FAIRCHILD FAN7528

FAN7528
Dual Output Critical Conduction Mode PFC Controller
Features
Description
• Low Total Harmonic Distortion (THD)
The FAN7528 is an active power factor correction (PFC) controller for boost PFC applications which operates in the critical
conduction mode (CRM). It uses the voltage mode PWM that
compares an internal ramp signal with the error amplifier output
to generate MOSFET turn-off signal. Because the voltage mode
CRM PFC controller does not need the rectified AC line voltage
information, it can save the power loss of the input voltage sensing network that is necessary for the current mode CRM PFC
controller.
The FAN7528 provides the dual output voltage control function
without the AC line voltage sensing for adapter applications. It
changes the PFC output voltage according to the AC line voltage.
It provides many protection functions such as over voltage protection, open-feedback protection, over current protection and
under voltage lock out protection. The FAN7528 can be disabled if the INV pin voltage is lower than 0.45V and then the
operating current decreases to 65uA. Using a new variable ontime control method, THD is lower than the conventional CRM
boost PFC ICs.
• Dual Output Voltage Control
• Precise Adjustable Output Over Voltage Protection
• Open-feedback Protection and Disable Function
• Zero Current Detector
• 160us Internal Start-up Timer
• MOSFET Over Current Protection
• Under Voltage Lock Out with 3.5V Hysteresis
• Low Start-up (40uA) and Operating Current (1.5mA)
• Totem Pole Output with High State Clamp
• ±400mA Peak Gate Drive Current
• 8-pin DIP or 8-pin SOP
Applications
• Adapter
Related Application Notes
• AN6012 - Design of Power Factor Correction Circuit Using
FAN7528
Ordering Information
Part Number
Operating Temp.
Range
Pb-Free
Package
Packing Method
Marking
Code
FAN7528N
-40°C to +125°C
Yes
8-DIP
Rail
FAN7528
FAN7528M
-40°C to +125°C
Yes
8-SOP
Rail
FAN7528
FAN7528MX
-40°C to +125°C
Yes
8-SOP
Tape & Reel
FAN7528
©2005 Fairchild Semiconductor Corporation
FAN7528 Rev. 1.0.1
1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
December 2005
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Application Diagrams
L
AC
In
D
Vo
NAUX
VAUX
RZCD
R2 ZCD
Co
Vcc
FAN7528
MOT
INV
CS
COMP
R1
GND
Figure 1. Typical Boost PFC Application
Internal Block Diagram
2.5V
Ref
Vcc 8
UVLO
8.5V
12V
Vref
Vcc
Internal
Bias
Drive
Output
Disable
160us
Timer
ZCD 5
7 OUT
S
6.7V
Q
1.4V 1.5V
R
Zero Current
Detector
OVP
CS 4
Disable
40k
8pF
0.8V
2.55V
0.45V 0.35V
OCP
Comparator
Dual Output Reference
Generator
1.5V/2.5V
1V
MOT 3
2.66V
Error
Amp
Saw Tooth
Generator
Gm
6
2
GND
COMP
1 INV
Figure 2. Functional Block Diagram of FAN7528
2
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
Vcc
8
OUT
7
GND
6
ZCD
5
WWW
FAN
7528
1
INV
2
3
COMP MOT
4
CS
Figure 3. Pin Configuration (Top View)
Pin Definitions
Pin Number Pin Name
Pin Function Description
1
INV
This pin is the inverting input of the error amplifier. The output voltage of the boost PFC converter
should be resistively divided to 2.5V at the high line condition and connected to this pin. If this
pin voltage is controlled to be lower than 0.45V, the device is disabled.
2
COMP
This pin is the output of the transconductance error amplifier. Some components for the output
voltage compensation should be connected between this pin and GND.
3
MOT
This pin is used to set the slope of the internal ramp. The voltage of this pin is maintained to be
1V. If a resistor is connected between this pin and GND, current flows out of the pin and the slope
of the internal ramp is proportional to this current.
4
CS
This pin is the input of the over current protection comparator. The MOSFET current is sensed
using a sensing resistor and the resulting voltage is applied to this pin. An internal RC filter is
included to filter switching noise. This pin is sensitive to the negative voltage below -0.3V. For
proper operation, the stray inductance in the sensing path and the inductance of the sensing resistor must be minimized.
