STMICROELECTRONICS M69AW024BE60ZB8F

M69AW024BE
16 Mbit (1M x16) 3V Asynchronous PSRAM
FEATURES SUMMARY
■
■
■
■
■
■
SUPPLY VOLTAGE: 2.7 to 3.3V
ACCESS TIME: 60ns
LOW STANDBY CURRENT: 70µA
DEEP POWER DOWN CURRENT: 10µA
COMPATIBLE WITH STANDARD LPSRAM
TFBGA48 PACKAGE RoHS COMPLIANT
(directive 2002/95/EC of the European
Parliament)
Figure 1. Package
BGA
TFBGA48 (ZB)
6x8 mm
April 2005
1/25
M69AW024BE
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Address Inputs (A0-A19). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Data Inputs/Outputs (DQ8-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chip Enable (E1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chip Enable (E2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Upper Byte Enable (UB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Lower Byte Enable (LB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
VCC Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Power On Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Deep Power-down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4.
Figure 5.
Figure 6.
Table 5.
Table 6.
Table 7.
Figure 7.
Figure 8.
Figure 9.
2/25
Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Read and Standby Modes AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Address Access after G Controlled Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . 14
UB/LB Controlled Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
M69AW024BE
Table 8. Write Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 10.Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 11.W Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 12.Write Enable and UB/LB Controlled, Byte Write AC Waveforms 1 . . . . . . . . . . . . . . . . . 18
Figure 13.Write Enable and UB/LB Controlled, Byte Write AC Waveforms 2 . . . . . . . . . . . . . . . . . 18
Figure 14.Write Enable and UB/LB Controlled, Byte Write AC Waveforms 3 . . . . . . . . . . . . . . . . . 19
Figure 15.Write Enable and UB/LB Controlled, Byte Write AC Waveforms 4 . . . . . . . . . . . . . . . . . 19
Table 9. Standby, Power-Down and Power-Up AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 16.Power-up Mode AC Waveforms - 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 17.Power-up Mode AC Waveforms - 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 18.Power-Down Entry ad Exit AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 19.Standby Mode Entry AC Waveforms, after Read or Write . . . . . . . . . . . . . . . . . . . . . . . 21
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 20.TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch, Package Outline, Bottom View . . . . 22
Table 10. TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data. . . . . . . . 22
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 11. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 12. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3/25
M69AW024BE
SUMMARY DESCRIPTION
The M69AW024BE is a 16 Mbit (16,777,216 bit)
CMOS memory, organized as 1,024,576 words by
16 bits, and is supplied by a single 2.7V to 3.3V
supply voltage range.
M69AW024BE is a member of STMicroelectronics
PSRAM memory family, based on the one-transistor per-cell architecture. These devices are manufactured using dynamic random access memory
cells, to minimize the cell size, and maximize the
amount of memory that can be implemented in a
given area.
However, through the use of internal control logic,
the device is fully static in its operation, requiring
no external clocks or timing strobes, and has a
standard Asynchronous SRAM Interface.
The internal control logic of the M69AW024BE
handles the periodic refresh cycle, automatically,
and without user involvement.
Write cycles can be performed on a single byte by
using Upper Byte Enable (UB) and Lower Byte Enable (LB).
The device can be put into standby mode using
Chip Enable (E1) or in deep power down mode by
using Chip Enable (E2).
Power-Down mode achieves a very low current
consumption by halting all the internal activities.
Since the refresh circuitry is halted, the duration of
the power-down should be less than the maximum
period for refresh, if the user has not finished with
the data contents of the memory.
