FAN7528 Dual Output Critical Conduction Mode PFC Controller Features Description • Low Total Harmonic Distortion (THD) The FAN7528 is an active power factor correction (PFC) controller for boost PFC applications which operates in the critical conduction mode (CRM). It uses the voltage mode PWM that compares an internal ramp signal with the error amplifier output to generate MOSFET turn-off signal. Because the voltage mode CRM PFC controller does not need the rectified AC line voltage information, it can save the power loss of the input voltage sensing network that is necessary for the current mode CRM PFC controller. The FAN7528 provides the dual output voltage control function without the AC line voltage sensing for adapter applications. It changes the PFC output voltage according to the AC line voltage. It provides many protection functions such as over voltage protection, open-feedback protection, over current protection and under voltage lock out protection. The FAN7528 can be disabled if the INV pin voltage is lower than 0.45V and then the operating current decreases to 65uA. Using a new variable ontime control method, THD is lower than the conventional CRM boost PFC ICs. • Dual Output Voltage Control • Precise Adjustable Output Over Voltage Protection • Open-feedback Protection and Disable Function • Zero Current Detector • 160us Internal Start-up Timer • MOSFET Over Current Protection • Under Voltage Lock Out with 3.5V Hysteresis • Low Start-up (40uA) and Operating Current (1.5mA) • Totem Pole Output with High State Clamp • ±400mA Peak Gate Drive Current • 8-pin DIP or 8-pin SOP Applications • Adapter Related Application Notes • AN6012 - Design of Power Factor Correction Circuit Using FAN7528 Ordering Information Part Number Operating Temp. Range Pb-Free Package Packing Method Marking Code FAN7528N -40°C to +125°C Yes 8-DIP Rail FAN7528 FAN7528M -40°C to +125°C Yes 8-SOP Rail FAN7528 FAN7528MX -40°C to +125°C Yes 8-SOP Tape & Reel FAN7528 ©2005 Fairchild Semiconductor Corporation FAN7528 Rev. 1.0.1 1 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller December 2005 FAN7528 Dual Output Critical Conduction Mode PFC Controller Typical Application Diagrams L AC In D Vo NAUX VAUX RZCD R2 ZCD Co Vcc FAN7528 MOT INV CS COMP R1 GND Figure 1. Typical Boost PFC Application Internal Block Diagram 2.5V Ref Vcc 8 UVLO 8.5V 12V Vref Vcc Internal Bias Drive Output Disable 160us Timer ZCD 5 7 OUT S 6.7V Q 1.4V 1.5V R Zero Current Detector OVP CS 4 Disable 40k 8pF 0.8V 2.55V 0.45V 0.35V OCP Comparator Dual Output Reference Generator 1.5V/2.5V 1V MOT 3 2.66V Error Amp Saw Tooth Generator Gm 6 2 GND COMP 1 INV Figure 2. Functional Block Diagram of FAN7528 2 FAN7528 Rev. 1.0.1 www.fairchildsemi.com Vcc 8 OUT 7 GND 6 ZCD 5 WWW FAN 7528 1 INV 2 3 COMP MOT 4 CS Figure 3. Pin Configuration (Top View) Pin Definitions Pin Number Pin Name Pin Function Description 1 INV This pin is the inverting input of the error amplifier. The output voltage of the boost PFC converter should be resistively divided to 2.5V at the high line condition and connected to this pin. If this pin voltage is controlled to be lower than 0.45V, the device is disabled. 