Freescale Semiconductor Data Sheet: Advance Information Document Number: MCF53017 Rev. 3, 8/2009 MCF53017 LQFP–208 28 x 28 MCF5301x Data Sheet Features • Version 3 ColdFire® core with EMAC • Up to 211 Dhrystone 2.1 MIPS @ 240 MHz • 16 KBytes unified instruction/data cache • 128 KBytes internal SRAM with standby power supply support • Crossbar switch technology (XBS) for concurrent access to peripherals or RAM from multiple bus masters • Enhanced Secure Digital Host Controller (eSDHC) – Supports CE-ATA, SD Memory, miniSD Memory, SDIO, miniSDIO, SD Combo, MMC, MMC plus, MMC 4x, and MMC RS cards • Two ISO7816 smart card interfaces • IC identification module • Voice-band audio codec with integrated speaker, microphone, headphone, and handset amplifiers • 16- or 32-bit SDR, 16-bit DDR/mobile-DDR SDRAM controller • USB 2.0 On-the-Go controller • USB host controller • 2 10/100 Ethernet MACs • Coprocessor for acceleration of the DES, 3DES, AES, MD5, and SHA-1 algorithms • Random number generator • 16-channel DMA controller • Synchronous serial interface • 4 periodic interrupt timers • 4 32-bit timers with DMA support • Real-time clock (RTC) module with standby support • DMA-supported serial peripheral interface (DSPI) • 3 UARTs • I2C bus interface This document contains information on a new product. Specifications and information herein are subject to change without notice. © Freescale Semiconductor, Inc., 2009. All rights reserved. Preliminary—Subject to Change Without Notice MAPBGA–256 17 x 17 Table of Contents 1 2 3 4 5 MCF5301x Family Comparison . . . . . . . . . . . . . . . . . . . . . . . .4 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Hardware Design Considerations . . . . . . . . . . . . . . . . . . . . . . .5 3.1 PLL Power Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 3.2 USB Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 3.3 Supply Voltage Sequencing . . . . . . . . . . . . . . . . . . . . . .6 3.3.1 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . .7 3.3.2 Power Down Sequence . . . . . . . . . . . . . . . . . . . .7 3.4 Power Consumption Specifications. . . . . . . . . . . . . . . . .8 Pin Assignments and Reset States . . . . . . . . . . . . . . . . . . . . .9 4.1 Signal Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 4.2 Pinout—208 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 4.3 Pinout–256 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . .18 Preliminary Electrical Characteristics . . . . . . . . . . . . . . . . . . .19 5.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .20 5.3 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5.4 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .21 5.4.1 PLL Power Filtering . . . . . . . . . . . . . . . . . . . . . .22 5.4.2 USB Power Filtering. . . . . . . . . . . . . . . . . . . . . .22 5.4.3 Supply Voltage Sequencing and Separation Cautions . . . . . . . . . . . . . . . . . . . . .23 5.5 Oscillator and PLL Electrical Characteristics . . . . . . . .24 5.6 External Interface Timing Characteristics . . . . . . . . . . .25 5.6.1 FlexBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 5.7 SDRAM Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 5.7.1 SDR SDRAM AC Timing Characteristics. . . . . .27 5.7.2 DDR SDRAM AC Timing Characteristics . . . . .30 5.8 General Purpose I/O Timing . . . . . . . . . . . . . . . . . . . . .32 5.9 Reset and Configuration Override Timing. . . . . . . . . . .33 5.10 USB On-The-Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 6 7 8 5.11 SSI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . 5.12 I2C Input/Output Timing Specifications . . . . . . . . . . . . 5.13 Fast Ethernet AC Timing Specifications . . . . . . . . . . . 5.13.1 Receive Signal Timing Specifications . . . . . . . 5.13.2 Transmit Signal Timing Specifications . . . . . . . 