Figure 2. Logic Diagram
Table 1. Signal Names
A0-A19
Address Input
DQ0-DQ15
Data Input/Output
E1, E2
Chip Enable, Power Down
G
Output Enable
W
Write Enable
W
UB
Upper Byte Enable
E1
LB
Lower Byte Enable
VCC
Supply Voltage
VSS
Ground
NC
Not Connected
(no internal connection)
VCC
20
16
A0-A19
E2
DQ0-DQ15
M69AW024BE
G
UB
LB
VSS
4/25
AI07406b
M69AW024BE
Figure 3. TFBGA Connections (Top view through package)
1
2
3
4
5
6
A
LB
G
A0
A1
A2
E2
B
DQ8
UB
A3
A4
E1
DQ0
C
DQ9
DQ10
A5
A6
DQ1
DQ2
D
VSS
DQ11
A17
A7
DQ3
VCC
E
VCC
DQ12
NC
A16
DQ4
VSS
F
DQ14
DQ13
A14
A15
DQ5
DQ6
G
DQ15
A19
A12
A13
W
DQ7
H
A18
A8
A9
A10
A11
NC
AI07409
5/25
M69AW024BE
SIGNAL DESCRIPTIONS
See Figure 2., Logic Diagram, and Table
1., Signal Names, for a brief overview of the signals connected to this device.
Address Inputs (A0-A19). The Address Inputs
select the cells in the memory array to access during Read and Write operations.
Data Inputs/Outputs (DQ8-DQ15). The Upper
Byte Data Inputs/Outputs carry the data to or from
the upper part of the selected address during a
Write or Read operation, when Upper Byte Enable
(UB) is driven Low.
Data Inputs/Outputs (DQ0-DQ7). The
Lower
Byte Data Inputs/Outputs carry the data to or from
the lower part of the selected address during a
Write or Read operation, when Lower Byte Enable
(LB) is driven Low.
Chip Enable (E1). When asserted (Low), the
Chip Enable, E1, activates the memory state machine, address buffers and decoders, allowing
Read and Write operations to be performed. When
de-asserted (High), all other pins are ignored, and
the device is put, automatically, in low-power
Standby mode.
Chip Enable (E2). The Chip Enable, E2, puts the
device in Deep Power-down mode when it
is driven Low. This is the lowest power mode.
6/25
Output Enable (G). The Output Enable, G, provides a high speed tri-state control, allowing fast
read/write cycles to be achieved with the common
I/O data bus.
Write Enable (W). The Write Enable, W, controls
the Bus Write operation of the memory’s Command Interface.
Upper Byte Enable (UB). The Upper Byte Enable, UB, gates the data on the Upper Byte Data
Inputs/Outputs (DQ8-DQ15) to or from the upper
part of the selected address during a Write or
Read operation.
Lower Byte Enable (LB). The Lower Byte Enable, LB, gates the data on the Lower Byte Data
Inputs/Outputs (DQ0-DQ7) to or from the lower
part of the selected address during a Write or
Read operation.
VCC Supply Voltage. The VCC Supply Voltage
supplies the power for all operations (Read or
Write) and for driving the refresh logic, even when
the device is not being accessed.
VSS Ground. The VSS Ground is the reference for
all voltage measurements.
M69AW024BE
Figure 4. Block Diagram
ARBITRATION
LOGIC
INTERNAL
CLOCK
GENERATOR
E2
W
VCC
DYNAMIC
MEMORY
ARRAY
INPUT/OUTPUT
BUFFER
E1
G
ROW DECODER
ADDRESS
REFRESH
CONTROLLER
CONTROL
LOGIC
DQ0-DQ7
DQ8-DQ15
COLUMN
DECODER
LB
UB
VCC
VSS
POWER
CONTROLLER
ADDRESS
AI07410
7/25
M69AW024BE
OPERATION
Operational modes are determined by device control inputs W, E1, E2, LB and UB as summarized
in the Operating Modes table (see Table 2.).
Power On Sequence
Because the internal control logic of the
M69AW024BE needs to be initialized, the following power-on procedure must be followed before
the memory is used:
– Apply power and wait for VCC to stabilize
– Wait tCHEL while driving both Chip Enable
signals (E1 and E2) High
– Activate the memory by driving Chip
Enable (E1) Low.
Read Mode
The device is in Read mode when:
– Write Enable (W) is High and
– Output Enable (G) Low and
– the two Chip Enable signals are asserted
(E1 is Low, and E2 is High).
The time taken to enter Read mode (tELQV, tGLQV
or tBLQV) depends on which of the above signals
was the last to reach the appropriate level.
Data out (DQ15-DQ0) may be indeterminate
during tELQX, tGLQX and tBLQX, but data will always
be valid during tAVQV.