5
ZCD
This pin is the input of the zero current detection block. If the voltage of this pin goes higher than
1.5V and then goes lower than 1.4V, the MOSFET is turned on.
6
GND
This pin is used for the ground potential of all the pins. For proper operation, the signal ground
and the power ground should be separated.
7
OUT
This pin is the gate drive output. The peak sourcing and sinking current level is 400mA. For proper operation, the stray inductance in the gate driving path must be minimized.
8
Vcc
This pin is the IC supply pin. IC current and MOSFET drive current are supplied using this pin.
3
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Pin Assignments
(Ta=25°C, unless otherwise specified)
Parameter
Symbol
Value
Unit
Vcc
23
V
Peak Drive Output Current
IOH, IOL
±400
mA
Driver Output Clamping Diodes Vo>Vcc or Vo<-0.3V
Iclamp
±10
mA
Supply Voltage
Detector Clamping Diodes
Idet
±10
mA
Error Amp, MOT, CS Input Voltages
Vin
-0.3 to 6
V
Tj
150
°C
Operating Temperature Range
Topr
-40 to 125
°C
Operating Junction Temperature
Storage Temperature Range
Tstg
-65 to 150
°C
ESD Capability, HBM Model
(All pins except Vcc)
-
2.0
kV
ESD Capability, Machine Model
-
300
V
Symbol
Value
Unit
110
°C/W
150
°C/W
Thermal Impedance
Parameter
Thermal Resistance, Junction to Ambient
8-DIP
Rθja
8-SOP
Note:
1. Regarding the test environment and PCB type, please refer to JESD51-2 and JESD51-10.
4
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Absolute Maximum Ratings
(Vcc = 14V, Ta = -40°C~125°C, unless otherwise specified)
Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
UNDER VOLTAGE LOCK OUT SECTION
Start Threshold Voltage
Vth(start)
Vcc increasing
11
12
13
V
Stop Threshold Voltage
Vth(stop)
Vcc decreasing
8
8.5
9
V
UVLO Hysteresis
HY(uvlo)
-
3
3.5
4
V
Start-up Supply Current
Ist
Vcc = Vth(start) - 0.2V
-
40
70
µA
Operating Supply Current
Icc
Output no switching
-
1.5
3
mA
Dynamic Operating Supply Current
Idcc
50kHz, Cl=1nF
-
2.5
4
mA
Icc(dis)
Vinv = 0V
40
65
90
µA
Ta = 25°C
2.465
2.5
2.535
V
-
2.435
2.5
2.565
V
SUPPLY CURRENT SECTION
Operating Current at Disable
ERROR AMPLIFIER SECTION
Voltage Feedback Input Threshold1
Vref1
Voltage Feedback Input Threshold2
Vref2
-
1.45
1.5
1.55
V
Line Regulation
∆Vref1
Vcc = 14V ~ 23V
-
0.1
10
mV
Temperature Stability of Vref1(1)
∆Vref3
-
-
20
-
mV
Input Bias Current
Ib(ea)
Vinv = 1V ~ 4V
-0.5
-
0.5
µA
Isource
Vinv = 2.4V
-
-12
-
µA
Isink
Vinv = 2.6V
-
12
-
µA
Output Upper Clamp Voltage
Veao(H)
-
4.5
5.5
6.5
V
Zero Duty Cycle Output Voltage
Veao(Z)
-
0.7
1
1.3
V
gm
-
90
115
140
µmho
Output Voltage Selection Threshold
Vth(in)
Ta = 25°C
1.24
1.3
1.36
V
Output Voltage Reset Threshold(1)
Vth(reset)
-
3
4.5
6
V
Vmot
Rmot = 13.7k
0.95
1
1.05
V
Ton-max
Rmot = 13.7k, Ta = 25°C
18
22.5
27
µA
Vcs(limit)
-
0.7
0.8
0.9
V
Ib(cs)
Vcs = 0V ~ 1V
-1
-0.1
1
µA
Td(cs)
-
-
350
500
ns
Output Source Current
Output Sink Current
Transconductance(1)
MAXIMUM ON-TIME SECTION
Maximum On-time Voltage
Maximum On-time Programming
CURRENT SENSE SECTION
Current Sense Input Threshold Voltage
Limit
Input Bias Current
Current Sense Delay to
Output(1)
5
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Electrical Characteristics
(Vcc = 14V, Ta = -40°C~125°C, unless otherwise specified)
Parameter
Symbol
Condition
Min.
