STMICROELECTRONICS M76DW62000A-70ZT

M76DW63000A
M76DW62000A
64Mbit (x8/ x16, Multiple Bank, Boot Block) Flash Memory and
8Mbit/4Mbit SRAM, 3V Supply, Multiple Memory Product
PRELIMINARY DATA
FEATURES SUMMARY
■ MULTIPLE MEMORY PRODUCT
– 64 Mbit (8Mb x8 or 4Mb x16), Multiple Bank,
Page, Boot Block, Flash Memory
– SRAM: 8Mbit (512K x 16) for
M76DW63000A, or 4Mbit (256K x 16) for
M76DW62000A
■ SUPPLY VOLTAGE
– VCCF = VCCS = 2.7V to 3.3V
■
– VPPF = 12V for Fast Program (optional)
ACCESS TIME: 70, 90ns
■
LOW POWER CONSUMPTION
■
ELECTRONIC SIGNATURE
– Manufacturer Code: 0020h
Figure 1. Package
FBGA
LFBGA73 (ZA)
8 x 11.6mm
– Device Code: 227Eh + 2202h + 2201h
FLASH MEMORY
■ ASYNCHRONOUS PAGE READ MODE
– Page Width: 4 Words
– Page Access: 25, 30ns
– Random Access: 70, 90ns
■
PROGRAMMING TIME
– 10µs per Byte/Word typical
■
VPP/WP PIN for FAST PROGRAM and WRITE
PROTECT
■
TEMPORARY BLOCK UNPROTECTION
MODE
■
COMMON FLASH INTERFACE
– 4 Words/ 8 Bytes at-a-time Program
■
MEMORY BLOCKS
– Quadruple Bank Memory Array:
8Mbits + 24Mbits + 24Mbits + 8Mbits
– Parameter Blocks (at both Top and Bottom)
■
■
DUAL OPERATIONS
– While Program or Erase in a group of banks
(from 1 to 3), Read in any of the other banks
PROGRAM/ERASE SUSPEND and RESUME
MODES
– Read from any Block during Program
Suspend
– Read and Program another Block during
Erase Suspend
■
– 64 bit Security Code
■
EXTENDED MEMORY BLOCK
– Extra block used as security block or to store
additional information
■
100,000 PROGRAM/ERASE CYCLES per
BLOCK
SRAM
■ 8Mbit (512K x 16) or 4Mbit (256K x 16)
■
ACCESS TIME: 70ns
■
LOW VCCS DATA RETENTION: 1.5V
■
POWER DOWN FEATURES USING TWO
CHIP ENABLE INPUTS
UNLOCK BYPASS PROGRAM COMMAND
– Faster Production/Batch Programming
September 2003
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
1/27
M76DW63000A, M76DW62000A
TABLE OF CONTENTS
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. LFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Data Inputs/Outputs (DQ8-DQ14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Data Input/Output or Address Input (DQ15A–1).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Flash Chip Enable (EF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
VPP/Write Protect (VPP/WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Reset/Block Temporary Unprotect (RPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Ready/Busy Output (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Byte/Word Organization Select (BYTE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SRAM Chip Enable (E1S, E2S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SRAM Upper Byte Enable (UBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SRAM Lower Byte Enable (LBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
VCCF Supply Voltage (2.7V to 3.3V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
VCCS Supply Voltage (2.7V to 3.3V).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
VSS Ground.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 2. Main Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 6. Flash Memory DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 7. SRAM DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 7. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Bottom View Package Outline14
Table 8. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Package Mechanical Data. . . 15
2/27
M76DW63000A, M76DW62000A
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 9. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
FLASH MEMORY DEVICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
SRAM DEVICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
SRAM SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 8. SRAM Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
SRAM OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Standby/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Data Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 9. SRAM Read Mode AC Waveforms, Address Controlled . . . . . . . . . . . . . . . . . . . . . . 19
Figure 10. SRAM Read AC Waveforms, G Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 11. SRAM Standby AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 10. SRAM Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 12. SRAM Write AC Waveforms, W Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 13. SRAM Write AC Waveforms, E1S Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 14. SRAM Write AC Waveforms, W Controlled with G Low. . . . . . . . . . . . . . . . . . . . . . 23
Figure 15. SRAM Write Cycle Waveform, UBS and LBS Controlled, G Low . . . . . . . . . . . . . . 23
Table 11. SRAM Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 16. SRAM Low VCCS Data Retention AC Waveforms, E1S or UBS / LBS Controlled . . 25
Table 12. SRAM Low VCCS Data Retention Characteristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 13. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3/27
M76DW63000A, M76DW62000A
SUMMARY DESCRIPTION
The M76DW62000A is a low voltage Multiple
Memory Product which combines two memory devices; a 64 Mbit Multiple Bank, Boot Block Flash
memory (M29DW640D) and an 8 or 4Mbit SRAM.
This document should be read in conjunction with
the M29DW640D datasheet.