5.13.3 Asynchronous Input Signal Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 5.13.4 MII Serial Management Timing Specifications . 5.14 32-Bit Timer Module Timing Specifications . . . . . . . . . 5.15 DSPI Timing Specifications . . . . . . . . . . . . . . . . . . . . . 5.16 eSDHC Electrical Specifications . . . . . . . . . . . . . . . . . 5.16.1 eSDHC Timing . . . . . . . . . . . . . . . . . . . . . . . . . 5.16.2 eSDHC Electrical DC Characterisics . . . . . . . . 5.17 SIM Electrical Specifications . . . . . . . . . . . . . . . . . . . . 5.17.1 General Timing Requirements . . . . . . . . . . . . . 5.17.2 Reset Sequence. . . . . . . . . . . . . . . . . . . . . . . . 5.17.3 Power Down Sequence . . . . . . . . . . . . . . . . . . 5.18 IIM/Fusebox Electrical Specifications . . . . . . . . . . . . . 5.19 Voice Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.19.1 Voice Codec ADC Specifications . . . . . . . . . . . 5.19.2 Voice Codec DAC Specifications . . . . . . . . . . . 5.20 Integrated Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 5.20.1 Speaker Amplifier . . . . . . . . . . . . . . . . . . . . . . . 5.20.2 Handset Amplifier . . . . . . . . . . . . . . . . . . . . . . . 5.20.3 Headphone Amplifier . . . . . . . . . . . . . . . . . . . . 5.20.4 Microphone Amplifier . . . . . . . . . . . . . . . . . . . . 5.21 JTAG and Boundary Scan Timing . . . . . . . . . . . . . . . . 5.22 Debug AC Timing Specifications . . . . . . . . . . . . . . . . . Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 35 37 37 37 38 38 39 39 41 41 42 43 43 44 45 46 46 47 51 55 55 56 57 57 58 60 61 61 62 MCF5301x Data Sheet, Rev. 3 2 Preliminary—Subject to Change Without Notice Freescale Semiconductor MCF53017 Version 3 ColdFire Core 16K Instruction/ Data Cache 128K SRAM EMAC BDM Hardware Divide CAU JTAG Oscillator PLL USB Host 2 FECs eSDHC eDMA USB OTG Crossbar Switch (XBS) Splitter Peripheral Bridge Codec Smart Card Interface IIM DSPI FlexBus SSI RNG I2C RTC & Oscillator GPIO 2 INTCs 2 EPORTs 3 UARTs 4 DMA Timers 4 PITs SDRAM Controller LEGEND BDM CAU DSPI eDMA eSDHC EMAC EPORT FEC GPIO I2 C – Background debug module – Cryptography acceleration unit – DMA serial peripheral interface – Enhanced direct memory access module – Enhanced Secure Digital host controller – Enchanced multiply-accumulate unit – Edge port module – Fast Ethernet Controller – General purpose input/output module – Inter-Integrated Circuit IIM INTC JTAG PCI PIT PLL RNG RTC SSI USB OTG – IC identification module – Interrupt controller – Joint Test Action Group interface – Peripheral Component Interconnect – Programmable interrupt timers – Phase locked loop module – Random number generator – Real time clock – Synchronous serial interface – Universal Serial Bus On-the-Go controller MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 3 MCF5301x Family Comparison 1 MCF5301x Family Comparison The following table compares the various device derivatives available within the MCF5301x family. MCF53012 MCF53013 MCF53014 MCF53015 MCF53016 MCF53017 Version 3 ColdFire Core with EMAC (enhanced multiply-accumulate unit) MCF53011 Module MCF53010 Table 1. MCF5301x Family Configurations • • • • • • • • Core (system) clock up to 240 MHz Peripheral and external bus clock (Core clock ÷ 3) up to 80 MHz Performance (Dhrystone/2.1 MIPS) up to 211 Unified data/instruction cache 16 Kbytes Static RAM (SRAM) 128 Kbytes Voice-over-IP software — — • • — — • • Cryptography acceleration unit (CAU) — • — • — • — • Random number generator — • — • — • — • Smart card interface (SIM) 1 port Voice-band audio codec Integrated audio amplifiers 2 ports • • • • • • • • — — — — • • • • IC identification module (IIM) 2 Kbits Enhanced Secure Digital host controller (eSDHC) • • • • • • • • SDR/DDR SDRAM controller • • • • • • • • FlexBus