2 COMP This pin is the output of the transconductance error amplifier. Some components for the output voltage compensation should be connected between this pin and GND. 3 MOT This pin is used to set the slope of the internal ramp. The voltage of this pin is maintained to be 1V. If a resistor is connected between this pin and GND, current flows out of the pin and the slope of the internal ramp is proportional to this current. 4 CS This pin is the input of the over current protection comparator. The MOSFET current is sensed using a sensing resistor and the resulting voltage is applied to this pin. An internal RC filter is included to filter switching noise. This pin is sensitive to the negative voltage below -0.3V. For proper operation, the stray inductance in the sensing path and the inductance of the sensing resistor must be minimized. 5 ZCD This pin is the input of the zero current detection block. If the voltage of this pin goes higher than 1.5V and then goes lower than 1.4V, the MOSFET is turned on. 6 GND This pin is used for the ground potential of all the pins. For proper operation, the signal ground and the power ground should be separated. 7 OUT This pin is the gate drive output. The peak sourcing and sinking current level is 400mA. For proper operation, the stray inductance in the gate driving path must be minimized. 8 Vcc This pin is the IC supply pin. IC current and MOSFET drive current are supplied using this pin. 3 FAN7528 Rev. 1.0.1 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller Pin Assignments (Ta=25°C, unless otherwise specified) Parameter Symbol Value Unit Vcc 23 V Peak Drive Output Current IOH, IOL ±400 mA Driver Output Clamping Diodes Vo>Vcc or Vo<-0.3V Iclamp ±10 mA Supply Voltage Detector Clamping Diodes Idet ±10 mA Error Amp, MOT, CS Input Voltages Vin -0.3 to 6 V Tj 150 °C Operating Temperature Range Topr -40 to 125 °C Operating Junction Temperature Storage Temperature Range Tstg -65 to 150 °C ESD Capability, HBM Model (All pins except Vcc) - 2.0 kV ESD Capability, Machine Model - 300 V Symbol Value Unit 110 °C/W 150 °C/W Thermal Impedance Parameter Thermal Resistance, Junction to Ambient 8-DIP Rθja 8-SOP Note: 1. Regarding the test environment and PCB type, please refer to JESD51-2 and JESD51-10. 4 FAN7528 Rev. 1.0.1 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller Absolute Maximum Ratings (Vcc = 14V, Ta = -40°C~125°C, unless otherwise specified) Parameter Symbol Condition Min. Typ. Max. Unit UNDER VOLTAGE LOCK OUT SECTION Start Threshold Voltage Vth(start) Vcc increasing 11 12 13 V Stop Threshold Voltage Vth(stop) Vcc decreasing 8 8.5 9 V UVLO Hysteresis HY(uvlo) - 3 3.5 4 V Start-up Supply Current Ist Vcc = Vth(start) - 0.2V - 40 70 µA Operating Supply Current Icc Output no switching - 1.5 3 mA Dynamic Operating Supply Current Idcc 50kHz, Cl=1nF - 2.5 4 mA Icc(dis) Vinv = 0V 40 65 90 µA Ta = 25°C 2.465 2.5 2.535 V - 2.435 2.5 2.565 V SUPPLY CURRENT SECTION Operating Current at Disable ERROR AMPLIFIER SECTION Voltage Feedback Input Threshold1 Vref1 Voltage Feedback Input Threshold2 Vref2 - 1.45 1.5 1.55 V Line Regulation ∆Vref1 Vcc = 14V ~ 23V - 0.1 10 mV Temperature Stability of Vref1(1) ∆Vref3 - - 20 - mV Input Bias Current Ib(ea) Vinv = 1V ~ 4V -0.5 - 0.5 µA Isource Vinv = 2.4V - -12 - µA Isink Vinv = 2.6V - 12 - µA Output Upper Clamp Voltage Veao(H) - 4.5 5.5 6.5 V Zero Duty Cycle Output Voltage Veao(Z) - 0.7 1 1.3 V gm - 90 115 140 µmho Output Voltage Selection Threshold Vth(in) Ta = 25°C 1.24 1.3 1.36 V Output Voltage Reset Threshold(1) Vth(reset) - 3 4.5 6 V Vmot