Recommended operating conditions do not allow
both the Flash and SRAM devices to be active at
the same time.
The memory is offered in an LFBGA73
(8 x 11.6mm, 0.8 mm pitch) package and is supplied with all the bits erased (set to ‘1’).
Figure 2. Logic Diagram
Table 1. Signal Names
A0-A211
Address Inputs
DQ0-DQ7
Data Inputs/Outputs
DQ8-DQ14
Data Inputs/Outputs
DQ15A–1
Data Input/Output or Address Input
G
Output Enable input
W
Write Enable input
VCCF
Flash Power Supply
VPP/WP
VPP/Write Protect
VSS
Ground
VCCS
SRAM Power Supply
VSSS
SRAM Ground
NC
Not Connected Internally
VPP/WP
VCCF
VCCS
22
A0-A21
Flash Memory Control Functions
15
EF
DQ0-DQ14
G
DQ15A–1
W
RPF
BYTE
M76DW63000A
M76DW62000A
RB
Chip Enable input
RPF
Reset/Block Temporary Unprotect
RB
Ready/Busy Output
BYTE
Byte/Word Organization Select
SRAM Control Functions
E1S
E1S, E2S
Chip Enable inputs
E2S
UBS
Upper Byte Enable input
UBS
LBS
Lower Byte Enable input
Note: 1. A21-A19 are not connected to the SRAM component of
the M76DW63000A, and A21-A18 are not connected to
the SRAM component of the M76DW62000A.
LBS
VSS
AI08188B
4/27
EF
M76DW63000A, M76DW62000A
Figure 3. LFBGA Connections (Top view through package)
1
A
NC
B
NC
C
NC
2
3
4
5
6
7
8
9
10
NC
NC
NC
NC
A7
LBS
VPP
/WP
W
A8
A11
D
A3
A6
UBS
RPF
E2S
A19
A12
A15
E
A2
A5
A18
RB
A20
A9
A13
A21
F
NC
A1
A4
A17
A10
A14
NC
NC
G
NC
A0
VSS
DQ1
DQ6
NC
A16
NC
H
EF
G
DQ9
DQ3
DQ4
DQ13
DQ15
/A-1
BYTE
J
E1S
DQ0
DQ10
VCCF
VCCS
DQ12
DQ7
VSS
DQ8
DQ2
DQ11
NC
DQ5
DQ14
NC
NC
K
M
NC
N
NC
NC
NC
AI08189
5/27
M76DW63000A, M76DW62000A
SIGNAL DESCRIPTION
See Figure 2 Logic Diagram and Table 1,Signal
Names, for a brief overview of the signals connected to this device.
Address Inputs (A0-A21). Addresses A0-A18
(for
M76DW63000A),
or
A0-A17
(for
M76DW62000A), are common inputs for the Flash
Memory and the SRAM components. The other
lines (A19-A21, or A18-21, respectively) are inputs
for the Flash Memory component only.
The Address Inputs select the cells in the memory
array to access during Bus Read operations. During Bus Write operations they control the commands sent to the Command Interface of the
internal state machine. The Flash memory is accessed through the Chip Enable (EF) and Write
Enable (W) signals, while the SRAM is accessed
through two Chip Enable signals (E1S and E2S)
and the Write Enable signal (W).
Data Inputs/Outputs (DQ0-DQ7). The Data I/O
outputs the data stored at the selected address
during a Bus Read operation. During Bus Write
operations they represent the commands sent to
the Command Interface of the Program/Erase
Controller.
Data Inputs/Outputs (DQ8-DQ14). The Data I/O
outputs the data stored at the selected address
during a Bus Read operation when BYTE is High,
VIH. When BYTE is Low, VIL, these pins are not
used and are high impedance. During Bus Write
operations the Command Register does not use
these bits. When reading the Status Register
these bits should be ignored.
Data Input/Output or Address Input (DQ15A–
1). When BYTE is High, VIH, this pin behaves as
a Data Input/Output pin (as DQ8-DQ14). When
BYTE is Low, VIL, this pin behaves as an address
pin; DQ15A–1 Low will select the LSB of the addressed Word, DQ15A–1 High will select the MSB.
Throughout the text consider references to the
Data Input/Output to include this pin when BYTE is
High and references to the Address Inputs to include this pin when BYTE is Low except when
stated explicitly otherwise.
Flash Chip Enable (EF). The Chip Enable input
activates the memory, allowing Bus Read and Bus
Write operations to be performed. When Chip Enable is High, V IH, all other pins are ignored.
Output Enable (G). The Output Enable, G, controls the Bus Read operation of the device.
Write Enable (W). The Write Enable, W, controls
the Bus Write operation of the device.
VPP/Write
VPP/Write Protect (VPP/WP). The
Protect pin provides two functions. The VPP function allows the Flash memory to use an external
high voltage power supply to reduce the time required for Program operations. This is achieved
6/27
by bypassing the unlock cycles and/or using the
multiple Word (2 or 4 at-a-time) or multiple Byte
Program (2, 4 or 8 at-a-time) commands. The
Write Protect function provides a hardware method of protecting the four outermost boot blocks
(two at the top, and two at the bottom of the address space).