external interface • • • • • • • • USB 2.0 On-the-Go • • • • • • • • — — — — • • • • Synchronous serial interface (SSI) • • • • • • • • Fast Ethernet controller (FEC) 2 2 2 2 2 2 2 2 UARTs 3 3 3 3 3 3 3 3 I • • • • • • • • DSPI • • • • • • • • Real-time clock • • • • • • • • 32-bit DMA timers 4 4 4 4 4 4 4 4 Watchdog timer (WDT) • • • • • • • • Periodic interrupt timers (PIT) 4 4 4 4 4 4 4 4 Edge port module (EPORT) • • • • • • • • Interrupt controllers (INTC) 2 2 2 2 2 2 2 2 USB 2.0 Host 2C MCF5301x Data Sheet, Rev. 3 4 Preliminary—Subject to Change Without Notice Freescale Semiconductor Ordering Information MCF53010 MCF53011 MCF53012 MCF53013 MCF53014 MCF53015 MCF53016 MCF53017 Table 1. MCF5301x Family Configurations (continued) 16-channel direct memory access (DMA) • • • • • • • • General purpose I/O Module (GPIO) • • • • • • • • JTAG - IEEE® 1149.1 Test Access Port • • • • • • • • Module Package 2 208 LQFP 256 MAPBGA Ordering Information Table 2. Orderable Part Numbers Freescale Part Number Description Package MCF53010CQT240 MCF53010 Microprocessor MCF53011CQT240 MCF53011 Microprocessor MCF53012CQT240 MCF53012 Microprocessor MCF53013CQT240 MCF53013 Microprocessor MCF53014CMJ240J MCF53014 Microprocessor MCF53015CMJ240J MCF53015 Microprocessor MCF53016CMJ240J MCF53016 Microprocessor MCF53017CMJ240J MCF53017 Microprocessor Speed Temperature 240 MHz –40° to +85° C 208 LQFP 256 MAPBGA 3 Hardware Design Considerations 3.1 PLL Power Filtering To further enhance noise isolation, an external filter is strongly recommended for PLL analog VDD pins. The filter shown in Figure 1 should be connected between the board IVDD and the PLLVDD pins. The resistor and capacitors should be placed as close to the dedicated PVDD pin as possible. The 10-ohm resistor in the given filter is required, do not implement the filter circuit using only capacitors. The PVDD pins draw very little current, so concerns regarding voltage loss across the 10-ohm resistor are not valid. 10 Ω Board IVDD PLL VDD Pin 10 µF 0.1 µF GND Figure 1. System PLL VDD Power Filter MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 5 Hardware Design Considerations 3.2 USB Power Filtering To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 2 should be connected between the board EVDD and each of the USBVDD pins. The resistor and capacitors should be placed as close to the dedicated USBVDD pin as possible. Board EVDD USB VDD Pin 0Ω 10 µF 0.1 µF GND Figure 2. USB VDD Power Filter NOTE In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel with those shown. 3.3 Supply Voltage Sequencing Figure 3 shows situations in sequencing the I/O VDD (EVDD), SDRAM VDD (SDVDD), PLL VDD (PVDD), and internal logic / core VDD (IVDD). The relationship between SDVDD and EVDD is non-critical during power-up and power-down sequences. Both SDVDD (2.5V or 1.8V) and EVDD are specified relative to IVDD. EVDD, USBVDD (3.3V) 3.3V DC Power Supply Voltage Supplies Stable 2.5V SDVDD (2.5V - DDR) 1.8V SDVDD (1.8V - DDR) 1.2V IVDD, PVDD 1 2 0 Time Notes: 1 IVDD should not exceed EVDD, SDVDD or PVDD by more than 0.4V at any time, including power-up. Recommended that IVDD/PVDD should track EVDD/SDVDD up to 0.9V then separate for completion of ramps 3 Input voltage must not be greater than the supply voltage (EVDD, SDVDD, IVDD, or PVDD) by more than 0.5V at any time, including during power-up. 4 Use 1 microsecond or slower rise time for all supplies. 2 Figure 3. Supply Voltage Sequencing and Separation Cautions MCF5301x Data Sheet, Rev. 3 6 Preliminary—Subject to Change Without Notice Freescale Semiconductor Hardware Design Considerations 3.3.1 Power Up Sequence If EVDD/SDVDD are powered up with the IVDD at 0V, then the sense circuits in the I/O pads will cause all pad output drivers connected to the EVDD/SDVDD to be in a high impedance state. There is no limit on how long after EVDD/SDVDD powers up before IVDD must power up. IVDD should not lead the EVDD, SDVDD or PVDD by more than 0.4V during power ramp up or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 microsecond to avoid turning on the internal ESD protection clamp diodes. The recommended power up sequence is as follows: 1. 