink Current Vinv = 2.6V 12 μA Isink 20 -0.5 mV 0.5 μA Veao(H) Output Upper Clamp Voltage 4.5 5.5 6.5 V Veao(Z) Zero Duty Cycle Output Voltage 0.7 1.0 1.3 V Transconductance(1) 90 115 140 μmho 1.24 1.30 1.36 V 3.0 4.5 6.0 V gm VTH(in) VTH(reset) Output Voltage Selection Threshold Output Voltage Reset TA = 25°C Threshold(1) Maximum On-Time Section Vmot tON-max Maximum On-time Voltage Rmot = 13.7k 0.95 1.00 1.05 V Maximum On-time Programming Rmot = 13.7k, TA = 25°C 18.0 22.5 27.0 μs 0.7 0.8 0.9 V -1.0 -0.1 1.0 μA 350 500 ns Current Sense Section VCS(limit) Ib(cs) td(cs) Current Sense Input Threshold Voltage Limit Input Bias Current VCS = 0V~1V (1) Current Sense Delay to Output © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 5 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Electrical Characteristics VCC = 14V, TA = -40°C~125°C, unless otherwise specified. Symbol Parameter Condition Min. Typ. Max. Unit 1.35 1.50 1.65 V Zero Current Detection Section VTH(ZCD) Input Voltage Threshold(1) (1) HY(ZCD) Detect Hysteresis 0.05 0.10 0.15 V Vclamp(h) Input High Clamp Voltage Idet = 3mA 6.0 6.7 7.4 V Vclamp(l) Input Low Clamp Voltage Idet = -3mA 0 0.6 1.0 V -1.0 -0.1 1.0 μA Ib(ZCD) Input Bias Current VZCD = 1V~5V (1) Isource(zcd) Source Current Capability -10 mA Isink(zcd) Sink Current Capability(1) 10 mA 200 ns 11.0 12.8 V tdead Maximum Delay from ZCD to Output Turn-on(1) 100 Output Section VOH Output Voltage High IO = -100mA VOL Output Voltage Low IO = 100mA 1.0 2.5 V tr Rising Time(1) CL = 1nF 50 100 ns Falling Time(1) 50 100 ns 13.0 14.5 V 1 V tf 9.2 CL = 1nF VO(max) Maximum Output Voltage VCC = 20V, IO = 100μA VO(uvlo) Output Voltage with UVLO Activated VCC = 5V, IO = 100μA 11.5 Restart Timer Section td(rst) Restart Timer Delay 40 160 360 μs 2.60 2.66 2.72 V 0.06 0.11 0.16 V Over-Voltage Protection Section VOVP HY(ovp) OVP Threshold Voltage TA = 25°C OVP Hysteresis Enable Section VTH(en) Enable Threshold Voltage 0.40 0.45 0.50 V HY(en) Enable Hysteresis 0.05 0.10 0.15 V Note: 1. These parameters, although guaranteed by design, are not tested in production. © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 6 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Electrical Characteristics (Continued) 12.8 9.2 VTH(stop) [V] VTH(start) [V] 12.4 12.0 11.6 11.2 8.8 8.4 8.0 7.6 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 0 Temperature [°C] Temperature [°C] Figure 4. Start Threshold Voltage vs. Temp. Figure 5. Stop Threshold Voltage vs. Temp. 70 4.0 60 3.8 50 3.6 IST [μA] HY(uvlo) [V] 20 40 60 80 100 120 140 3.4 3.2 40 30 20 10 0 3.0 -60 -40 -20 0 -60 -40 -20 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Temperature [°C] Temperature [°C] Figure 6. UVLO Hysteresis vs. Temp. Figure 7. Start-up Supply Current vs. Temp. 3.0 4.0 3.5 2.5 3.0 IDCC [mA] ICC [mA] 2.0 1.5 1.0 0.5 2.5 2.0 1.5 1.0 0.5 0.0 0.0 -60 -40 -20 0 -60 -40 -20 20 40 60 80 100 120 140 Temperature [°C] 20 40 60 80 100 120 140 Temperature [°C] Figure 8. Operating Supply Current vs. Temp. Figure 9. Dynamic Operating Current vs. Temp. © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 0 www.fairchildsemi.com 7 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Typical Performance Characteristics 2.56 80 2.54 2.52 70 Vref1 [V] ICC(dis) [μA] 90 2.50 60 2.48 50 2.46 2.44 40 -60 -40 -20 0 -60 -40 -20 20 40 60 80 100 120 140 0 Figure 11. Vref1 vs. Temp. 1.54 0.4 1.52 0.2 Ib(ea) [μA] Vref2 [V] Figure 10. ICC at Disable vs. Temp. 1.50 1.48 0.0 -0.2 -0.4 1.46 -60 -40 -20 0 -60 -40 -20 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Temperature [°C] Temperature [°C] Figure 12. Vref2 vs. Temp. Figure 13. Input Bias Current vs. Temp. -6 18 -9 15 -12 Isink [μA] Isource [μA] 20 40 60 80 100 120 140 Temperature [°C] Temperature [°C] -15 -18 12 9 6 -60 -40 -20 0 -60 -40 -20 20 40 60 80 100 120 140 Temperature [°C] 20 40 60 80 100 120 140 Temperature [°C] Figure 14. Error Amp. Source Current vs. Temp. Figure 15. Error Amp. Sink Current vs. Temp. © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 0 www.fairchildsemi.com 8 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Typical