When V PP/Write Protect is Low, VIL, the memory
protects the four outermost boot blocks; Program
and Erase operations in these blocks are ignored
while VPP/Write Protect is Low, even when RPF is
at VID.
When VPP/Write Protect is High, VIH, the memory
reverts to the previous protection status of the four
outermost boot blocks (two at the top, and two at
the bottom of the address space). Program and
Erase operations can now modify the data in these
blocks unless the blocks are protected using Block
Protection.
When V PP/Write Protect is raised to VPP the memory automatically enters the Unlock Bypass mode.
When V PP/Write Protect returns to VIH or VIL normal operation resumes. During Unlock Bypass
Program operations the memory draws IPP from
the pin to supply the programming circuits. See the
description of the Unlock Bypass command in the
Command Interface section. The transitions from
VIH to V PP and from V PP to VIH must be slower
than tVHVPP. See the M29DW640D datasheet for
more details.
Never raise VPP/Write Protect to VPP from any
mode except Read mode, otherwise the memory
may be left in an indeterminate state.
The VPP/Write Protect pin must not be left floating
or unconnected or the device may become unreliable. A 0.1µF capacitor should be connected between the V PP/Write Protect pin and the VSS
Ground pin to decouple the current surges from
the power supply. The PCB track widths must be
sufficient to carry the currents required during
Unlock Bypass Program, I PP.
Reset/Block Temporary Unprotect (RPF). The
Reset/Block Temporary Unprotect pin can be
used to apply a Hardware Reset to the memory or
to temporarily unprotect all Blocks that have been
protected.
Note that if V PP/WP is at VIL, then the two outermost boot blocks will remain protected even if RPF
is at VID.
A Hardware Reset is achieved by holding Reset/
Block Temporary Unprotect Low, V IL, for at least
tPLPX. After Reset/Block Temporary Unprotect
goes High, V IH, the memory will be ready for Bus
Read and Bus Write operations after tPHEL or
tRHEL, whichever occurs last. See the
M29DW640D datasheet for more details.
M76DW63000A, M76DW62000A
Holding RPF at VID will temporarily unprotect the
protected Blocks in the memory. Program and
Erase operations on all blocks will be possible.
The transition from VIH to VID must be slower than
tPHPHH.
Ready/Busy Output (RB). The Ready/Busy pin
is an open-drain output that can be used to identify
when the Flash memory is performing a Program
or Erase operation. During Program or Erase operations Ready/Busy is Low, VOL. Ready/Busy is
high-impedance during Read mode, Auto Select
mode and Erase Suspend mode.
After a Hardware Reset, Bus Read and Bus Write
operations cannot begin until Ready/Busy becomes high-impedance.
The use of an open-drain output allows the Ready/
Busy pins from several memories to be connected
to a single pull-up resistor. A Low will then indicate
that one, or more, of the memories is busy.
Byte/Word Organization Select (BYTE). The
Byte/Word Organization Select pin is used to
switch between the x8 and x16 Bus modes of the
Flash memory. When Byte/Word Organization Select is Low, V IL, the Flash memory is in x8 mode,
when it is High, V IH, the Flash memory is in x16
mode.
SRAM Chip Enable (E1S, E2S). The Chip Enable inputs activate the SRAM memory control
logic, input buffers and decoders. E1 S at VIH or
E2S at VIL deselects the memory and reduces the
power consumption to the standby level. E1S and
E2S can also be used to control writing to the
SRAM memory array, while W remains at VIL. It is
not allowed to set EF at VIL, E1S at VIL and E2S at
VIH at the same time.
SRAM Upper Byte Enable (UBS). The Upper
Byte Enable enables the upper bytes for SRAM
(DQ8-DQ15). UBS is active low.
SRAM Lower Byte Enable (LBS). The
Lower
Byte Enable enables the lower bytes for SRAM
(DQ0-DQ7). LBS is active low.
VCCF Supply Voltage (2.7V to 3.3V). VCCF provides the power supply for all operations (Read,
Program and Erase).
The Command Interface is disabled when the
VCCF Supply Voltage is less than the Lockout Voltage, VLKO . This prevents Bus Write operations
from accidentally damaging the data during power
up, power down and power surges. If the Program/
Erase Controller is programming or erasing during
this time then the operation aborts and the memory contents being altered will be invalid.
A 0.1µF capacitor should be connected between
the VCCF Supply Voltage pin and the VSS Ground
pin to decouple the current surges from the power
supply. The PCB track widths must be sufficient to
carry the currents required during Program and
Erase operations, ICC3.
VCCS Supply Voltage (2.7V to 3.3V). VCCS provides the power supply for the SRAM control pins.
VSS Ground. VSS is the ground reference for all
voltage measurements in the Flash and SRAM
chips. The device features two VSS pins both of
which must be connected to the system ground.