2. 3.3.2 Use 1 microsecond or slower rise time for all supplies. IVDD/PVDD and EVDD/SDVDD should track up to 0.9V and then separate for the completion of ramps with EVDD/SDVDD going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator. Power Down Sequence If IVDD/PVDD are powered down first, then sense circuits in the I/O pads will cause all output drivers to be in a high impedance state. There is no limit on how long after IVDD and PVDD power down before EVDD or SDVDD must power down. IVDD should not lag EVDD, SDVDD, or PVDD going low by more than 0.4V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies. The recommended power down sequence is as follows: 1. 2. Drop IVDD/PVDD to 0V. Drop EVDD/SDVDD supplies. MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 7 Hardware Design Considerations 3.4 Power Consumption Specifications Estimated maximum RUN mode power consumption measurements are shown in the below figure. Estimated Power Consumption vs. Core Frequency Power Consumption (mW) 300 250 200 150 100 50 0 0 40 80 120 160 200 240 Core Frequency (MHz) Figure 4. Estimated Maximum RUN Mode Power Consumption Table 3 lists estimated maximum power and current consumption for the device in various operating modes. Table 3. Estimated Maximum Power Consumption Specifications Characteristic Symbol Run Mode — Total Power Dissipation Static Dynamic Core Operating Supply Current 1 Run Mode Max Unit — — — TBD TBD TBD mW mW mW — 82.9 mA — — — TBD TBD TBD mA mA mA IDD Pad Operating Supply Current Run Mode (application dependent) Wait Mode Stop Mode 1 Typical EIDD Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load. MCF5301x Data Sheet, Rev. 3 8 Preliminary—Subject to Change Without Notice Freescale Semiconductor Pin Assignments and Reset States Table 4. Current Measurementas at Different VCO vs. Core Frequencies 480VCO, 240MHz core 240VCO, 120MHz core 480VCO, 120MHz core 480VCO, 48MHz core Limp Mode, 20HMHz crystal Executing 55.3mA 28.36mA 30.00mA 13.6mA 5.90mA Run 39.5mA 20.3mA 22.02mA 10.29mA 4.42mA Wait 16.28mA 8.53mA 10.23mA 5.53mA 2.43mA Doze 16.19mA 8.53mA 10.18mA 5.55mA 2.41mA Stop(0) 8.41mA 4.60mA 6.29mA 3.90mA 1.78mA Stop(1) 8.13mA 4.48mA 6.15mA 3.88mA 1.77mA Stop(2) 1.83mA 1.86mA 1.87mA 1.82mA 1.76mA Stop(3) 0.65mA 0.66mA 0.67mA 0.67mA 0.65mA Stop Mode 4 Pin Assignments and Reset States 4.1 Signal Multiplexing The following table lists all the MCF5301x pins grouped by function. The “Dir” column is the direction for the primary function of the pin only. Refer to Section 4.2, “Pinout—208 LQFP,” and Section 4.3, “Pinout–256 MAPBGA,” for package diagrams. For a more detailed discussion of the MCF3xxx signals, consult the MCF5301x Reference Manual (MCF53017RM). NOTE In this table and throughout this document a single signal within a group is designated without square brackets (i.e., FB_A23), while designations for multiple signals within a group use brackets (i.e., FB_A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon. NOTE The primary functionality of a pin is not necessarily its default functionality. Most pins that are muxed with GPIO will default to their GPIO functionality. See Table 5 for a list of the exceptions. Table 5. Special-Case Default Signal Functionality Pin Default Signal FB_BE/BWE[3:0] FB_BE/BWE[3:0] FB_CS[3:0] FB_CS[3:0] FB_OE FB_OE FB_TA FB_TA FB_R/W FB_R/W FB_TS FB_TS MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 9 Pin Assignments and Reset States Pull-up (U)1 Pull-down (D) Direction2 Voltage Domain Table 6. MCF5301x Signal Information and Muxing MCF53010 MCF53011 MCF53012 MCF53013 RESET — — — U I EVDD 41 M3 RSTOUT — — — — O EVDD 42 N1 Signal Name GPIO Alternate 1 Alternate 2 MCF53014 MCF53015 MCF53016 MCF53017 208 LQFP 256 MAPBGA Reset Clock EXTAL — — — — I EVDD 49 T2 XTAL — — — U3 O EVDD 50 T3 — I EVDD 55, 17 J5, G5 Mode Selection BOOTMOD[1:0] — — — FlexBus FB_A[23:22] — FB_CS[3:2] — — O SDVDD 115, 114 P16, N16 FB_A[21:16] — — — — O SDVDD 113–108 R16, N14, N15, P15-13 FB_A[15:14] — SD_BA[1:0] — — O SDVDD 107, 106 R15, R14 FB_A[13:11] — SD_A[13:11] — — O SDVDD 105–103 N13, R12, R13 FB_A10 — — — — O SDVDD 100 N12 FB_A[9:0] — SD_A[9:0] — — O SDVDD 99–97 95–89 P12, T14, T15, R11, P11, N11, T13, R10, T11, T12 FB_D[31:16] — SD_D[31:16] — — I/O SDVDD 208–198, 57–62, 64, 65 B3, A2, D6, C5, B4, A3, B5, C6, D12, C14, B14, C13, D11, B13, A14, A13 FB_D[15:0] — FB_D[31:16] — — I/O SDVDD 182–189, 177–170 FB_CLK — — — — O SDVDD FB_BE/BWE[3:0] PBE[3:0] SD_DQM[3:0] — — O SDVDD 197, 166, 179, 178 FB_CS[5:4] PCS[5:4] — — — O SDVDD — B6, C7 FB_CS1 PCS1 SD_CS1 — — O SDVDD 5 D2 FB_CS0 PCS0 FB_CS4 — — O SDVDD 6 C2 FB_OE PFBCTL3 — — — O SDVDD 1 D4 FB_TA PFBCTL2 — — U I SDVDD 3 B2 FB_R/W PFBCTL1 — — — O SDVDD 2 C3 FB_TS PFBCTL0 DACK0 — — O SDVDD 4 D3 — O SDVDD 206 C4 153 B9, A9, A8, D7, B8, C8, D8, B7, C10, A10, B10, D10, C11, A11, B11, A12 D13 A4, B12, C9, D9 SDRAM Controller SD_A10 — — — MCF5301x Data Sheet, Rev. 3 10 Preliminary—Subject to Change Without Notice Freescale Semiconductor Pin Assignments and Reset States Pull-up (U)1 Pull-down (D) Direction2 Voltage Domain Table 6. MCF5301x Signal Information and Muxing (continued) MCF53010 MCF53011 MCF53012 MCF53013 208 LQFP 256 MAPBGA — O SDVDD 154 D15 — — O SDVDD 151 B15 — — — O SDVDD 190 A7 — — — — O SDVDD 191 A6 SD_CS0 — — — — O SDVDD 155 A15 SD_DQS[1:0] — — — — O SDVDD 196, 167 C12, A5 SD_RAS — — — — O SDVDD 152 C15 SD_SDR_DQS — — — — I SDVDD 207 D5 SD_WE — — — — O SDVDD 150 D14 Signal Name GPIO Alternate 1 Alternate 2 SD_CAS — — — SD_CKE — — SD_CLK — SD_CLK MCF53014 MCF53015 MCF53016 MCF53017 External Interrupts Port 14,5 IRQ1DEBUG[7:4] PIRQ1DEBUG [7:4] DDATA[3:0] — — I EVDD — H1, H4-2 IRQ1DEBUG[3:0] PIRQ1DEBUG [3:0] PST[3:0] — — I EVDD — K14, H14, K15, J13 IRQ1FEC7 PIRQ1FEC7 RMII1_CRS_DV MII0_CRS — I EVDD 29 J1 IRQ1FEC6 PIRQ1FEC6 RMII1_RXER MII0_RXCLK — I EVDD 30 J2 IRQ1FEC5 PIRQ1FEC5 RMII1_TXEN MII0_TXCLK — I EVDD 31 K4 IRQ1FEC4 PIRQ1FEC4 RMII1_REF_CLK — D I EVDD 32 J3 IRQ1FEC[3:2] PIRQ1FEC[3:2] RMII1_RXD[1:0] MII0_RXD[3:2] — I EVDD 33, 34 J4, K1 IRQ1FEC[1:0] PIRQ1FEC[1:0] RMII1_TXD[1:0] MII0_TXD[3:2] — I EVDD 35, 36 K2, L1 External Interrupts Port 05 IRQ07 PIRQ07 — — U I EVDD 10 E4 IRQ06 PIRQ06 — USB_CLKIN U I EVDD — L13 IRQ04 PIRQ04 DREQ0 — U I EVDD 19 D1 IRQ01 PIRQ01 DREQ1 — U I EVDD 11 F4 Enhanced Secure Digital Host Controller SDHC_DAT3 PSDHC5 — — UD I/O EVDD 60 N4 SDHC_DAT[2:0] PSDHC[4:2] — — U I/O EVDD 61–63 R5, N6, N5 SDHC_CMD PSDHC1 — — U I/O EVDD 59 R4 SDHC_CLK PSDHC0 — — — O EVDD 58 R3 MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 11 Pin Assignments and Reset States MCF53014 MCF53015 MCF53016 MCF53017 208 LQFP 256 MAPBGA Direction2 MCF53010 MCF53011 MCF53012 MCF53013 Pull-up (U)1 Pull-down (D) Voltage Domain Table 6. MCF5301x Signal Information and Muxing (continued) CODEC_ADCN — AMP_MICN — — I 85 P10 CODEC_ADCP — AMP_MICP — — I 84 P9 CODEC_BGRVREF — — — — I 86 N9 CODEC_DACN — AMP_HSN — — O 75 R7 CODEC_DACP — AMP_HSP — — O 67 R6 CODEC_REGBYP — — — — I 81 P6 CODEC_REFN — — — — I 79 P8 CODEC_REFP — — — — I 78 P7 CODEC_VAG — — — — I 82 N7 Signal Name GPIO Alternate 1 Alternate 2 Codec Amplifiers AMP_HPDUMMY — — — — O — R9 AMP_HPOUT — — — — O — R8 AMP_SPKRN — — — — O — T9 AMP_SPKRP — — — — O — T7 Smart Card interface 1 SIM1_DATA PSIM14 SSI_TXD U1TXD UD I/O