Write Mode
The device is in Write mode when
– Write Enable (W) is Low and
– Chip Enable (E1) is Low and
– the two Chip Enable signals are asserted
(E1 is Low, and E2 is High)
8/25
–
one of Upper Byte Enable (UB) or Lower
Byte Enable (LB) is Low, while the other is
High.
The Write cycle begins just after the event (the falling edge) that causes the last of these conditions
to become true (tAVWL, tAVEL or tAVBL).
The Write cycle is terminated by the earlier of a rising edge on Write Enable (W) or Chip Enable (E1).
If the device is in Write mode (Chip Enable (E1) is
Low, Output Enable (G) is Low, Upper Byte Enable (UB) or Lower Byte Enable (LB) is Low), then
Write Enable (W) will return the outputs to high impedance within tWHDZ of its falling edge. Care
must be taken to avoid bus contention in this type
of operation. Data input must be valid for tDVWH
before the rising edge of Write Enable (W), or for
tDVEH before the rising edge of Chip Enable (E1),
whichever occurs first, and remain valid for tBHDZ,
tWHDZ, tEHDZ.
Standby Mode
The device is in Standby mode when:
– Chip Enable (E1) is High and
– Chip Enable (E2) is High.
The input/output buffers and the decoding/control
logic are switched off, but the dynamic array continues to be refreshed. In this mode, the memory
current consumption, ISB, is reduced, and the data
remains valid.
Deep Power-down Mode
The device is in Deep Power-down mode when:
– Chip Enable (E2 is Low).
M69AW024BE
Table 2. Operating Modes
Operation
E2
E1
W
G
LB
UB
A0-A19
DQ0-DQ7
DQ8DQ15
ICC
Data
Retention
Standby (Deselect)
VIH
VIH
X (1)
X (1)
X (1)
X (1)
X (1)
Hi-Z
Hi-Z
ISB
Yes
Output Disabled (2)
VIH
VIL
VIH
VIH
X (1)
X (1)
Note (4)
Hi-Z
Hi-Z
ICC
Yes
Output Disabled
(No Read)
VIH
VIL
VIH
VIL
VIH
VIH
Valid
Hi-Z
Hi-Z
ICC
Yes
Upper Byte Read
VIH
VIL
VIH
VIL
VIH
VIL
Valid
Hi-Z
Output
Valid
ICC
Yes
Lower Byte Read
VIH
VIL
VIH
VIL
VIL
VIH
Valid
Output
Valid
Hi-Z
ICC
Yes
Word Read
VIH
VIL
VIH
VIL
VIL
VIL
Valid
ICC
Yes
Upper Byte Write
VIH
VIL
VIL
VIH
VIH
VIL
Valid
Invalid
Input Valid
ICC
Yes
Lower Byte Write
VIH
VIL
VIL
VIH
VIL
VIH
Valid
Input Valid
Invalid
ICC
Yes
Word Write
VIH
VIL
VIL
VIH
VIL
VIL
Valid
Input Valid
Input Valid
ICC
Yes
Power-down (3)
VIL
X (1)
X (1)
X (1)
X (1)
X (1)
X (1)
Hi-Z
Hi-Z
IPD
No
Note: 1.
2.
3.
4.
Output Valid
X = VIH or VIL.
Output Disable mode should not be kept longer than 1µs.
Power-down mode can be entered from Stand-by state, and all DQ pins are in Hi-Z state.
Can be either VIL or VIH but must be valid before Read or Write.
9/25
M69AW024BE
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings table may cause permanent damage to the device. Exposure to Absolute Maximum Rating conditions for extended
periods may affect device reliability. These are
stress ratings only and operation of the device at
these or any other conditions above those indicated in the Operating sections of this specification is
not implied.
Table 3. Absolute Maximum Ratings
Symbol
Parameter
Min
Max
Unit
IO
Output Current
–50
50
mA
TA
Ambient Operating Temperature
–30
85
°C
(1)
°C
TLEAD
Lead Temperature During Soldering
TSTG
Storage Temperature
–55
125
°C
VCC
Core Supply Voltage
–0.5
3.6
V
VIO
Input or Output Voltage
–0.5
3.6
V
Note: 1. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), and the European directive on Restrictions on
Hazardous Substances (RoHS) 2002/95/EU.