7/27
M76DW63000A, M76DW62000A
FUNCTIONAL DESCRIPTION
The Flash and SRAM components have separate
power supplies. They are distinguished by three
chip enable inputs: EF for the Flash memory and,
E1S and E2S for the SRAM.
Recommended operating conditions do not allow
both the Flash and the SRAM to be in active mode
at the same time. The most common example is
simultaneous read operations on the Flash and
the SRAM which would result in a data bus contention. Therefore it is recommended to put the
SRAM in the high impedance state when reading
the Flash and vice versa (see Table 2 Main Operation Modes for details).
Figure 4. Functional Block Diagram
VCCF
VPP/WP
EF
RB
RPF
BYTE
Flash Memory
64 Mbit (x8 or x16)
A[n]-A21
A0-A[m]
G
VCCS
W
E1S
DQ0-DQ15/A-1
SRAM
8Mbit or 4Mbit (x16)
E2S
UBS
LBS
VSS
AI08190B
Note: Where n=19 and m=18 for M76DW63000A, and n=18 and m=17 for M76DW62000A.
8/27
M76DW63000A, M76DW62000A
Table 2. Main Operation Modes
EF
RPF
G
W
Read
VIL
VIH
VIL
VIH
SRAM must be disabled
Data Output
Write
VIL
VIH
VIH
VIL
SRAM must be disabled
Data Input
Standby
VIH
VCC
±0.3
X
X
Any SRAM mode is allowed
Hi-Z
Output
Disable
X
VIH
VIH
VIH
Any SRAM mode is allowed
Hi-Z
Reset
X
VIL
X
X
Any SRAM mode is allowed
Hi-Z
VIL
VIH
VIL
VIH
VIL
VIL
VIL
VIH
VIL
VIH
VIL
VIH
Data out
Hi-Z
VIL
VIH
VIL
VIH
VIH
VIL
Hi-Z
Data out
X
VIL
VIL
VIH
VIL
VIL
Data in Word Write
X
VIL
VIL
VIH
VIL
VIH
Data in
Hi-Z
X
VIL
VIL
VIH
VIH
VIL
Hi-Z
Data in
X
X
VIH
X
X
X
Hi-Z
X
X
X
X
VIH
VIH
Hi-Z
X
X
X
VIL
X
X
Hi-Z
VIH
VIH
VIL
VIH
VIL
VIL
Hi-Z
VIH
VIH
VIL
VIH
VIL
VIH
Hi-Z
VIH
VIH
VIL
VIH
VIH
VIL
Hi-Z
Flash Memory
Operation
Mode(2)
Read
Flash Memory must be
disabled
SRAM
Write
Flash Memory must be
disabled
Standby/
Power
Down
Output
Disable
Any Flash Memory
mode is allowable
Any Flash Memory
mode is allowable
E1S
E2S
UBS
LBS
DQ15-DQ8
DQ7-DQ0
Data out Word Read
Note: 1. X = Don’t Care = VIL or VIH.
2. This table is valid when BYTE = VIH. This table is also valid when BYTE = VIL , with the only difference that DQ15-DQ8 are always
high impedance when the Flash Memory component is being accessed.
3. For the Block Protect and Unprotect features, refer to the M29DW640D datasheet. Only the In-System Technique is available in
the stacked product.
4. To read the Manufacturer Code, the Device Code, the Block Protection Status and the Extended Block indicator bit, refer to the
“Auto Select Command” in the M29DW640D datasheet.
9/27
M76DW63000A, M76DW62000A
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings table may cause permanent damage to the device. These are stress
ratings only and operation of the device at these or
any other conditions above those indicated in the
Operating sections of this specification is not im-
plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics
SURE Program and other relevant quality documents.
Table 3. Absolute Maximum Ratings
Value
Symbol
Parameter
Max
Ambient Operating Temperature (1)
–40
85
°C
TBIAS
Temperature Under Bias
–50
125
°C
TSTG
Storage Temperature
–65
150
°C
Input or Output Voltage
–0.5
VCCF +0.3
V
VCCF
Flash Supply Voltage
–0.6
4
V
VID
Identification Voltage
–0.6
13.5
V
VPPF
Program Voltage
–0.6
13.5
V
VCCS
SRAM Supply Voltage
–0.5
3.8
V
TA
VIO
Note: 1. Depends on range.
10/27
Unit
Min
M76DW63000A, M76DW62000A
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC
and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 4,
Operating and AC Measurement Conditions. Designers should check that the operating conditions
in their circuit match the measurement conditions
when relying on the quoted parameters.
The operating and AC measurement parameters
given in this section (see Table 4 below) correspond to those of the stand-alone Flash and
SRAM devices. For compatibility purposes, the
M29DW640D voltage range is restricted to VCCS
in the stacked product.