Performance Characteristics (Continued) 6.5 1.3 1.2 6.0 Veao(Z) [V] Veao(H) [V] 1.1 5.5 5.0 1.0 0.9 0.8 4.5 0.7 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 Temperature [°C] 0 20 40 60 80 100 120 140 Temperature [°C] Figure 16. Error Amp. Clamp Voltage vs. Temp. Figure 17. Zero Duty Output Voltage vs. Temp. 1.36 1.04 1.34 1.02 Vmot [V] VTH(IN) [V] 1.32 1.30 1.28 1.26 1.00 0.98 0.96 1.24 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 0 Temperature [°C] Figure 18. Output Select Threshold vs. Temp. Figure 19. MOT Pin Voltage vs. Temp. 26 0.88 24 0.84 VCS(limit) [V] tON(max) [μs] 20 40 60 80 100 120 140 Temperature [°C] 22 20 0.80 0.76 0.72 18 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 Temperature [°C] 20 40 60 80 100 120 140 Temperature [°C] Figure 20. Maximum On-Time vs. Temp. Figure 21. Current Limit vs. Temp. © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 0 www.fairchildsemi.com 9 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Typical Performance Characteristics (Continued) 7.4 0.9 7.2 0.6 7.0 Vclamp(H) [V] Ib(CS) [μA] 0.3 0.0 -0.3 -0.6 6.8 6.6 6.4 6.2 -0.9 6.0 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 Temperature [°C] 0 20 40 60 80 100 120 140 Temperature [°C] Figure 22. CS Input Bias Current vs. Temp. Figure 23. ZCD Input High Clamp vs. Temp. 1.0 0.8 0.8 Ib(ZCD) [μA] Vclamp(L) [V] 0.4 0.6 0.4 0.0 -0.4 0.2 -0.8 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 0 Temperature [°C] Figure 24. ZCD Input Low Clamp vs. Temp. Figure 25. ZCD Input Bias Current vs. Temp. 2.5 12.5 2.0 12.0 11.5 1.5 VOL [V] VOH [V] 20 40 60 80 100 120 140 Temperature [°C] 11.0 10.5 10.0 1.0 0.5 9.5 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 Temperature [°C] 20 40 60 80 100 120 140 Temperature [°C] Figure 26. Output Voltage High vs. Temp. Figure 27. Output Voltage Low vs. Temp. © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 0 www.fairchildsemi.com 10 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Typical Performance Characteristics (Continued) 14.5 1.0 14.0 0.8 VO(uvlo) [V] VO(max) [V] 13.5 13.0 12.5 0.6 0.4 0.2 12.0 11.5 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 0 Temperature [°C] Figure 28. Maximum Output Voltage vs. Temp. Figure 29. Output Voltage when UVLO vs. Temp. 400 2.74 350 2.72 2.70 250 VOVP [V] td(rst) [μs] 300 200 150 100 2.68 2.66 2.64 2.62 50 2.60 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 0 Temperature [°C] 20 40 60 80 100 120 140 Temperature [°C] Figure 30. Restart Timer Delay vs. Temp. Figure 31. Over-Voltage Protection vs. Temp. 0.14 0.50 0.48 VTH(en) [V] 0.12 HY(OVP) [V] 20 40 60 80 100 120 140 Temperature [°C] 0.10 0.08 0.46 0.44 0.42 0.06 0.40 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 Temperature [°C] 20 40 60 80 100 120 140 Temperature [°C] Figure 32. OVP Hysteresis vs. Temp. Figure 33. Enable Threshold Voltage vs. Temp. © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 0 www.fairchildsemi.com 11 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Typical Performance Characteristics (Continued) FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Typical Performance Characteristics (Continued) 0.14 HY(en) [V] 0.12 0.10 0.08 0.06 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature [°C] Figure 34. Enable Hysteresis vs. Temp. © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 12 1. Error Amplifier Block 1.2 Over-Voltage Protection Function The error amplifier block has several functions, such as dual output function, over-voltage protection function, and disable function. The control speed of the PFC converter is very slow; therefore, the over-voltage protection (OVP) of the output voltage is very important. The FAN7528 provides a precise OVP function that shuts down the drive circuit when the INV pin voltage exceeds 2.66V and there is 0.11V hysteresis. 