Rmot = 13.7k 0.95 1 1.05 V Ton-max Rmot = 13.7k, Ta = 25°C 18 22.5 27 µA Vcs(limit) - 0.7 0.8 0.9 V Ib(cs) Vcs = 0V ~ 1V -1 -0.1 1 µA Td(cs) - - 350 500 ns Output Source Current Output Sink Current Transconductance(1) MAXIMUM ON-TIME SECTION Maximum On-time Voltage Maximum On-time Programming CURRENT SENSE SECTION Current Sense Input Threshold Voltage Limit Input Bias Current Current Sense Delay to Output(1) 5 FAN7528 Rev. 1.0.1 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller Electrical Characteristics (Vcc = 14V, Ta = -40°C~125°C, unless otherwise specified) Parameter Symbol Condition Min. Typ. Max. Unit Input Voltage Threshold(1) Vth(ZCD) - 1.35 1.5 1.65 V Detect Hysteresis(1) HY(ZCD) - 0.05 0.1 0.15 V Input High Clamp Voltage Vclamp(h) Idet = 3mA 6 6.7 7.4 V Input Low Clamp Voltage Vclamp(l) Idet = -3mA 0 0.6 1 V Ib(ZCD) VZCD = 1V ~ 5V -1 -0.1 1 µA Isource(zcd) - - - -10 mA Isink(zcd) - - - 10 mA Tdead - 100 - 200 ns Output Voltage High Voh Io = -100mA 9.2 11 12.8 V Output Voltage Low Vol Io = 100mA - 1 2.5 V Time(1) Tr Cl = 1nF - 50 100 ns Falling Time(1) Tf Cl = 1nF - 50 100 ns Maximum Output Voltage Vo(max) Vcc = 20V, Io = 100µA 11.5 13 14.5 V Output Voltage with UVLO Activated Vo(uvlo) Vcc = 5V, Io = 100µA - - 1 V td(rst) - 40 160 360 µs Vovp Ta = 25°C 2.6 2.66 2.72 V HY(ovp) - 0.06 0.11 0.16 V Enable Threshold Voltage Vth(en) - 0.4 0.45 0.5 V Enable Hysteresis HY(en) - 0.05 0.1 0.15 V ZERO CURRENT DETECT SECTION Input Bias Current Source Current Capability(1) Sink Current Capability(1) Maximum Delay from ZCD to Output Turn-on(1) OUTPUT SECTION Rising RESTART TIMER SECTION Restart Timer Delay OVER VOLTAGE PROTECTION SECTION OVP Threshold Voltage OVP Hysteresis ENABLE SECTION Note: 1. These parameters, although guaranteed by design, are not tested in mass production. 6 FAN7528 Rev. 1.0.1 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller Electrical Characteristics (Continued) Stop Threshold Voltage Start Threshold Voltage 12.8 9.2 12.4 Vth(stop)[V] Vth(start)[V] 8.8 12.0 8.4 11.6 8.0 11.2 7.6 -60 -40 -20 0 20 40 60 80 100 120 -60 140 -40 -20 0 40 60 80 100 120 140 Figure 5. Stop Threshold Voltage vs. Temp. Figure 4. Start Threshold Voltage vs. Temp. UVLO Hysteresis 4.0 20 Temperature[℃] Temperature[℃] Start-up Supply Current 70 60 3.8 40 Ist[uA] HY(uvlo)[V] 50 3.6 3.4 30 20 3.2 10 3.0 0 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 0 Temperature[℃] 40 60 80 100 120 140 Figure 7. Start-up Supply Current vs. Temp. Figure 6. UVLO Hysteresis vs. Temp. Operating Supply Current 3.0 20 Temperature[℃] Dynamic Operating Supply Current 4.0 3.5 2.5 3.0 2.0 Idcc[mA] Icc[mA] 2.5 1.5 1.0 2.0 1.5 1.0 0.5 0.5 0.0 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 -60 Temperature[℃] -20 0 20 40 60 80 100 120 140 Temperature[℃] Figure 8. Operating Supply Current vs. Temp. Figure 9. Dynamic Operating Current vs. Temp. 7 FAN7528 Rev. 1.0.1 -40 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller Typical Performance Characteristics Operating Current at Disable 90 Voltage Feedback Input Threshold1 2.56 2.54 80 Vref1[V] Icc(dis)[uA] 2.52 70 60 2.50 2.48 50 2.46 2.44 40 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 0 Temperature[℃] 1.54 0.4 1.52 0.2 1.50 -0.2 1.46 -0.4 0 20 40 80 100 120 140 120 140 0.0 1.48 -20 60 Input Bias Current Ib(ea)[uA] Vref2[V] Voltage Feedback Input Threshold2 -40 40 Figure 