10/25
M69AW024BE
DC AND AC PARAMETERS
This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and
AC characteristics Tables that follow, are derived
from tests performed under the Measurement
Conditions summarized in Table 4., Operating and
AC Measurement Conditions. Designers should
check that the operating conditions in their circuit
match the operating conditions when relying on
the quoted parameters.
Table 4. Operating and AC Measurement Conditions
M69AW024BE
Parameter
–60
Unit
Min
Max
VCC Supply Voltage1
2.7
3.3
V
Ambient Operating Temperature
–30
85
°C
Load Capacitance (CL)
50
pF
Output Circuit Protection Resistance (R1)
50
Ω
Input Rise and Fall Times
4
ns
0 to VCC
V
Input and Output Timing Ref. Voltages
VCC/2
V
Output Transition Timing Ref. Voltages
VRL = 0.3VCC; VRH = 0.7VCC
V
Input Pulse Voltages
Input Transition Time (tτ) between VIL and VIH(2)
5
ns
Note: 1. All voltages are referenced to VSS.
2. The Input Transition Time used in AC measurements is 5ns. For other input transition times, see Table 9.
Figure 5. AC Measurement Load Circuit
Figure 6. AC Measurement I/O Waveform
VCC/2
I/O Timing Reference Voltage
R1
VCC
VCC/2
DEVICE
UNDER
TEST
OUT
CL
0V
Output Transition Timing Reference Voltage (1)
VCC
0V
0.7VCC
0.3VCC
AI07753c
CL includes JIG capacitance
AI07222c
Note: 1. This waveform is given for Hi-Z and data transition AC parameters only (see Note 8. below Table 7., Read and
Standby Modes AC Characteristics).
11/25
M69AW024BE
Table 5. Capacitance
Symbol
CIN
Test
Condition
Parameter
Max
Unit
VIN = 0V
5
pF
VOUT = 0V
8
pF
Input Capacitance on all pins (except DQ)
COUT (1)
Output Capacitance
Min
Note: 1. Outputs deselected.
Table 6. DC Characteristics
Symbol
ICC1
(1)
Parameter
Operating Supply
Current
ILI
Input Leakage
Current
ILO
IPD
ISB
Test Condition
VCC = 3.3V,
VIN = VIH or VIL,
E1 = VIL, E2 = VIH, IOUT = 0mA
Min
Max
Unit
tRC/tWC =
Min
20
mA
tRC/tWC =
1µs
3.0
mA
0V ≤ VIN ≤ VCC
–1
1
µA
Output Leakage
Current
0V ≤ VOUT ≤ VCC
–1
1
µA
Deep Power Down
Current
VCC = 3.3V,
VIN = VIH or VIL,
E2 ≤ 0.2V
10
µA
3.1V ≤ VCC ≤ 3.3V,
VIN ≤ 0.2V or ≥ VCC –0.2V,
E1 ≥ VCC –0.2V and
E2 ≥ VCC –0.2V), IOUT = 0mA
100
µA
2.7V ≤ VCC ≤ 3.1V,
VIN ≤ 0.2V or ≥ VCC –0.2V,
E1 ≥ VCC –0.2V and
E2 ≥ VCC –0.2V), IOUT = 0mA
70
µA
Standby Supply
Current CMOS
VIH (2)
Input High Voltage
2.7V ≤ VCC ≤ 3.3V
0.8VCC
VCC + 0.2
V
VIL (3)
Input Low Voltage
2.7V ≤ VCC ≤ 3.3V
–0.3
0.2VCC
V
3.1V ≤ VCC ≤ 3.3V, IOH = –0.5mA
2.5
V
2.7V ≤ VCC ≤ 3.1V, IOH = –0.5mA
2.2
V
VOH
VOL
Output High Voltage
Output Low Voltage
IOL = 1mA
Note: 1. Average AC current, Outputs open, cycling at tAVAX (min).
2. Maximum DC voltage on inputs and I/O pins is VCC + 0.2V.
During voltage transitions, data inputs may overshoot to VCC + 1.0V for a period of up to 5ns.