1.1 Dual-Output Function Unlike conventional CRM PFC controllers, the FAN7528 has the dual-output control function according to the AC line voltage without sensing the rectified AC line voltage. Because the output voltage of the boost converter is proportional to the peak voltage of the input AC line voltage before the boost converter starts switching, the INV pin voltage represents the peak AC line voltage. When the AC line is connected to the boost converter, VCC voltage starts to increase from zero voltage. If the VCC voltage reaches 8.5V, the dual-output reference generator compares the INV pin voltage with 1.3V reference and, if the INV pin voltage is lower than 1.3V, the dual-output reference generator sets the reference voltage of the error amplifier to 1.5V. If the INV pin voltage is higher than 1.3V, the reference voltage is set to 2.5V. That means if the output voltage of the boost converter is set to 400V at high line, the output voltage is 240V (400V*1.5/2.5) at low line. If the output voltage is set to 390V at high line, the output voltage is 234V at low line. Because this block does not need the input voltage sensing network, the power loss and cost related with the sensing network can be saved. The reference voltage of the error amplifier is not reset until VCC goes below 4.5V. 2.66V 1.3 Disable Function If the INV pin voltage is lower than 0.45V, most of the internal block is disabled, the operating current is reduced to be 65µA, and there is 0.1V hysteresis in the comparator. 1.4 Error Amplifier The error amplifier is a transconductance type amplifier. The output current of the amplifier is proportional to the voltage difference between the inverting input and the non-inverting input of the amplifier. Some resistors and capacitors should be connected to the error amplifier output pin, the COMP pin, for the output voltage loop compensation. 2. Zero Current Detection Block The zero current detector (ZCD) generates the turn-on signal of the MOSFET when the boost inductor current reaches zero using an auxiliary winding coupled with the inductor. If the voltage of the ZCD pin goes higher than 1.5V, the ZCD comparator waits until the voltage goes below 1.4V. If the voltage goes below 1.4V, the zero current detector turns on the MOSFET. The ZCD pin is protected internally by two clamps, 6.7V high clamp and 0.6V low clamp. The 160µs timer generates a MOSFET turn-on signal if the drive output has been low for more than 160µs from the falling edge of the drive output. 2.55V OVP Disable 0.45V 0.35V Dual-Output Reference Generator Error Amp VOUT 1.5V/2.5V Gm 160μs Timer VIN INV ZCD 1 RZCD 2 Turn-on Signal COMP 5 S 6.7V Q 1.4V 1.5V Zero Current Detector R FAN7528 Rev. 1.00 Figure 36. Zero Current Detector Block FAN7528 Rev. 1.00 Figure 35. Error Amplifier Block © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 13 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Applications Information 4. Over-Current Protection Block The output of the error amplifier and the output of the sawtooth generator are compared to determine the MOSFET turn-off instance. The slope of the sawtooth is determined by an external resistor connected to the MOT pin. The voltage of the MOT pin is 1V and the slope is proportional to the current flowing out of the MOT pin. The internal ramp signal has 1V offset; therefore, the drive output is shut down if the voltage of the COMP pin is lower than 1V. The MOSFET on-time is maximum when the COMP pin voltage is 5V. According to the slope of the internal ramp, the maximum on-time can be programmed. The necessary maximum on-time depends on the boost inductor, lowest AC line voltage, and maximum output power. The resistor value should be designed properly. The MOSFET current is sensed using an external sensing resistor for the over-current protection. If the CS pin voltage is higher than 0.8V, the over-current protection comparator generates a protection signal. An internal RC filter is included to filter switching noise. 