11. Vref1 vs. Temp. Figure 10. Icc at Disable vs. Temp. -60 20 Temperature[℃] 60 80 100 120 140 -60 -40 -20 0 Temperature[℃] 20 40 60 80 100 Temperature[℃] Figure 12. Vref2 vs. Temp. Figure 13. Input Bias Current vs. Temp. Output Source Current Output Sink Current -6 18 -9 Isink[uA] Isource[uA] 15 -12 12 -15 9 -18 6 -60 -40 -20 0 20 40 60 80 100 120 140 -60 Temperature[℃] -20 0 20 40 60 80 100 120 140 Temperature[℃] Figure 14. Error Amp. Source Current vs. Temp. Figure 15. Error Amp. Sink Current vs. Temp. 8 FAN7528 Rev. 1.0.1 -40 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller Typical Performance Characteristics (Continued) Output Upper Clamp Voltage 6.5 Zero Duty Cycle Output Voltage 1.3 1.2 6.0 Veao(Z)[V] Veao(H)[V] 1.1 5.5 1.0 0.9 5.0 0.8 0.7 4.5 -60 -40 -20 0 20 40 60 80 100 120 -60 140 -40 -20 0 40 60 80 100 120 140 Figure 17. Zero Duty Output Voltage vs. Temp. Figure 16. Error Amp. Clamp Voltage vs. Temp. Output Voltage Selection Threshold 1.36 20 Temperature[℃] Temperature[℃] Maximum On-Time Voltage 1.04 1.34 1.02 Vmot[V] Vth(in)[V] 1.32 1.30 1.00 1.28 0.98 1.26 0.96 1.24 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 0 Temperature[℃] 20 40 60 80 100 120 140 Temperature[℃] Figure 19. MOT pin Voltage vs. Temp. Figure 18. Output Select Threshold vs. Temp. Current Sense Input Threshold Voltage Maximum On-Time Programming 0.88 26 0.84 Vcs(limit)[V] Ton-max[us] 24 22 0.80 0.76 20 0.72 18 -60 -40 -20 0 20 40 60 80 100 120 -60 140 Figure 20. Maximum On-time vs. Temp. -20 0 20 40 60 80 100 120 140 Figure 21. Current Limit vs. Temp. 9 FAN7528 Rev. 1.0.1 -40 Temperature[℃] Temperature[℃] www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller Typical Performance Characteristics (Continued) Input Bias Current Input High Clamp Voltage 7.4 0.9 7.2 0.6 7.0 Vclamp(h)[V] Ib(cs)[uA] 0.3 0.0 -0.3 6.8 6.6 6.4 -0.6 6.2 -0.9 6.0 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 0 Temperature[℃] 40 60 80 100 120 140 Figure 23. ZCD Input High Clamp vs. Temp. Figure 22. CS Input Bias Current vs. Temp. Input Bias Current Input Low Clamp Voltage 1.0 20 Temperature[℃] 0.8 0.8 0.6 Ib(ZCD)[uA] Vclamp(l)[V] 0.4 0.4 0.0 -0.4 0.2 -0.8 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 0 Temperature[℃] 20 40 60 80 100 120 140 Temperature[℃] Figure 25. ZCD Input Bias Current vs. Temp. Figure 24. ZCD Input Low Clamp vs. Temp. Output Voltage High Output Voltage Low 2.5 12.5 2.0 12.0 11.5 Vol[V] Voh[V] 1.5 11.0 1.0 10.5 10.0 0.5 9.5 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 -60 Temperature[℃] -20 0 20 40 60 80 100 120 140 Temperature[℃] Figure 26. Output Voltage High vs. Temp. Figure 27. Output Voltage Low vs. Temp. 10 FAN7528 Rev. 1.0.1 -40 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller Typical Performance Characteristics (Continued) Maximum Ouput Voltage 14.5 Output Voltage with UVLO Activated 1.0 14.0 0.8 Vo(uvlo)[V] Vo(max)[V] 13.5 13.0 12.5 0.6 0.4 0.2 12.0 11.5 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 0 Temperature[℃] 40 60 80 100 120 140 Figure 29. Output Voltage when UVLO vs. Temp. Figure 28. Maximum Output Voltage vs. Temp. Restart Time Delay 400 20 Temperature[℃] OVP Threshold Voltage 2.74 350 2.72 300 Vovp[V] Td(rst)[us] 2.70 250 200 2.68 2.66 150 2.64 100 2.62 2.60 50 -60 -40 -20 0 20 40 60 80 100 120 -60 140 -40 -20 0 40 60 80 100 120 140 Figure 31. Over Voltage Protection