3. Minimum DC voltage on input or I/O pins is –0.3V.
During voltage transitions, data inputs may overshoot to VSS + 1.0V for a period of up to 5ns.
12/25
0.4
V
M69AW024BE
Table 7. Read and Standby Modes AC Characteristics
M69AW024BE
Symbol
tAVAX, tELEH
Alt.
Parameter
–60
Unit
Min
Max
70
1000
ns
tRC
Read Cycle Time
tELQV(3)
tCE
Chip Enable Access Time
60
ns
tGLQV(3)
tOE
Output Enable Access Time
40
ns
tAVQV(3,5)
tAA
Address Access Time
60
ns
tBLQV(3)
tBA
LB, UB Low to Output Valid
30
ns
tAXQX, tGHQX,
tBHQX, tEHQX
tOH
Output Hold Time after Chip Enable Low
5
ns
tELQX(4,8)
tCLZ
Chip Enable Low to Output Low-Z
5
ns
tGLQX(4,8)
tOLZ
Output Enable Low to Output Low-Z
0
ns
tBLQX(4,8)
tBLZ
LB, UB Low to Output Low-Z
0
ns
tEHQZ(8)
tCHZ
Chip Enable High to Output Hi-Z
20
ns
tGHQZ(8)
tOHZ
Output Enable High to Output Hi-Z
20
ns
tBHQZ(8)
tBHZ
LB, UB High to Output Hi-Z
20
ns
tAVEL
tASC
Address Set-up Time to Chip Enable Low
–5
ns
tAVGL
tASO
Address Valid to Output Enable Low
10
ns
tAXAV(5)
tAX
tEHAX(6)
tCHAH
Chip Enable High to Address Hold Time
–5
ns
tGHAX
tOHAH
Output Enable High to Address Hold Time
–5
ns
tWHGL(7)
tWHOL
Write Enable High to Output Enable Low (Read Operations)
10
tEHEL
tCP
Chip Enable High Pulse Width
10
(1,2)
(8)
Address Invalid Time
10
1000
ns
ns
ns
Note: 1. The maximum value of this timing is applicable if E1 is kept Low with addresses unchanged.If needed by the system operation,
please contact your local ST representative for relaxation of the 1000ns limitation.
2. Addresses should not be changed during tAVAX(min).
3. These parameters are measured according to the conditions on input and output timing reference voltage shown on Figure 6., AC
Measurement I/O Waveform.
4. The output load capacitance is 5pF without any other load.
5. These timings are given for E1 Low.
6. tAVAX(min) must be satisfied.
7. If the current value of tWHGL is lower than the minimum value given in the above table, tAVQV during the following Read operation
may increase by tWHGL(current) – tWHGL(min).
8. All timings are measured according to the conditions for output transition timing reference voltage shown on Figure 6., AC Measurement I/O Waveform.
13/25
M69AW024BE
Figure 7. Read Mode AC Waveforms
tELEH
A0-A19
ADDRESS VALID
VALID
tAVEL
tAVEL
tEHAX
tELQV
E1
tEHEL
tGLQV
tEHQZ
G
tGHQZ
tBLQV
LB, UB
tBHQZ
tBLQX
tGLQX
tEHQX
tELQX
DQ0-DQ15
VALID DATA OUTPUT
AI09936
Note: E2 = High and W = High.
Figure 8. Address Access after G Controlled Read AC Waveforms
tAVAX
tAVAX
A0-A19
ADDRESS VALID
ADDRESS VALID
tAVQV
tAVQV
tAXAV
tAXAV
E1
tGLQV
tAVGL
G
tGHQX
UB, LB
tGLQX
DQ0-DQ15
tAXQX
DATA OUT
tGHQZ
DATA
OUT
AI09937
Note: 1. E2 = High and W = High.