Table 4. Operating and AC Measurement Conditions
Flash Memory
SRAM
70
70
Parameter
Units
Min
Max
Min
Max
VCCF Supply Voltage
2.7
3.6
–
–
V
VCCS Supply Voltage
–
–
2.7
3.3
V
–40
85
–40
85
°C
Ambient Operating Temperature
Load Capacitance (CL)
30
30
Input Rise and Fall Times
pF
10
Input Pulse Voltages
Input and Output Timing Ref. Voltages
Figure 5. AC Measurement I/O Waveform
3.3
ns
0 to VCCF
0 to VCCF
V
VCCF/2
VCCF/2
V
Figure 6. AC Measurement Load Circuit
VCCF
VCCF
VCCF/2
VPP
0V
VCCF
25kΩ
AI08186
DEVICE
UNDER
TEST
CL
0.1µF
25kΩ
0.1µF
CL includes JIG capacitance
AI08187
Table 5. Device Capacitance
Symbol
CIN
COUT
Parameter
Input Capacitance
Output Capacitance
Max
Unit
VIN = 0V, f=1 MHz
Test Condition
Typ
12
pF
VOUT = 0V, f=1 MHz
15
pF
Note: Sampled only, not 100% tested.
11/27
M76DW63000A, M76DW62000A
Table 6. Flash Memory DC Characteristics
Symbol
Parameter
Test Condition
M76DW63000A,
M76DW62000A
Min
Unit
Max
0V ≤ VIN ≤ VCC
±1
µA
Output Leakage Current
0V ≤ VOUT ≤ VCC
±1
µA
Supply Current (Read)
EF = VIL, G = VIH,
f = 6MHz
10
mA
ICC2
Supply Current (Standby)
EF = VCC ±0.2V,
RPF = VCC ±0.2V
100
µA
ICC3 (1,2)
Supply Current (Program/
Erase)
VPP/WP =
VIL or VIH
20
mA
VPP/WP = VPP
20
mA
ILI
Input Leakage Current
ILO
ICC1(2)
Program/Erase
Controller active
VIL
Input Low Voltage
–0.5
0.8
V
VIH
Input High Voltage
0.7VCC
VCC +0.3
V
VPP
Voltage for VPP/WP Program
Acceleration
VCC = 3.0V ±10%
11.5
12.5
V
IPP
Current for VPP/WP Program
Acceleration
VCC = 3.0V ±10%
15
mA
VOL
Output Low Voltage
IOL = 1.8mA
0.45
V
VOH
Output High Voltage
IOH = –100µA
VID
Identification Voltage
11.5
12.5
V
Program/Erase Lockout Supply
Voltage
1.8
2.3
V
VLKO
VCC –0.4
Note: 1. Sampled only, not 100% tested.
2. In Dual operations the Supply Current will be the sum of I CC1(read) and I CC3 (program/erase).
12/27
V
M76DW63000A, M76DW62000A
Table 7. SRAM DC Characteristics
M76DW63000A
Symbol
Parameter
Unit
Min
ILI
Input Leakage Current
ILO
Output Leakage Current
M76DW62000A
Test Condition
Typ
Max
Min
Typ
Max
0V ≤ VIN ≤ VCCS
±1
±1
µA
0V ≤ VOUT ≤ VCCS,
SRAM Outputs Hi-Z
±1
±1
µA
E1S ≥ VCCS – 0.2V
VIN ≥ VCCS – 0.2V or VIN ≤ 0.2V
ICCS
ICC
VCC Standby Current
Supply Current
f = fmax (A0-A182 and DQ0DQ15 only)
f = 0 (GS, WS, UBS and LBS)
8
25
7
15
µA
E1S ≥ VCCS – 0.2V
VIN ≥ VCCS – 0.2V or VIN ≤ 0.2V,
f=0
8
25
7
15
µA
f = fmax = 1/AVAV,
VCCS = 3.3V, IOUT = 0 mA
5.5
12
5.5
12
mA
f = 1MHz,
VCCS = 3.3V, IOUT = 0 mA
1.5
3
1.5
3
mA
VIL
Input Low Voltage
–0.3
0.8
–0.3
0.8
V
VIH
Input High Voltage
2.2
VCCS
+0.3
2.2
VCCS
+0.3
V
VOL
Output Low Voltage
VCCS = VCC min
IOL = 2.1mA
0.4
V
VOH
Output High Voltage
VCCS = VCC min
IOH = –1.0mA
0.4
2.4
2.4
V
Note: 1. Sampled only, not 100% tested.
2. A0-A18 for the M76DW63000A, A0-A17 for the M76DW62000A.
13/27
M76DW63000A, M76DW62000A
PACKAGE MECHANICAL
Figure 7. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Bottom View Package Outline
D
D1
FD
FE
E
SD
SE
E1
BALL "A1"
e
b
ddd
A
A2
A1
BGA-Z50
Note: Drawing is not to scale.