vs. Temp. Figure 30. Restart Timer Delay vs. Temp. OVP Hysteresis 0.14 20 Temperature[℃] Temperature[℃] Enable Threshold Voltage 0.50 0.48 Vth(en)[V] HY(ovp)[V] 0.12 0.10 0.46 0.44 0.08 0.42 0.06 0.40 -60 -40 -20 0 20 40 60 80 100 120 140 -60 Temperature[℃] -20 0 20 40 60 80 100 120 140 Temperature[℃] Figure 32. OVP Hysteresis vs. Temp. Figure 33. Enable Threshold Voltage vs. Temp. 11 FAN7528 Rev. 1.0.1 -40 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller Typical Performance Characteristics (Continued) FAN7528 Dual Output Critical Conduction Mode PFC Controller Typical Performance Characteristics (Continued) Enable Hysteresis 0.14 HY(en)[V] 0.12 0.10 0.08 0.06 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature[℃] Figure 34. Enable Hysteresis vs. Temp. 12 FAN7528 Rev. 1.0.1 www.fairchildsemi.com 1. Error Amplifier Block The control speed of the PFC converter is very slow, therefore the over voltage protection of the output voltage is very important. The FAN7528 provides a precise OVP function that shuts down the drive circuit when the INV pin voltage exceeds 2.66V,. and there is 0.11V hysteresis. The error amplifier block has several functions such as dual output function, over voltage protection function and disable function. 1.1 Dual Output Function 1.3 Disable Function Unlike conventional CRM PFC controllers, the FAN7528 has the dual output control function according to the AC line voltage without sensing the rectified AC line voltage. Because the output voltage of the boost converter is proportional to the peak voltage of the input AC line voltage before the boost converter starts switching, the INV pin voltage represents the peak AC line voltage. When the AC line is connected to the boost converter, Vcc voltage starts to increase from zero voltage. If the Vcc voltage reaches 8.5V, the dual output reference generator compares the INV pin voltage with 1.3V reference and if the INV pin voltage is lower than 1.3V the dual output reference generator sets the reference voltage of the error amplifier to be 1.5V. If the INV pin voltage is higher than 1.3V, the reference voltage is set to be 2.5V. That means if the output voltage of the boost converter is set to be 400V at high line, the output voltage is 240V(400V*1.5/2.5) at low line. If the output voltage is set to be 390V at high line, the output voltage is 234V at low line. Because this block does not need the input voltage sensing network, the power loss and cost related with the sensing network can be saved. The reference voltage of the error amplifier is not reset until the Vcc voltage goes below 4.5V. 2.66V If the INV pin voltage is lower than 0.45V, most of the internal block is disabled and the operating current is reduced to be 65uA, and there is 0.1V hysteresis in the comparator. 1.4 Error Amplifier The error amplifier is a transconductance type amplifier. The output current of the amplifier is proportional to the voltage difference between the inverting input and the non inverting input of the amplifier. Some resistors and capacitors should be connected to the error amplifier output pin, the COMP pin, for the output voltage loop compensation. 