Typ.
Max.
Unit
Input Voltage Threshold(1)
Vth(ZCD)
-
1.35
1.5
1.65
V
Detect Hysteresis(1)
HY(ZCD)
-
0.05
0.1
0.15
V
Input High Clamp Voltage
Vclamp(h)
Idet = 3mA
6
6.7
7.4
V
Input Low Clamp Voltage
Vclamp(l)
Idet = -3mA
0
0.6
1
V
Ib(ZCD)
VZCD = 1V ~ 5V
-1
-0.1
1
µA
Isource(zcd)
-
-
-
-10
mA
Isink(zcd)
-
-
-
10
mA
Tdead
-
100
-
200
ns
Output Voltage High
Voh
Io = -100mA
9.2
11
12.8
V
Output Voltage Low
Vol
Io = 100mA
-
1
2.5
V
Time(1)
Tr
Cl = 1nF
-
50
100
ns
Falling Time(1)
Tf
Cl = 1nF
-
50
100
ns
Maximum Output Voltage
Vo(max)
Vcc = 20V, Io = 100µA
11.5
13
14.5
V
Output Voltage with UVLO Activated
Vo(uvlo)
Vcc = 5V, Io = 100µA
-
-
1
V
td(rst)
-
40
160
360
µs
Vovp
Ta = 25°C
2.6
2.66
2.72
V
HY(ovp)
-
0.06
0.11
0.16
V
Enable Threshold Voltage
Vth(en)
-
0.4
0.45
0.5
V
Enable Hysteresis
HY(en)
-
0.05
0.1
0.15
V
ZERO CURRENT DETECT SECTION
Input Bias Current
Source Current Capability(1)
Sink Current Capability(1)
Maximum Delay from ZCD to Output
Turn-on(1)
OUTPUT SECTION
Rising
RESTART TIMER SECTION
Restart Timer Delay
OVER VOLTAGE PROTECTION SECTION
OVP Threshold Voltage
OVP Hysteresis
ENABLE SECTION
Note:
1. These parameters, although guaranteed by design, are not tested in mass production.
6
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Electrical Characteristics (Continued)
Stop Threshold Voltage
Start Threshold Voltage
12.8
9.2
12.4
Vth(stop)[V]
Vth(start)[V]
8.8
12.0
8.4
11.6
8.0
11.2
7.6
-60
-40
-20
0
20
40
60
80
100
120
-60
140
-40
-20
0
40
60
80
100
120
140
Figure 5. Stop Threshold Voltage vs. Temp.
Figure 4. Start Threshold Voltage vs. Temp.
UVLO Hysteresis
4.0
20
Temperature[℃]
Temperature[℃]
Start-up Supply Current
70
60
3.8
40
Ist[uA]
HY(uvlo)[V]
50
3.6
3.4
30
20
3.2
10
3.0
0
-60
-40
-20
0
20
40
60
80
100
120
140
-60
-40
-20
0
Temperature[℃]
40
60
80
100
120
140
Figure 7. Start-up Supply Current vs. Temp.
Figure 6. UVLO Hysteresis vs. Temp.
Operating Supply Current
3.0
20
Temperature[℃]
Dynamic Operating Supply Current
4.0
3.5
2.5
3.0
2.0
Idcc[mA]
Icc[mA]
2.5
1.5
1.0
2.0
1.5
1.0
0.5
0.5
0.0
0.0
-60
-40
-20
0
20
40
60
80
100
120
140
-60
Temperature[℃]
-20
0
20
40
60
80
100
120
140
Temperature[℃]
Figure 8. Operating Supply Current vs. Temp.
Figure 9. Dynamic Operating Current vs. Temp.