2. During the two consecutive Read operations, the Output Enable signal, G, can either remain Low, or be toggled.
14/25
M69AW024BE
Figure 9. UB/LB Controlled Read AC Waveforms
tAXAV
tAXAV
tAVAX
A0-A19
ADDRESS VALID
tAVQV
E1
Low
G
Low
tBLQV
tBLQV
LB
tBHQZ
UB
tBLQX
DQ0-DQ7
tBLQV
tBLQX
tBHQX
VALID DATA OUT
tBHQZ
tBHQX
VALID DATA OUT
tBHQZ
tBLQX
DQ8-DQ15
tBHQX
VALID DATA OUTPUT
ai09938b
Note: E2 = High and W = High.
15/25
M69AW024BE
Table 8. Write Mode AC Characteristics
M69AW024BE
Symbol
tAVAX,
Alt.
Parameter
–60
Unit
Min
Max
1000
tWC
Chip Enable Write Cycle Time
70
tAS
Address Set-up Time to Chip Enable Low
0
ns
tCW
Chip Enable Write Pulse Width
45
ns
tWP
Write Enable Write Pulse Width
45
ns
tBLBH(3)
tBW
LB, UB Pulse (Write Operation)
45
ns
tBHWL(4)
tBS
LB, UB Byte Masking Set-up Time
–5
ns
tWHBL(5)
tBH
LB, UB Hold Time
–5
ns
tBHAX(6)
tWR
Write Recovery Time
0
ns
tEHEL
tCP
Chip Enable High Pulse
10
ns
tWHWL
tWHP
Write Enable High Pulse
10
1000
ns
tBHBL
tBHP
LB, UB High Pulse
10
1000
ns
tDVEH, tDVWH,
tDVBH
tDS
Data Set-up Time
15
ns
tEHDZ, tWHDZ,
tBHDZ, tGHDZ
tDH
Data Hold Time
0
ns
tGHEL(7)
tOHCL
Output Enable High to Chip Enable Low Set-up Time
–5
ns
tGHAV(8)
tOES
Output Enable Set-up Time
0
ns
tBLBH2
tBWO
LB, UB Low to LB, UB High for Page Access
30
ns
tELAX(1,2)
tAVEL, tAVBL,
tAVWL(2)
tELEH(3)
tWLBH,
tWLWH(3)
tBLWH,
tWHAX, tEHAX,
ns
Note: 1. The maximum value of this timing is applicable if E1 is kept Low without any address change. If needed by system operation, please
contact your local ST representative for relaxation of the 1000ns limitation.
2. Minimum value must be equal to or greater than the sum of the write pulse (tELEH, tWLBH or tBLBH and the write recovery time
tWHAV.
3. Write pulse is defined from the falling edge of E1, W, or LB/UB, whichever occurs last.
4. Applicable to Byte Masking only. Byte Masking set-up time is defined from the falling edge of E1 or W whichever occurs last.
5. Applicable to Byte Masking only. Byte Masking hold time is defined from the rising edge of E1 or W whichever occurs first.
6. Write recovery is defined from the rising edge of E1, W, or LB/UB, whichever occurs first.
7. If G is Low after tGHEL(min), the read cycle is initiated. In other words, G must be brought High within tGHEL (min) after E1 is brought
Low. Once the read cycle is initiated, new write pulse should be input after tAVAX or tELEH minimum value.
8. If G is Low after new address input, the read cycle is initiated. In other words, G must be brought High at the same time or before
new address valid. Once the read cycle is initiated, new write pulse should be input after tAVAX or tELEH minimum value.
16/25
M69AW024BE
Figure 10. Write AC Waveforms
tELAX
A0-A19
ADDRESS VALID
ADDRESS VALID
tEHAX,tWHAX,
tBHAX
tAVEL
tELEH
tAVEL
E1
tEHEL
tAVWL
tWLWH
tAVWL
W
tBHAX
tAVBL
tWHWL
tBLWH
tAVBL
LB, UB
tGHEL
tBHBL
G
tDVEH
tDVWH
tDVBH
tEHDZ
tWHDZ
tBHDZ
VALID DATA INPUT
DQ0-DQ15
ai09939
Note: 1. E2 must be High during the Write cycle.