0.8V Over-Current Protection Comparator FAN7528 Rev. 1.00 Figure 38. Over-Current Protection Block Off Signal 3 4 8pF 5. Switch Drive Block 1V MOT OCP Signal 40k CS The FAN7528 contains a single totem-pole output stage designed for a direct drive of power MOSFET. The drive output is capable of up to 400mA peak current with a typical rise and fall time of 50ns with 1nF load. The output voltage is clamped to be 13V to protect MOSFET gate even if the VCC voltage is higher than 13V. Sawtooth Generator 1V Error Amp Output FAN7528 Rev. 1.00 6. Under-Voltage Lockout Block Figure 37. Sawtooth Generator Block If the VCC voltage reaches 12V, the IC’s internal blocks are enabled and start operation. If the VCC voltage drops below 8.5V, most of the internal blocks are disabled to reduce the operating current. VCC voltage should be higher than 8.5V under normal conditions. © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 14 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller 3. Sawtooth Generator Block Application Output power Input voltage Output voltage Adapter 100W Universal input (90~264 Vac) 389V/232V Features High efficiency (>90% at 90 Vac input) Low THD (total harmonic distortion) (<10% at 264 Vac input) Dual-output control Key Design Notes Diode D4 is used to prevent IC malfunction that can happen if the CS pin voltage is lower than -0.3V. Important components for low THD are R2, R5, and C11. 1. Schematic T1 PFC OUTPUT VAUX BD D2 C5 R4 R3 R5 NTC Q1 R6 ZD1 7 C2 R9 1 2 3 C7 R1 CS C1 MOT INV R2 V1 C9 5 FAN7528 COMP LF1 6 GND VCC 8 C11 OUT C4 ZCD D1 C3 R11 4 R8 F1 C6 R10 D3 C10 C8 R7 D4 FAN7528 Rev. 1.00 AC INPUT Figure 39. Schematic © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 15 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Typical Application Circuit 1 NVcc 2 3 Np 5 FAN7528 Rev. 1.00 Figure 40. Inductor Schematic Diagram 3. Winding Specification No Pin (s→f) 5→3 Np Wire 0.2φ × 10 Turns Winding Method 44 Solenoid Winding 6 Solenoid Winding Insulation: Polyester Tape t = 0.050mm, 4 Layers 2→1 NVcc 0.2φ × 1 Outer Insulation: Polyester Tape t = 0.050mm, 4 Layers Air Gap: 0.6mm for each leg 4. Electrical Characteristics Inductance Pin Specification Remarks 3–5 400µH ± 10% 100kHz, 1V 5. Core & Bobbin Core: EI 3026 Bobbin: EI3026 Ae(mm2): 111 © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 16 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller 2. Inductor Schematic Diagram Part Value Note Part Value Fuse F1 Note Inductor 3A/250V T1 400µH EI3026 NTC NTC 10D-9 MOSFET Resistor Q1 FQPF13N50C Fairchild R1 10kΩ 1/4W R2 370kΩ 1/4W R3 330kΩ 1/2W D1 1N4148 Fairchild R4 150Ω 1/2W D2 BYV26C 600V, 1A R5 20kΩ 1/4W D3 1N5819 Fairchild R6 10Ω 1/4W D4 1N5819 Fairchild R7 0.22Ω 1/2W ZD1 1N4746 18V R8 10kΩ 1/4W BD KBL06 R9 10kΩ 1/4W R10 2MΩ 1/4W R11 12.9kΩ 1/4W Diode Bridge Diode Capacitor Line Filter C1 150nF/275VAC Box Capacitor C2 330nF/275VAC Box Capacitor C3 2.2nF/3kV Ceramic Capacitor C4 2.2nF/3kV Ceramic Capacitor C5 150nF/630V Film Capacitor C6 47uF/25V Electrolytic Capacitor C7 47nF/50V Ceramic Capacitor C8 220nF MLCC C9 100µF/450V Electrolytic Capacitor C10 12nF/100V Film Capacitor C11 47pF/50V Ceramic Capacitor LF1 40mH Wire 0.4mm IC IC1 FAN7528 Fairchild TNR V1 © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 600V/4A 471 470V www.fairchildsemi.com 17 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller 6. Demo Circuit Part List FAN7528 Dual-Output, Critical Conduction Mode PFC Controller 7. Layout Power Ground Signal Ground Separate the power ground and the signal ground Place the output voltage sensing resistors close to IC Figure 41. PCB Layout Considerations for FAN7528 8. Performance Data 100W 50W 90 Vac 110 Vac 220 Vac 264 Vac PF 0.999 0.998 0.991 0.983 THD 3.5% 3.6% 6.1% 7.3% PF 0.997 0.996 0.971 0.947 THD 5.1% 5.5% 11.1% 13.0% © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 18 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Mechanical Dimensions 8-DIP Dimensions are in millimeters unless otherwise noted. Figure 42. 8-Lead Dual In-Line Package (DIP) © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 19 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller Mechanical Dimensions 8-SOP Dimensions are in millimeters unless otherwise noted. Figure 43. 8-Lead Small Outline Package (SOP) © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 20 FAN7528 Dual-Output, Critical Conduction Mode PFC Controller © 2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.6 www.fairchildsemi.com 21