7
FAN7528 Rev. 1.0.1
-40
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Performance Characteristics
Operating Current at Disable
90
Voltage Feedback Input Threshold1
2.56
2.54
80
Vref1[V]
Icc(dis)[uA]
2.52
70
60
2.50
2.48
50
2.46
2.44
40
-60
-40
-20
0
20
40
60
80
100
120
140
-60
-40
-20
0
Temperature[℃]
1.54
0.4
1.52
0.2
1.50
-0.2
1.46
-0.4
0
20
40
80
100
120
140
120
140
0.0
1.48
-20
60
Input Bias Current
Ib(ea)[uA]
Vref2[V]
Voltage Feedback Input Threshold2
-40
40
Figure 11. Vref1 vs. Temp.
Figure 10. Icc at Disable vs. Temp.
-60
20
Temperature[℃]
60
80
100
120
140
-60
-40
-20
0
Temperature[℃]
20
40
60
80
100
Temperature[℃]
Figure 12. Vref2 vs. Temp.
Figure 13. Input Bias Current vs. Temp.
Output Source Current
Output Sink Current
-6
18
-9
Isink[uA]
Isource[uA]
15
-12
12
-15
9
-18
6
-60
-40
-20
0
20
40
60
80
100
120
140
-60
Temperature[℃]
-20
0
20
40
60
80
100
120
140
Temperature[℃]
Figure 14. Error Amp. Source Current vs. Temp.
Figure 15. Error Amp. Sink Current vs. Temp.
8
FAN7528 Rev. 1.0.1
-40
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
Output Upper Clamp Voltage
6.5
Zero Duty Cycle Output Voltage
1.3
1.2
6.0
Veao(Z)[V]
Veao(H)[V]
1.1
5.5
1.0
0.9
5.0
0.8
0.7
4.5
-60
-40
-20
0
20
40
60
80
100
120
-60
140
-40
-20
0
40
60
80
100
120
140
Figure 17. Zero Duty Output Voltage vs. Temp.
Figure 16. Error Amp. Clamp Voltage vs. Temp.
Output Voltage Selection Threshold
1.36
20
Temperature[℃]
Temperature[℃]
Maximum On-Time Voltage
1.04
1.34
1.02
Vmot[V]
Vth(in)[V]
1.32
1.30
1.00
1.28
0.98
1.26
0.96
1.24
-60
-40
-20
0
20
40
60
80
100
120
140
-60
-40
-20
0
Temperature[℃]
20
40
60
80
100
120
140
Temperature[℃]
Figure 19. MOT pin Voltage vs. Temp.
Figure 18. Output Select Threshold vs. Temp.
Current Sense Input Threshold Voltage
Maximum On-Time Programming
0.88
26
0.84
Vcs(limit)[V]
Ton-max[us]
24
22
0.80
0.76
20
0.72
18
-60
-40
-20
0
20
40
60
80
100
120
-60
140
Figure 20. Maximum On-time vs. Temp.
-20
0
20
40
60
80
100
120
140
Figure 21. Current Limit vs. Temp.
9
FAN7528 Rev. 1.0.1
-40
Temperature[℃]
Temperature[℃]
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
Input Bias Current
Input High Clamp Voltage
7.4
0.9
7.2
0.6
7.0
Vclamp(h)[V]
Ib(cs)[uA]
0.3
0.0
-0.3
6.8
6.6
6.4
-0.6
6.2
-0.9
6.0
-60
-40
-20
0
20
40
60
80
100
120
140
-60
-40
-20
0
Temperature[℃]
40
60
80
100
120
140
Figure 23. ZCD Input High Clamp vs. Temp.
Figure 22. CS Input Bias Current vs. Temp.
Input Bias Current
Input Low Clamp Voltage
1.0
20
Temperature[℃]
0.8
0.8
0.6
Ib(ZCD)[uA]
Vclamp(l)[V]
0.4
0.4
0.0
-0.4
0.2
-0.8
0.0
-60
-40
-20
0
20
40
60
80
100
120
140
-60
-40
-20
0
Temperature[℃]
20
40
60
80
100
120
140
Temperature[℃]
Figure 25. ZCD Input Bias Current vs. Temp.
Figure 24. ZCD Input Low Clamp vs. Temp.