Figure 11. W Controlled, Write AC Waveforms
A0-A19
tAVAX
tAVAX
tAXAV
ADDRESS VALID
ADDRESS VALID
tGHAX
E1
tWHAX
Low
tAVWL
tWLWH
tAVWL
tWLWH
tWHAX
W
tWHWL
LB, UB
tGHAV
G
tDVWH
tGHDZ
DQ0-DQ15
tWHDZ
VALID DATA
INPUT
tDVWH
tWHDZ
VALID DATA
INPUT
AI09940
Note: 1. E2 must be High during the Write cycle.
17/25
M69AW024BE
Figure 12. Write Enable and UB/LB Controlled, Byte Write AC Waveforms 1
tAVAX
tAVAX
A0-A19
ADDRESS VALID
ADDRESS VALID
tAXAV
E1
Low
tAVWL
tWLBH
tWLBH
tAVWL
W
tBHAX
tBHAX
tWHWL
tWHBL
LB
tBHWL
tBHWL
tWHBL
UB
tDVBH
tBHDZ
VALID DATA
INPUT
DQ0-DQ7
tDVBH
tBHDZ
VALID DATA
INPUT
DQ8-DQ15
AI09941
Note: 1. E2 and G must be High during the Write cycle.
Figure 13. Write Enable and UB/LB Controlled, Byte Write AC Waveforms 2
tAVAX
tAVAX
A0-A19
E1
ADDRESS VALID
ADDRESS VALID
Low
tAVBL
tBLWH
tWHWL
W
tWHAX
tWHAX
tBHWL
tWHBL
LB
tAVBL
tBHWL
tWHBL
tBLWH
UB
tDVWH
DQ0-DQ7
tWHDZ
VALID DATA
INPUT
tDVWH
DQ8-DQ15
tWHDZ
VALID DATA
INPUT
AI09942
Note: 1. E2 and G must be High during the Write cycle.
18/25
M69AW024BE
Figure 14. Write Enable and UB/LB Controlled, Byte Write AC Waveforms 3
tAVAX
tAVAX
A0-A19
E1
ADDRESS VALID
tAXAV
Low
tAVBL
ADDRESS VALID
tWHWL
tBLBH
W
tBHAX
tWHBL
tBHWL
LB
tAVBL
tBHWL
tBLBH
tBHAX
tWHBL
UB
tDVBH
tBHDZ
VALID DATA
INPUT
DQ0-DQ7
tBVWH
tBHDZ
VALID DATA
INPUT
DQ8-DQ15
AI09943
Note: 1. E2 and G must be High during the Write cycle.
Figure 15. Write Enable and UB/LB Controlled, Byte Write AC Waveforms 4
tAVAX
tAVAX
A0-A19
E1
ADDRESS VALID
ADDRESS VALID
Low
W
tBHAX
tAVBL
tBLBH
tBLBH
tAVBL
tBHAX
LB
tBLBH2
tAVBL
tBHBL
tDVBH
tBHDZ
tDVBH
tBHDZ
VALID DATA
INPUT
DQ0-DQ7
VALID DATA
INPUT
tBHAX
tBLBH
tBLBH2
tAVBL
tBLBH
tBHAX
UB
tBHBL
tDVBH
DQ8-DQ15
tBHDZ tDVBH
VALID DATA
INPUT
tBHDZ
VALID DATA
INPUT
AI09944
Note: 1. E2 and G must be High during the Write cycle.
19/25
M69AW024BE
Table 9. Standby, Power-Down and Power-Up AC Parameters
M69AW024BE
Symbol
Alt.
Parameter
–60
Min
Unit
Max
tCLEL
tCSP
E2 Low Setup Time for Power Down Entry
10
ns
tELCH
tC2LP
E2 Low Hold Time after Power Down Entry
80
ns
tCHEL(1)
tCHH
E1 High Hold Time following E2 High after Power-Down Exit
E1 High Hold Time following E2 High after Power-Up
300
µs
tEHCH
tCHS
E1 High Setup Time following E2 High after Power-Down Exit
0
ns
tEHGH
tCHOX
E1 High to G Invalid Time for Standby Entry
10
ns
tEHWH(2)
tCHWX
E1 High to W Invalid Time for Standby Entry
10
ns
tτ(3)
tτ
Input Transition Time
1
tEHCH2
tC2LH
Power-Up Time
50
Note: 1.
2.
3.
4.