14/27
M76DW63000A, M76DW62000A
Table 8. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
1.400
A1
Max
0.0551
0.250
0.0098
A2
0.910
0.0358
b
0.400
0.350
0.450
0.0157
0.0138
0.0177
D
8.000
7.900
8.100
0.3150
0.3110
0.3189
D1
7.200
0.2835
ddd
0.100
11.500
11.700
0.0039
E
11.600
0.4567
0.4528
0.4606
E1
8.800
e
0.800
–
–
FD
0.400
0.0157
FE
1.400
0.0551
SD
0.400
–
–
0.0157
–
–
SE
0.400
–
–
0.0157
–
–
0.3465
–
–
0.0315
15/27
M76DW63000A, M76DW62000A
PART NUMBERING
Table 9. Ordering Information Scheme
Example:
M76DW 6 2 0 0 0
A
70
Z T
Device Type
M76 = MMP (Flash + SRAM)
Architecture
D = Dual Operation
Operating Voltage
W = VCCF = VCCS = 2.7V to 3.3V
Flash Device Size (Die1 Density)
6 = 64 Mbit
SRAM Device Size (Die2 Density)
2 = 4 Mbit
3 = 8 Mbit
Die3
0 = Die3 Density
Die4
0 = Die4 Density
Flash Specification Details
0 = Multiple Bank
Stacked Specification Details
A = 0.15µm Flash & SRAM
Speed
70 = 70ns
90 = 90ns
Package and Temperature Range
Z = LFBGA73: 8 x 11.6mm, 0.8mm pitch
Option
T = Tape & Reel packing
Note: This product is also available with the Extended Block factory locked. For further details and ordering
information contact your nearest ST sales office.
Devices are shipped from the factory with the memory content bits erased to ’1’.
For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device,
please contact the STMicroelectronics Sales Office nearest to you.
16/27
M76DW63000A, M76DW62000A
FLASH MEMORY DEVICE
The M76DW62000A contains one 64 Mbit Flash
memory. For detailed information on how to use
the Flash memory refer to the M29DW640D
datasheet, which is available on the STMicroelectronics web site, www.st.com.
SRAM DEVICE
SRAM SUMMARY DESCRIPTION
The SRAM is an 8Mbit or 4Mbit asynchronous random access memory which features a super low
voltage operation and low current consumption
with an access time of 70ns under all conditions.
The memory operations can be performed using a
single low voltage supply, 2.7V to 3.3V, which is
the same as the Flash voltage supply.
Figure 8. SRAM Logic Diagram
256Kb x 16
RAM Array
2048 x 2048
SENSE AMPS
A0-A10
ROW DECODER
DATA IN DRIVERS
DQ0-DQ7
DQ8-DQ15
COLUMN DECODER
UBS
WS
A11-A18 or A11-A17
GS
LBS
POWER-DOWN
CIRCUIT
UBS
E1S
E2S
LBS
AI07939B
17/27
M76DW63000A, M76DW62000A
SRAM OPERATIONS
There are five standard operations that control the
SRAM component. These are Bus Read, Bus
Write, Standby/Power-down, Data Retention and
Output Disable. A summary is shown in Table 2,
Main Operation Modes
Read. Read operations are used to output the
contents of the SRAM Array. The SRAM is in Read
mode whenever Write Enable, WS, is at VIH, Output Enable, GS, is at VIL, Chip Enable, E1 S, is at
VIL, Chip Enable, E2S, is at VIH, and Byte Enable
inputs, UBS and LBS are at V IL.
Valid data will be available on the output pins after
a time of tAVQV after the last stable address. If the
Chip Enable or Output Enable access times are
not met, data access will be measured from the
limiting parameter (tE1LQV, tE2HQV, or tGLQV) rather than the address. Data out may be indeterminate at tE1LQX, tE2HQX and tGLQX, but data lines
will always be valid at tAVQV (see Table 10, Table
10, Figures 9 and 10, SRAM Read AC Characteristics).
Write. Write operations are used to write data to
the SRAM. The SRAM is in Write mode whenever
W and E1S are at VIL, and E2S is at VIH. Either the
Chip Enable inputs, E1 S and E2S, or the Write Enable input, WS, must be deasserted during address transitions for subsequent write cycles.
A Write operation is initiated when E1S is at VIL,
E2S is at V IH and W is at VIL. The data is latched
on the falling edge of E1S, the rising edge of E2S
or the falling edge of W S, whichever occurs last.
The Write cycle is terminated on the rising edge of
E1S, the rising edge of W or the falling edge of
E2S, whichever occurs first.
18/27
If the Output is enabled (E1S=VIL, E2S=VIH and
GS=VIL), then W will return the outputs to high impedance within tWLQZ of its falling edge. Care must
be taken to avoid bus contention in this type of operation. The Data input must be valid for t DVWH before the rising edge of Write Enable, for t DVE1H
before the rising edge of E1S or for tDVE2L before
the falling edge of E2S, whichever occurs first, and
remain valid for tWHDX, tE1HAX or tE2LAX (see Table
11, SRAM Write AC Characteristics, Figures 12,
13, 14 and 15).