EVDD 141 E14 SIM1_VEN PSIM13 SSI_RXD U1RXD UD O EVDD 142 D16 SIM1_RST PSIM12 SSI_FS U1RTS — O EVDD 144 E13 SIM1_PD PSIM11 SSI_BCLK U1CTS — O EVDD 145 E15 SIM1_CLK PSIM10 SSI_MCLK — — O EVDD 143 F13 Smart Card interface 0 SIM0_DATA PSIM04 — — — I/O EVDD — L3 SIM0_VEN PSIM03 — — — O EVDD — M2 SIM0_RST PSIM02 — — — O EVDD — F16 SIM0_PD PSIM01 — — — O EVDD — L14 SIM0_CLK PSIM00 — — — O EVDD — M16 USB On-the-Go USBO_DM — — — — O USB VDD 148 C16 USBO_DP — — — — O USB VDD 149 B16 MCF5301x Data Sheet, Rev. 3 12 Preliminary—Subject to Change Without Notice Freescale Semiconductor Pin Assignments and Reset States Pull-up (U)1 Pull-down (D) Direction2 Voltage Domain Table 6. MCF5301x Signal Information and Muxing (continued) MCF53010 MCF53011 MCF53012 MCF53013 USBH_DM — — — — O USB VDD — B1 USBH_DP — — — — O USB VDD — C1 Signal Name GPIO Alternate 1 Alternate 2 MCF53014 MCF53015 MCF53016 MCF53017 208 LQFP 256 MAPBGA USB Host FEC 1 RMII1_MDC PFECI2C5 — MII0_TXER — EVDD 22 E1 RMII1_MDIO PFECI2C4 — MII0_COL — EVDD 23 F1 FEC 0 RMII0_CRS_DV PFEC06 — MII0_RXDV — EVDD 131 G16 RMII0_RXD[1:0] PFEC0[5:4] — MII0_RXD[1:0] — EVDD 130, 129 H15, H16 RMII0_RXER PFEC03 — MII0_RXER — EVDD 127 J16 RMII0_TXD[1:0] PFEC0[2:1] — MII0_TXD[1:0] — EVDD 125, 124 J15, J14 RMII0_TXEN PFEC00 — MII0_TXEN D EVDD 123 K16 RMII0_MDC PFECI2C3 — MII0_MDC — EVDD 133 G14 RMII0_MDIO PFECI2C2 — MII0_MDIO — EVDD 132 G15 Real Time Clock RTC_EXTAL — — — — I EVDD — P1 RTC_XTAL — — — — O EVDD — R1 Synchronous Serial Interface SSI_RXD PSSI4 — U1RXD UD I EVDD — N3 SSI_TXD PSSI3 — U1TXD UD O EVDD — P3 SSI_FS PSSI2 — U1RTS — I/O EVDD — R2 SSI_MCLK PSSI1 — SSI_CLKIN — O EVDD — P4 SSI_BCLK PSSI0 — U1CTS — I/O EVDD — P5 I2C I2C_SCL PFECI2C1 U2RXD RMII1_MDC U I/O EVDD 37 M1 I2C_SDA PFECI2C0 U2TXD RMII1_MDIO U I/O EVDD 38 K3 DSPI DSPI_PCS3 PDSPI6 USBH_VBUS_EN — — I/O EVDD — P2 DSPI_PCS2 PDSPI5 USBH_VBUS_OC — — I/O EVDD — N2 MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 13 Pin Assignments and Reset States Pull-up (U)1 Pull-down (D) Direction2 Voltage Domain Table 6. MCF5301x Signal Information and Muxing (continued) MCF53010 MCF53011 MCF53012 MCF53013 208 LQFP 256 MAPBGA — I/O EVDD 140 F14 — U I/O EVDD 137 G13 U2CTS — — I/O EVDD 134 H13 PDSPI1 U2RXD — — I EVDD 136 E16 PDSPI0 U2TXD — — O EVDD 135 F15 Signal Name GPIO Alternate 1 Alternate 2 DSPI_PCS1 PDSPI4 — — DSPI_PCS0/SS PDSPI3 U2RTS DSPI_SCK PDSPI2 DSPI_SIN DSPI_SOUT MCF53014 MCF53015 MCF53016 MCF53017 UARTs U2RXD PUART5 — — — I EVDD 14 E2 U2TXD PUART4 — — — O EVDD 18 F2 U0CTS PUART3 USBO_VBUS_EN USB_PULLUP — I EVDD 20 G4 U0RTS PUART2 USBO_VBUS_OC — — O EVDD 21 G3 U0RXD PUART1 — — — I EVDD 27 G2 U0TXD PUART0 — — — O EVDD 28 G1 DMA Timers T3IN PTIMER3 T3OUT IRQ03 — I EVDD 13 F3 T2IN PTIMER2 T2OUT IRQ02 — I EVDD 12 E3 T1IN PTIMER1 T1OUT DACK1 — I EVDD 122 K13 T0IN PTIMER0 T0OUT CODEC_ALTCLK — I EVDD 121 L16 BDM/JTAG6 ALLPST PDEBUG — — — O EVDD 43 — JTAG_EN — — — D I EVDD 64 M8 PSTCLK — TCLK — — I EVDD 65 T5 DSI — TDI — U I EVDD 66 T4 DSO — TDO — — O EVDD 120 M15 BKPT — TMS — U I EVDD 119 M14 DSCLK — TRST — U I EVDD 118 L15 MCF5301x Data Sheet, Rev. 3 14 Preliminary—Subject to Change Without Notice Freescale Semiconductor Pin Assignments and Reset States Alternate 1 Alternate 2 Voltage Domain GPIO Direction2 Signal Name Pull-up (U)1 Pull-down (D) Table 6. MCF5301x Signal Information and Muxing (continued) MCF53010 MCF53011 MCF53012 MCF53013 D I EVDD 146 MCF53014 MCF53015 MCF53016 MCF53017 208 LQFP 256 MAPBGA F12 Test TEST — — — Power Supplies IVDD — — — — — — 16, 44, 69, 77, 128, E9, F8, F9, H5, H6, H11, 169, 193 H12, J6, J11, L8, L9 EVDD — — — — — — 9, 24, 26, 40, 47, F5, G6, G11, G12, 51, 54, 57, 74, 126, J12, K6, K11, K12, 139, 195 L5-7, L10-12, M5-7, M12 SD_VDD — — — — — — 7, 102, 116, 156, 163, 181, 208 E5, E6, E10-12, F6, F7, F10, F11 VDD_OSC_A_PLL — — — — — — 