Output Voltage High
Output Voltage Low
2.5
12.5
2.0
12.0
11.5
Vol[V]
Voh[V]
1.5
11.0
1.0
10.5
10.0
0.5
9.5
0.0
-60
-40
-20
0
20
40
60
80
100
120
140
-60
Temperature[℃]
-20
0
20
40
60
80
100
120
140
Temperature[℃]
Figure 26. Output Voltage High vs. Temp.
Figure 27. Output Voltage Low vs. Temp.
10
FAN7528 Rev. 1.0.1
-40
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
Maximum Ouput Voltage
14.5
Output Voltage with UVLO Activated
1.0
14.0
0.8
Vo(uvlo)[V]
Vo(max)[V]
13.5
13.0
12.5
0.6
0.4
0.2
12.0
11.5
0.0
-60
-40
-20
0
20
40
60
80
100
120
140
-60
-40
-20
0
Temperature[℃]
40
60
80
100
120
140
Figure 29. Output Voltage when UVLO vs. Temp.
Figure 28. Maximum Output Voltage vs. Temp.
Restart Time Delay
400
20
Temperature[℃]
OVP Threshold Voltage
2.74
350
2.72
300
Vovp[V]
Td(rst)[us]
2.70
250
200
2.68
2.66
150
2.64
100
2.62
2.60
50
-60
-40
-20
0
20
40
60
80
100
120
-60
140
-40
-20
0
40
60
80
100
120
140
Figure 31. Over Voltage Protection vs. Temp.
Figure 30. Restart Timer Delay vs. Temp.
OVP Hysteresis
0.14
20
Temperature[℃]
Temperature[℃]
Enable Threshold Voltage
0.50
0.48
Vth(en)[V]
HY(ovp)[V]
0.12
0.10
0.46
0.44
0.08
0.42
0.06
0.40
-60
-40
-20
0
20
40
60
80
100
120
140
-60
Temperature[℃]
-20
0
20
40
60
80
100
120
140
Temperature[℃]
Figure 32. OVP Hysteresis vs. Temp.
Figure 33. Enable Threshold Voltage vs. Temp.
11
FAN7528 Rev. 1.0.1
-40
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
Enable Hysteresis
0.14
HY(en)[V]
0.12
0.10
0.08
0.06
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature[℃]
Figure 34. Enable Hysteresis vs. Temp.
12
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
1. Error Amplifier Block
The control speed of the PFC converter is very slow, therefore
the over voltage protection of the output voltage is very important. The FAN7528 provides a precise OVP function that shuts
down the drive circuit when the INV pin voltage exceeds 2.66V,.
and there is 0.11V hysteresis.
The error amplifier block has several functions such as dual output function, over voltage protection function and disable function.
1.1 Dual Output Function
1.3 Disable Function
Unlike conventional CRM PFC controllers, the FAN7528 has the
dual output control function according to the AC line voltage
without sensing the rectified AC line voltage. Because the output voltage of the boost converter is proportional to the peak
voltage of the input AC line voltage before the boost converter
starts switching, the INV pin voltage represents the peak AC line
voltage. When the AC line is connected to the boost converter,
Vcc voltage starts to increase from zero voltage. If the Vcc voltage reaches 8.5V, the dual output reference generator compares the INV pin voltage with 1.3V reference and if the INV pin
voltage is lower than 1.3V the dual output reference generator
sets the reference voltage of the error amplifier to be 1.5V. If the
INV pin voltage is higher than 1.3V, the reference voltage is set
to be 2.5V. That means if the output voltage of the boost converter is set to be 400V at high line, the output voltage is
240V(400V*1.5/2.5) at low line. If the output voltage is set to be
390V at high line, the output voltage is 234V at low line.
Because this block does not need the input voltage sensing network, the power loss and cost related with the sensing network
can be saved. The reference voltage of the error amplifier is not
reset until the Vcc voltage goes below 4.5V.
2.66V
If the INV pin voltage is lower than 0.45V, most of the internal
block is disabled and the operating current is reduced to be
65uA, and there is 0.1V hysteresis in the comparator.
1.4 Error Amplifier
The error amplifier is a transconductance type amplifier. The
output current of the amplifier is proportional to the voltage difference between the inverting input and the non inverting input
of the amplifier. Some resistors and capacitors should be connected to the error amplifier output pin, the COMP pin, for the
output voltage loop compensation.