Standby/Power-Down. The SRAM component
has a chip enabled power-down feature which invokes an automatic standby mode (see Table 10,
SRAM Read AC Characteristics, Figure 11, SRAM
Standby AC Waveforms). The SRAM is in Standby
mode whenever either Chip Enable is deasserted,
E1S at V IH or E2S at VIL. It is also possible when
UBS and LB S are at VIH.
Data Retention. The SRAM data retention performance as VCCS goes down to VDR are described in Table 12, SRAM Low VCCS Data
Retention Characteristic, and Figure 16, SRAM
Low V CCS Data Retention AC Waveforms, E1S or
UBS / LBS Controlled. In E1S controlled data retention mode, the minimum standby current mode is
entered when E1S ≥ VCCS – 0.2V and E2S ≤ 0.2V
or E2S ≥ VCCS – 0.2V. In E2S controlled data retention mode, minimum standby current mode is
entered when E2S ≤ 0.2V.
Output Disable. The data outputs are high impedance when the Output Enable, GS, is at VIH
with Write Enable, W S, at VIH.
M76DW63000A, M76DW62000A
Figure 9. SRAM Read Mode AC Waveforms, Address Controlled
tAVAV
A0-A17
VALID
tAVQV
tAXQX
DQ0-DQ15
DATA VALID
DATA VALID
AI07942
Note: E1S = Low, E2S = High, G = Low, UBS and/or LBS = High, W = High.
Figure 10. SRAM Read AC Waveforms, G Controlled
tAVAV
A0-A17
VALID
tE1LQV
tE1HQZ
E1S
tE1LQX
tE2HQV
tE2LQZ
E2S
tE2HQX
tBLQV
tBHQZ
UBS, LBS
tBLQX
tGLQV
tGHQZ
G
tGLQX
DQ0-DQ15
DATA VALID
AI07943b
Note: Write Enable (W) = High. Address Valid prior to or at the same time as E1S, UBS and LB S going Low.
Figure 11. SRAM Standby AC Waveforms
E1S
E2S
ICC
tPU
tPD
50%
AI07913b
19/27
M76DW63000A, M76DW62000A
Table 10. SRAM Read AC Characteristics
SRAM
Symbol
Alt
Parameter
Unit
Min
Max
tAVAV
tRC
Read Cycle Time
tAVQV
tACC
Address Valid to Output Valid
tAXQX
tOH
Address Transition to Output Transition
tBHQZ
tBHZ
UBS, LBS Disable to Hi-Z Output
25
ns
tBLQV
tAB
UBS, LBS Access Time
70
ns
tBLQX
tBLZ
UBS, LBS Enable to Low-Z Output
tE1LQV
tE2HQV
tACS1
Chip Enable 1 Low or Chip Enable 2 High to Output Valid
tE1LQX
tE2HQX
tCLZ1
Chip Enable 1 Low or Chip Enable 2 High to Output
Transition
tE1HQZ
tE2LQZ
tHZCE
Chip Enable High or Chip Enable 2 Low to Output Hi-Z
25
ns
tGHQZ
tOHZ
Output Enable High to Output Hi-Z
25
ns
tGLQV
tOE
Output Enable Low to Output Valid
35
ns
tGLQX
tOLZ
Output Enable Low to Output Transition
tPD (1)
Chip Enable 1 High or Chip Enable 2 Low to Power Down
tPU (1)
Chip Enable 1 Low or Chip Enable 2 High to Power Up
Note: 1. Sampled only. Not 100% tested.
20/27
70
ns
70
10
ns
5
ns
70
10
ns
ns
5
ns
70
0
ns
ns
ns
M76DW63000A, M76DW62000A
Figure 12. SRAM Write AC Waveforms, W Controlled
tAVAV
A0-A17
VALID
tAVWH
tE1LWH
tWHAX
E1S
E2S
tE2HWH
tAVWL
tWLWH
W
tBLWH
UBS, LBS
G
tGHQZ
DQ0-DQ15
tDVWH
Note 2
tWHDZ
INPUT VALID
AI07944b
Note: 1. W, E1S, E2S, UBS and/or LBS must be asserted to initiate a write cycle. Output Enable (G) = Low (otherwise, DQ0-DQ15 are high
impedance). If E1S, E2S and W are deasserted at the same time, DQ0-DQ15 remain high impedance.
2. The I/O pins are in output mode and input signals must not be applied.
21/27
M76DW63000A, M76DW62000A
Figure 13. SRAM Write AC Waveforms, E1S Controlled
tAVAV
A0-A17
VALID
tAVE1H
tAVE2L
tAVE1L
tE1LE1H
tE1HAX
tAVE2H
tE2HE2L
tE2LAX
E1S
E2S
tWLE1H
tWLE2L
W
tBLE1H
tBLE2L
UBS, LBS
G
tDVE1H
tDVE2L
tGHQZ
DQ0-DQ15
Note 3
tE1HDZ
tE2LDZ
INPUT VALID
AI07945b
Note: 1. WS, E1S, E2S, UBS and/or LBS must be asserted to initiate a write cycle. Output Enable (GS) = Low (otherwise, DQ0-DQ15 are high
impedance). If E1S, E2S and W are deasserted at the same time, DQ0-DQ15 remain high impedance.