2. Zero Current Detection Block The zero current detector(ZCD) generates the turn-on signal of the MOSFET when the boost inductor current reaches zero using an auxiliary winding coupled with the inductor. If the voltage of the ZCD pin goes higher than 1.5V then the ZCD comparator waits until the voltage goes below 1.4V. If the voltage goes below 1.4V, the zero current detector turns on the MOSFET. The ZCD pin is protected internally by two clamps, 6.7V high clamp and 0.6V low clamp. The 160us timer generates a MOSFET turn-on signal if the drive output has been low for more than 160us from the falling edge of the drive output. 2.55V OVP Disable 0.45V 0.35V 160us Timer Vin Dual Output Reference Generator Error Amp 2 Vout 1.5V/2.5V Gm ZCD 5 RZCD 1 Q 1.4V Zero Current Detector R Figure 36. Zero current detector block COMP 3. Saw Tooth Generator Block The output of the error amplifier and the output of the saw tooth generator are compared to determine the MOSFET turn-off instance. The slope of the saw tooth is determined by an external resistor connected to the MOT pin. The voltage of the MOT pin is 1V and the slope is proportional to the current flowing out of the MOT pin. The internal ramp signal has 1V offset, therefore the drive output is shut down if the voltage of the COMP pin is lower than 1V. The MOSFET on-time is maximum when the COMP pin voltage is 5V. According to the slope of the internal ramp, the maximum on-time can be programmed. The necessary maximum on-time depends on the boost inductor, lowest Figure 35. Error amplifier block 1.2 Over Voltage Protection Function 13 FAN7528 Rev. 1.0.1 S 6.7V 1.5V INV Turn-on Signal www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller Applications Information FAN7528 Dual Output Critical Conduction Mode PFC Controller AC line voltage and maximum output power. The resistor value should be designed properly. O ff S ign al 1V MOT S aw T o oth G en era tor 3 1V E rror A m p O u tp u t Figure 37. Zero current detector block 4. Over Current Protection Block The MOSFET current is sensed using an external sensing resistor for the over current protection. If the CS pin voltage is higher than 0.8V, the over current protection comparator generates a protection signal. An internal RC filter is included to filter switching noise. OCP Signal 40k CS 4 8pF 0.8V Over Current Protection Comparator Figure 38. Over current protection block 5. Switch Drive Block The FAN7528 contains a single totem-pole output stage designed for a direct drive of power MOSFET. The drive output is capable of up to 400mA peak current with a typical rise and fall time of 50ns with 1nF load. The output voltage is clamped to be 13V to protect MOSFET gate even if the Vcc voltage is higher than 20V. 6. Under Voltage Lock Out Block If the Vcc voltage reaches 12V, the IC’s internal blocks are enabled and start operation. If the Vcc voltage drops below 8.5V, most of the internal blocks are disabled to reduce the operating current. Vcc voltage should be higher than 8.5V under normal conditions. 14 FAN7528 Rev. 1.0.1 www.fairchildsemi.com Application Output power Input voltage Output voltage Adapter 100W Universal input (90~264Vac) 389V/232V Features • High efficiency (>90% at 90Vac input) • Low THD(total harmonic distortion) (<10% at 264Vac input) • Dual output control Key Design Notes • Diode D4 is used to prevent IC malfunction that can happen if the CS pin voltage is lower than -0.3V. • Important Component s for low THD are R2, R5 and C11. 