25
ns
µs
Applicable both to Power-Down and Power-Up.
Some data might be written into any address location if tEHWL (min) is not satisfied.
The Input Transition Time used in AC measurements is 5ns.
TBD = to be defined.
Figure 16. Power-up Mode AC Waveforms - 1
E1
tEHCH
tEHCH2
tCHEL
E2
VCC
VCC min
0V
AI07740b
Note: tEHCH2 is defined from VCC reaching VCC(min).
Figure 17. Power-up Mode AC Waveforms - 2
E1
tEHEL
E2
VDD
VDDmin
AI09945
Note: tCHEL is defined from VCC reaching VCC(min) and applicable both for E1 and E2 signals.
20/25
M69AW024BE
Figure 18. Power-Down Entry ad Exit AC Waveforms
E1
tEHCH
E2
tCLEL
DQ0-D15
tELCH
tCHEL
Hi-Z
Power-Down
Entry
Power-Down Mode
Power-Down
Exit
AI09946
Note: The Power-Down mode timing can also be used as a Reset timing if the Power-up mode timing cannot be satisfied.
Figure 19. Standby Mode Entry AC Waveforms, after Read or Write
E1
E1
tEHGH
High
tEHWH
G
G
High
W
W
Active (Read)
Standby
Active (Write)
Standby
AI07741b
Note: Both tEHGH and tEHWH define the earliest entry timing for Standby mode. If one of these timings is not satisfied, it takes a tAVAX(min)
delay to enter Standby mode from E1 rising edge.
21/25
M69AW024BE
PACKAGE MECHANICAL
Figure 20. TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch, Package Outline, Bottom View
D
D1
FD
FE
SD
SE
BALL "A1"
E
E1
ddd
e
e
b
A
A2
A1
BGA-Z26
Note: Drawing is not to scale.
Table 10. TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Typ
Min
1.200
A1
0.0102
0.900
b
Max
0.0472
0.260
A2
0.350
0.450
0.0354
0.0138
0.0177
D
6.000
5.900
6.100
0.2362
0.2323
0.2402
D1
3.750
–
–
0.1476
–
–
ddd
22/25
Max
0.100
0.0039
E
8.000
7.900
8.100
0.3150
0.3110
0.3189
E1
5.250
–
–
0.2067
–
–
e
0.750
–
–
0.0295
–
–
FD
1.125
–
–
0.0443
–
–
FE
1.375
–
–
0.0541
–
–
SD
0.375
–
–
0.0148
–
–
SE
0.375
–
–
0.0148
–
–
M69AW024BE
PART NUMBERING
Table 11. Ordering Information Scheme
Example:
M69AW024BE
60 ZB
8
F
Device Type
M69 = 1T/1C Memory Cell Architecture
Mode
A = Asynchronous
Operating Voltage
W = 2.7 to 3.3V
Array Organization
024 = 16 Mbit (1M x16)
Option 1
B = 2 Chip Enable
Option 2
E = E die
Speed Class
60 = 60ns
Package
ZB = TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch
Temperature Range
8 = –30 to 85 °C
Packing Option
F = RoHS Compliant Package, Tape & Reel Packing
The notation used for the device number is as shown in Table 11.. For a list of available options (speed,
package, etc.) or for further information on any aspect of this device, please contact your nearest STMicroelectronics Sales Office.
23/25
M69AW024BE
REVISION HISTORY
Table 12. Document Revision History
Date
Rev.
28-Jun-2004
0.1
First Issue
29-Jun-2004
0.2
Table 11., Ordering Information Scheme updated.
22-Mar-2005
1.0
tEHQX added in Table 7., Read and Standby Modes AC Characteristics.
tGHDZ and tBHDZ added in Table 8., Write Mode AC Characteristics.
Figure 19., Standby Mode Entry AC Waveforms, after Read or Write updated.
RoHS Packing option added in FEATURES SUMMARY and Table 11., Ordering
Information Scheme. TLEAD parameter added in Table 3., Absolute Maximum Ratings
05-Apr-2005
2.0
Figure title modified and Note 2 added below Figure 8.
24/25
Revision Details
M69AW024BE
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
25/25