2. If E1S, E2S and W are deasserted at the same time, DQ0-DQ15 remain high impedance.
3. The I/O pins are in output mode and input signals must not be applied.
22/27
M76DW63000A, M76DW62000A
Figure 14. SRAM Write AC Waveforms, W Controlled with G Low
tAVAV
A0-A17
VALID
tAVWH
tE1LWH
tE2HWH
tWHAX
E1S
E2S
tBLWH
UBS, LBS
tAVWL
tWLWH
W
tWHQX
tWLQZ
tWHDZ
tDVWH
DQ0-DQ15
INPUT VALID
AI07946b
Note: 1. If E1S, E2S and W are deasserted at the same time, DQ0-DQ15 remain high impedance.
Figure 15. SRAM Write Cycle Waveform, UBS and LB S Controlled, G Low
tAVAV
A0-A17
VALID
tAVBH
tE1LBH
tE2HBH
E1S
E2S
tAVBL
tBLBH
tBHAX
UBS, LBS
tWLBH
W
tDVBH
DQ0-DQ15
tBHDZ
INPUT VALID
AI07947b
Note: 1. If E1S, E2S and W are deasserted at the same time, DQ0-DQ15 remain high impedance.
23/27
M76DW63000A, M76DW62000A
Table 11. SRAM Write AC Characteristics
SRAM
Symbol
Alt
Parameter
Unit
Min
Max
tAVAV
tWC
Write Cycle Time
70
ns
tAVE1L,
tAVE2H,
tAVWL,
tAVBL
tAS
Address Valid to Beginning of Write
0
ns
tAVE1H,
tAVE2L
tAW
Address Valid to Chip Enable 1 Low or Chip Enable 2
High
60
ns
tAVWH
tAW
Address Valid to Write Enable High
60
ns
tBLWH
tBLE1H
tBLE2L
tAVBH
tBW
UBS, LBS Valid to End of Write
60
ns
tBLBH
tBW
UBS, LBS Low to UBS, LBS High
60
ns
tDVE1H,
tDVE2L,
tDVWH
tDVBH
tDW
Input Valid to End of Write
30
ns
tE1HAX,
tE2LAX,
tWHAX
tBHAX
tWR
End of Write to Address Change
0
ns
tE1HDZ ,
tE2LDZ,
tWHDZ
tBHDZ
tHD
Address Transition to End of Write
0
ns
tE1LE1H,
tE1LBH
tE1LWH
tCW1
Chip Enable 1 Low to End of Write
60
ns
tE2HE2L,
tE2HBH,
tE2HWH
tCW2
Chip Enable 2 High to End of Write
60
ns
tGHQZ
tGHZ
Output Enable High to Output Hi-Z
tWHQX
tDH
Write Enable High to Input Transition
5
ns
tWLBH
tWP
Write Enable Low to UBS, LBS High
50
ns
tWLQZ
tWHZ
Write Enable Low to Output Hi-Z
tWLWH
tWLE1H
tWLE2L
tWP
Write Enable Pulse Width
24/27
25
25
50
ns
ns
ns
M76DW63000A, M76DW62000A
Figure 16. SRAM Low VCCS Data Retention AC Waveforms, E1S or UBS / LBS Controlled
DATA RETENTION MODE
VCCS
VCCS (min)
VCCS (min)
tCDR
E1S or
tR
UBS, LBS
AI07918b
Table 12. SRAM Low VCCS Data Retention Characteristic
M76DW63000A
Symbol
Parameter
M76DW62000A
Test Condition
Unit
Min
VCCS = 1.5V,
E1S ≥ VCCS – 0.2V,
VIN ≥ VCCS – 0.2V
or VIN ≤ 0.2V
Typ
Max
4
12
Min
Typ
Max
3
10
µA
3.3
V
ICCDR
Supply Current (Data Retention)
VDR
Supply Voltage (Data Retention)
tCDR
Chip Disable to Power Down
0
0
ns
Operation Recovery Time
70
70
ns
tR
1.5
3.3
1.5
2. Sampled only. Not 100% tested.
25/27
M76DW63000A, M76DW62000A
REVISION HISTORY
Table 13. Document Revision History
Date
Version
16-Apr-2003
1.0
First Issue
19-May-2003
1.1
M76DW63000A, 8Mbit SRAM, added
12-Jun-2003
1.2
M76DW63000A, 8Mbit SRAM, corrected to 512Kx16 on first page
24-Sep-2003
1.3
Voltage supply range extended 2.7V working at all speed options
26/27
Revision Details
M76DW63000A, M76DW62000A
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2003 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
27/27