1. Schematic T1 PFC OUTPUT VAUX BD D2 C5 R4 R3 R5 NTC R10 D3 C10 Q1 R6 ZD1 F1 C6 R8 C8 C7 R1 CS R9 5 6 MOT R11 4 3 1 C1 2 INV COMP FAN7528 R2 V1 C9 ZCD C2 LF1 GND OUT Vcc 8 C3 C4 7 D1 C11 R7 D4 AC INPUT Figure 39. Schematic 15 FAN7528 Rev. 1.0.1 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller Typical application circuit 1 NVcc 2 3 Np 5 Figure 40. Inductor Schematic Diagram 3.Winding Specification No Pin (s→f) Wire Turns Winding Method NVcc 2→1 0.2φ × 1 5 Solenoid Winding 0.2φ × 10 44 Solenoid Winding Insulation: Polyester Tape t = 0.050mm, 4Layers 5→3 Np Outer Insulation: Polyester Tape t = 0.050mm, 4Layers Air Gap: 0.6mm for each leg 4.Electrical Characteristics Inductance Pin Specification Remarks 3-5 400uH ± 10% 100kHz, 1V 5. Core & Bobbin • Core : EI 3026 • Bobbin : EI3026 • Ae(mm2) : 111 16 FAN7528 Rev. 1.0.1 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller 2. Inductor Schematic Diagram Part Value F1 3A/250V NTC 10D-9 R1 10k Note Part Value T1 400uH Fuse Note Inductor EI3026 NTC MOSFET Resistor Q1 FQPF13N50C Fairchild D1 1N4148 Fairchild 1/4W R2 300k 1/4W R3 330k 1/2W Diode R4 100 1/4W D2 BYV26C 600V, 1A R5 20k 1/4W D3 1N5819 Fairchild R6 10 1/4W D4 1N5819 Fairchild R7 0.22 1/2W ZD1 1N4746 18V R8 10k 1/4W R9 10k 1/4W R10 2M 1/4W R11 12.9k 1/4W Bridge Diode BD KBL406 LF1 40mH 600V/4A Line Filter Capacitor C1 150nF/275VAC Box Capacitor C2 330nF/275VAC Box Capacitor C3 2.2nF/3kV Ceramic Capacitor C4 2.2nF/3kV Ceramic Capacitor C5 100nF/630V Film Capacitor C6 47uF/25V Electrolytic Capacitor C7 220nF/50V Ceramic Capacitor C8 1uF MLCC C9 100uF/450V Electrolytic Capacitor C10 12nF/100V Film Capacitor C11 56pF/50V Ceramic Capacitor IC IC1 FAN7528 V1 471 Fairchild TNR 17 FAN7528 Rev. 1.0.1 Wire 0.4mm 470V www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller 6.Demo Circuit Part List FAN7528 Dual Output Critical Conduction Mode PFC Controller 7. Layout Power Ground Signal Ground Separate the power ground and the signal ground Place the output voltage sensing resistors close to IC Figure 41. PCB Layout Considerations for FAN7528 8. Performance Data 100W 50W PF 90Vac 110Vac 220Vac 264Vac 0.999 0.998 0.992 0.986 THD 3.5% 3.9% 7.0% 7.4% PF 0.997 0.996 0.989 0.954 THD 5.8% 6.1% 11.9% 12.8% 18 FAN7528 Rev. 1.0.1 www.fairchildsemi.com Unit : mm Package 19 FAN7528 Rev. 1.0.1 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller Mechanical Dimensions Package Unit : mm 20 FAN7528 Rev. 1.0.1 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller Mechanical Dimensions The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ FAST® ActiveArray™ FASTr™ Bottomless™ FPS™ Build it Now™ FRFET™ CoolFET™ GlobalOptoisolator™ CROSSVOLT™ GTO™ DOME™ HiSeC™ EcoSPARK™ I2C™ E2CMOS™ i-Lo™ EnSigna™ ImpliedDisconnect™ FACT™ IntelliMAX™ FACT Quiet Series™ Across the board. Around the world.™ The Power Franchise® Programmable Active Droop™ ISOPLANAR™ LittleFET™ MICROCOUPLER™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC® OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerEdge™ PowerSaver™ PowerTrench® QFET® SuperSOT™-8 SyncFET™ TinyLogic® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ µSerDes™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 SuperSOT™-6 TINYOPTO™ TruTranslation™ UHC™ UltraFET® UniFET™ VCX™ Wire™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I16 21 FAN7528 Rev. 1.0.1 www.fairchildsemi.com FAN7528 Dual Output Critical Conduction Mode PFC Controller TRADEMARKS