2. Zero Current Detection Block
The zero current detector(ZCD) generates the turn-on signal of
the MOSFET when the boost inductor current reaches zero
using an auxiliary winding coupled with the inductor. If the voltage of the ZCD pin goes higher than 1.5V then the ZCD comparator waits until the voltage goes below 1.4V. If the voltage
goes below 1.4V, the zero current detector turns on the MOSFET. The ZCD pin is protected internally by two clamps, 6.7V
high clamp and 0.6V low clamp. The 160us timer generates a
MOSFET turn-on signal if the drive output has been low for
more than 160us from the falling edge of the drive output.
2.55V
OVP
Disable
0.45V 0.35V
160us
Timer
Vin
Dual Output
Reference
Generator
Error
Amp
2
Vout
1.5V/2.5V
Gm
ZCD
5
RZCD
1
Q
1.4V
Zero Current
Detector
R
Figure 36. Zero current detector block
COMP
3. Saw Tooth Generator Block
The output of the error amplifier and the output of the saw tooth
generator are compared to determine the MOSFET turn-off
instance. The slope of the saw tooth is determined by an external resistor connected to the MOT pin. The voltage of the MOT
pin is 1V and the slope is proportional to the current flowing out
of the MOT pin. The internal ramp signal has 1V offset, therefore the drive output is shut down if the voltage of the COMP pin
is lower than 1V. The MOSFET on-time is maximum when the
COMP pin voltage is 5V. According to the slope of the internal
ramp, the maximum on-time can be programmed. The necessary maximum on-time depends on the boost inductor, lowest
Figure 35. Error amplifier block
1.2 Over Voltage Protection Function
13
FAN7528 Rev. 1.0.1
S
6.7V
1.5V
INV
Turn-on
Signal
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Applications Information
FAN7528 Dual Output Critical Conduction Mode PFC Controller
AC line voltage and maximum output power. The resistor value
should be designed properly.
O ff S ign al
1V
MOT
S aw T o oth
G en era tor
3
1V
E rror A m p
O u tp u t
Figure 37. Zero current detector block
4. Over Current Protection Block
The MOSFET current is sensed using an external sensing
resistor for the over current protection. If the CS pin voltage is
higher than 0.8V, the over current protection comparator generates a protection signal. An internal RC filter is included to filter
switching noise.
OCP
Signal
40k
CS 4
8pF
0.8V
Over Current
Protection
Comparator
Figure 38. Over current protection block
5. Switch Drive Block
The FAN7528 contains a single totem-pole output stage
designed for a direct drive of power MOSFET. The drive output
is capable of up to 400mA peak current with a typical rise and
fall time of 50ns with 1nF load. The output voltage is clamped to
be 13V to protect MOSFET gate even if the Vcc voltage is
higher than 20V.
6. Under Voltage Lock Out Block
If the Vcc voltage reaches 12V, the IC’s internal blocks are
enabled and start operation. If the Vcc voltage drops below
8.5V, most of the internal blocks are disabled to reduce the
operating current. Vcc voltage should be higher than 8.5V under
normal conditions.
14
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
Application
Output power
Input voltage
Output voltage
Adapter
100W
Universal input
(90~264Vac)
389V/232V
Features
• High efficiency (>90% at 90Vac input)
• Low THD(total harmonic distortion) (<10% at 264Vac input)
• Dual output control
Key Design Notes
• Diode D4 is used to prevent IC malfunction that can happen if the CS pin voltage is lower than -0.3V.
• Important Component s for low THD are R2, R5 and C11.
1. Schematic
T1
PFC OUTPUT
VAUX
BD
D2
C5
R4
R3
R5
NTC
R10
D3
C10
Q1
R6
ZD1
F1
C6
R8
C8 C7 R1
CS
R9
5
6
MOT
R11
4
3
1
C1
2
INV
COMP
FAN7528
R2
V1
C9
ZCD
C2
LF1
GND
OUT
Vcc
8
C3 C4
7
D1 C11
R7
D4
AC INPUT
Figure 39. Schematic
15
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical application circuit
1
NVcc
2
3
Np
5
Figure 40. Inductor Schematic Diagram
3.Winding Specification
No
Pin (s→f)
Wire
Turns
Winding Method
NVcc
2→1
0.2φ × 1
5
Solenoid Winding
0.2φ × 10
44
Solenoid Winding
Insulation: Polyester Tape t = 0.050mm, 4Layers
5→3
Np
Outer Insulation: Polyester Tape t = 0.050mm, 4Layers
Air Gap: 0.6mm for each leg
4.Electrical Characteristics
Inductance
Pin
Specification
Remarks
3-5
400uH ± 10%
100kHz, 1V
5. Core & Bobbin
• Core : EI 3026
• Bobbin : EI3026
• Ae(mm2) : 111
16
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
2. Inductor Schematic Diagram
Part
Value
F1
3A/250V
NTC
10D-9
R1
10k
Note
Part
Value
T1
400uH
Fuse
Note
Inductor
EI3026
NTC
MOSFET
Resistor
Q1
FQPF13N50C
Fairchild
D1
1N4148
Fairchild
1/4W
R2
300k
1/4W
R3
330k
1/2W
Diode
R4
100
1/4W
D2
BYV26C
600V, 1A
R5
20k
1/4W
D3
1N5819
Fairchild
R6
10
1/4W
D4
1N5819
Fairchild
R7
0.22
1/2W
ZD1
1N4746
18V
R8
10k
1/4W
R9
10k
1/4W
R10
2M
1/4W
R11
12.9k
1/4W
Bridge Diode
BD
KBL406
LF1
40mH
600V/4A
Line Filter
Capacitor
C1
150nF/275VAC
Box Capacitor
C2
330nF/275VAC
Box Capacitor
C3
2.2nF/3kV
Ceramic Capacitor
C4
2.2nF/3kV
Ceramic Capacitor
C5
100nF/630V
Film Capacitor
C6
47uF/25V
Electrolytic Capacitor
C7
220nF/50V
Ceramic Capacitor
C8
1uF
MLCC
C9
100uF/450V
Electrolytic Capacitor
C10
12nF/100V
Film Capacitor
C11
56pF/50V
Ceramic Capacitor
IC
IC1
FAN7528
V1
471
Fairchild
TNR
17
FAN7528 Rev. 1.0.1
Wire 0.4mm
470V
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
6.Demo Circuit Part List
FAN7528 Dual Output Critical Conduction Mode PFC Controller
7. Layout
Power Ground
Signal Ground
Separate the power ground
and the signal ground
Place the output voltage
sensing resistors close to IC
Figure 41. PCB Layout Considerations for FAN7528
8. Performance Data
100W
50W
PF
90Vac
110Vac
220Vac
264Vac
0.999
0.998
0.992
0.986
THD
3.5%
3.9%
7.0%
7.4%
PF
0.997
0.996
0.989
0.954
THD
5.8%
6.1%
11.9%
12.8%
18
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
Unit : mm
Package
19
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Mechanical Dimensions
Package
Unit : mm
20
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Mechanical Dimensions
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
FAST®
ActiveArray™
FASTr™
Bottomless™
FPS™
Build it Now™
FRFET™
CoolFET™
GlobalOptoisolator™
CROSSVOLT™ GTO™
DOME™
HiSeC™
EcoSPARK™
I2C™
E2CMOS™
i-Lo™
EnSigna™
ImpliedDisconnect™
FACT™
IntelliMAX™
FACT Quiet Series™
Across the board. Around the world.™
The Power Franchise®
Programmable Active Droop™
ISOPLANAR™
LittleFET™
MICROCOUPLER™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC®
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerEdge™
PowerSaver™
PowerTrench®
QFET®
SuperSOT™-8
SyncFET™
TinyLogic®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
µSerDes™
SILENT SWITCHER®
SMART START™
SPM™
Stealth™
SuperFET™
SuperSOT™-3
SuperSOT™-6
TINYOPTO™
TruTranslation™
UHC™
UltraFET®
UniFET™
VCX™
Wire™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT
CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
2. A critical component is any component of a life
1. Life support devices or systems are devices or
support device or system whose failure to perform can
systems which, (a) are intended for surgical implant into
be reasonably expected to cause the failure of the life
the body, or (b) support or sustain life, or (c) whose
support device or system, or to affect its safety or
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. I16
21
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
TRADEMARKS