46 M4 VDD_USBO — — — — — — 147 E7 VDD_USBH — — — — — — — E8 VDD_RTC — — — — — — — AVDD_CODEC — — — — — — 80 N8 AVDD_SPKR — — — — — — — T8 VDD_EPM — — — — — — 96 M9 VSTBY_SRAM — — — — — — — L2 VSTBY_RTC — — — — — — — L4 VSS — — — — — — 8, 15, 25, 39, 45, 48, 52, 53, 56, 68, 73, 76, 101, 117, 138, 168, 180, 192, 194 A1, A16, G7-10, H7-10, J7-10, K7-10, T1, T16 VSS_CODEC — — — — — — 83 N10 AVSS_SPKR_HDST — — — — — — — T6 AVSS_SPKR_HP — — — — — — — T10 1 2 3 4 5 6 Pull-ups are generally only enabled on pins with their primary function, except as noted. Refers to pin’s primary function. Enabled only in oscillator bypass mode (internal crystal oscillator is disabled). The edge port 1 signals are the primary functions on two sets of pins (IRQ1FECn and IRQ1DEBUGn). If an IRQ1 function is configured on both pins, the IRQ1FECn pin takes priority. The corresponding IRQ1DEBUGn pin is disconnected internally from the edge port 1 module. GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the alternate functions. If JTAG_EN is asserted, these pins default to alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins. MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 15 Pin Assignments and Reset States 4.2 Pinout—208 LQFP • FB_OE FB_R/W FB_TA FB_TS FB_CS1 FB_CS0 SDVDD VSS EVDD IRQ07 IRQ01 T2IN T3IN U2RXD VSS IVDD BOOTMOD0 U2TXD IRQ04 U0CTS U0RTS RMII1_MDC RMII1_MDIO EVDD VSS EVDD U0RXD U0TXD IRQ17 IRQ16 IRQ15 IRQ14 IRQ13 IRQ12 IRQ11 IRQ10 I2C_SCL I2C_SDA VSS EVDD RESET RSTOUT ALLPST IVDD VSS VDD_OSC EVDD VSS EXTAL XTAL EVDD FB_D11 FB_D12 FB_D13 FB_D14 SD_DQS1 EVDD VSS IVDD VSS SD_CLK SD_CLK FB_D8 FB_D9 FB_D10 FB_BE/BWE3 VSS EVDD CODEC_DACN VSS IVDD CODEC_REFP VSS EVDD BOOTMOD1 VSS EVDD SDHC_CLK SDHC_CMD SDHC_DAT3 SDHC_DAT2 SDHC_DAT1 SDHC_DAT0 JTAG_EN TCLK TDI CODEC_DACP VSS IVDD 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 SDVDD SDR_DQS SD_A10 FB_D31 FB_D30 FB_D29 FB_D28 FB_D27 FB_D26 FB_D25 FB_D24 The pinout for the 208 LQFP devices is shown in Figure 5 and Figure 6. Figure 5. MCF53010, MCF53011, MCF53012, and MCF53013 Pinout Top View, Left (208 QFP) MCF5301x Data Sheet, Rev. 3 16 Preliminary—Subject to Change Without Notice Freescale Semiconductor 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 182 181 180 179 178 177 176 175 174 173 172 FB_D15 SDVDD VSS FB_BE/BWE1 FB_BE/BWE0 FB_D7 FB_D6 FB_D5 FB_D4 FB_D3 FB_D2 FB_D1 FB_D0 IVDD VSS SD_DQS0 FB_BE/BWE2 FB_D16 FB_D17 SDVDD FB_D18 FB_D19 FB_D20 FB_D21 FB_D22 FB_D23 Pin Assignments and Reset States SDVDD SD_CS0 SD_CAS FB_CLK SD_RAS SD_CKE SD_WE USBO_DP USBO_DM VDD_USBO TEST SIM1_PD SIM1_RST SIM1_CLK SIM1_VEN SIM1_DATA DSPI_PCS1 EVDD VSS DSPI_PCS0 DSPI_SIN DSPI_SOUT DSPI_SCK RMII0_MDC RMII0_MDIO RMII0_CRSDV RMII0_RXD1 RMII0_RXD0 IVDD RMII0_RXER EVDD RMII0_TXD1 RMII0_TXD0 RMII0_TXEN T1IN T0IN TDO TMS TRST VSS SDVDD FB_A23 FB_A22 FB_A21 FB_A20 FB_A19 FB_A18 FB_A17 FB_A16 FB_A15 FB_A14 FB_A13 CODEC_REFN AVDD_CODEC CODEC_REGBYP CODEC_VAG VSS_CODEC CODEC_ADCP CODEC_ADCN CODEC_BGRVREF CODEC_ATSTP CODEC_ATSTN FB_A0 FB_A1 FB_A2 FB_A3 FB_A4 FB_A5 FB_A6 AVDD_EPM FB_A7 FB_A8 FB_A9 FB_A10 VSS SDVDD FB_A11 FB_A12 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 Figure 6. MCF53010, MCF53011, MCF53012, and MCF53013 Pinout Top View, Right (208 QFP) MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 17 Pin Assignments and Reset States 4.3 Pinout–256 MAPBGA The pinout for the MCF53014, MCF53015, MCF53016, and MCF53017 packages are shown below. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A VSS FB_D 30 FB_D 26 FB_BE/ BWE3 SD_ DQS1 SD_ CLK SD_ CLK FB_D 13 FB_D 14 FB_D 6 FB_D 2 FB_D 0 FB_D 16 FB_D 17 SD_CS VSS B USBH_ DM FB_TA FB_D 31 FB_D 27 FB_D 25 FB_CS5 FB_D 8 FB_D 11 FB_D 15 FB_D 5 FB_D 1 FB_BE/ BWE2 FB_D 18 FB_D 21 SD_ CKE USBO_ B DP C USBH_ DP FB_CS0 FB_R/W SD_A10 FB_D 28 FB_D 24 FB_CS4 FB_D 10 FB_BE/ BWE1 FB_D 7 FB_D 3 SD_ DQS2 FB_D 20 FB_D 22 SD_ RAS USBO_ C DM D IRQ04 FB_CS1 FB_TS FB_OE SD_SDR _DQS FB_D 29 FB_D 12 FB_D 9 FB_BE/ BWE0 FB_D 4 FB_D 19 FB_D 23 FB_CLK SD_ WE SD_ CAS SIM1_ VEN D E RMII1_ MDC U2RXD T2IN IRQ07 SDVDD SDVDD VDD_ USBO VDD_ USBH IVDD SDVDD SDVDD SDVDD SIM1_ RST SIM1_ DATA SIM1_ PD DSPI_ SIN E F RMII1_ MDIO U2TXD T3IN IRQ01 EVDD SDVDD SDVDD IVDD IVDD SDVDD SDVDD TEST SIM1_ CLK DSPI_ PCS1 DSPI_ SOUT SIM0_ RST F G U0TXD U0RXD U0RTS U0CTS BOOT MOD0 EVDD VSS VSS VSS VSS EVDD EVDD DSPI_ PCS0 RMII0_ MDC RMII0_ MDIO RMII0_ G CRSDV IVDD IVDD VSS VSS VSS VSS IVDD IVDD DSPI_ SCK IRQ1 DEBUG2 RMII0_ RXD1 RMII0_ H RXD0 RMII0_ TXD0 RMII0_ TXD1 RMII0_ RXER H IRQ1 IRQ1 IRQ1 IRQ1 DEBUG7 DEBUG4 DEBUG5 DEBUG6 A J IRQ1 FEC7 IRQ1 FEC6 IRQ1 FEC4 IRQ1 FEC3 BOOT MOD1 IVDD VSS VSS VSS VSS IVDD EVDD IRQ1 DEBUG0 K IRQ1 FEC2 IRQ1 FEC1 I2C_ SDA IRQ1 FEC5 NC EVDD VSS VSS VSS VSS EVDD EVDD T1IN L IRQ1 FEC0 VSTBY_ SRAM SIM0_ DATA VSTBY_ RTC EVDD EVDD EVDD IVDD IVDD EVDD EVDD EVDD IRQ06 SIM0_ PD TRST T0IN L M I2C_ SCL SIM0_ VEN RESET VDD_ OSC_A_ PLL EVDD EVDD EVDD JTAG_ EN VDD_ EPM NC NC EVDD NC TMS TDO SIM0_ CLK M N RST OUT DSPI_ PCS2 SSI_ RXD SDHC_ DAT3 SDHC_ DAT0 RTC_ EXTAL DSPI_ PCS3 SSI_ TXD SSI_ MCLK SSI_ BCLK RTC_ XTAL SSI_FS SDHC_ CLK SDHC_ CMD SDHC_ DAT2 VSS EXTAL XTAL TDI 1 2 3 4 P R IRQ1 IRQ1 RMII0_ K DEBUG3 DEBUG1 TXEN CODEC VSS_ _BGR CODEC VREF FB_A4 FB_A10 FB_A13 FB_A20 FB_A19 FB_A22 N CODEC CODEC CODEC CODEC CODEC _REG _REFP _REFN _ADCP _ADCN BYP FB_A5 FB_A9 FB_A16 FB_A17 FB_A18 FB_A23 P CODEC CODEC _DACP _DACN AMP_ HP OUT AMP_ HP DUMMY FB_A2 FB_A6 FB_A12 FB_A11 FB_A14 FB_A15 FB_A21 R TCLK AVSS_ SPKR_ HDST AMP_ SPKRP AVDD_ SPKR AMP_ SPKRN AVSS_ SPKR_ HP FB_A1 FB_A0 FB_A3 FB_A8 FB_A7 VSS 5 6 7 8 9 10 11 12 13 14 15 16 T SDHC_ CODEC AVDD_ DAT1 _VAG CODEC Figure 7. MCF53014, MCF53015, MCF53016, and MCF53017 Pinout (256 MAPBGA) MCF5301x Data Sheet, Rev. 3 18 J Preliminary—Subject to Change Without Notice Freescale Semiconductor T Preliminary Electrical Characteristics 5 Preliminary Electrical Characteristics This document contains electrical specification tables and reference timing diagrams for the MCF5301x microprocessor. This section contains detailed information on DC/AC electrical characteristics and AC timing specifications. The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed. NOTE The parameters specified in this MCU document supersede any values found in the module specifications. 5.1 Maximum Ratings Table 7. Absolute Maximum Ratings1, 2 Rating Symbol Value Unit Core Supply Voltage IVDD –0.5 to +2.0 V CMOS Pad Supply Voltage EVDD –0.3 to +4.0 V DDR/Memory Pad Supply Voltage SDVDD –0.3 to +4.0 V PLL Supply Voltage PLLVDD –0.3 to +2.0 V VIN –0.3 to +3.6 V ID 25 mA TA (TL – TH) –40 to +85 °C Tstg –55 to +150 °C Digital Input Voltage 3 Instantaneous Maximum Current Single pin limit (applies to all pins) 3, 4, 5 Operating Temperature Range (Packaged) Storage Temperature Range 1 2 3 4 5 Functional operating conditions are given in Section 5.4, “DC Electrical Specifications.” Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS or EVDD). Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. All functional non-supply pins are internally clamped to VSS and EVDD. Power supply must maintain regulation within operating EVDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > EVDD) is greater than IDD, the injection current may flow out of EVDD and could result in external power supply going out of regulation. Insure external EVDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power (ex; no clock). Power supply must maintain regulation within operating EVDD range during instantaneous and operating maximum current conditions. MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 19 Preliminary Electrical Characteristics 5.2 Thermal Characteristics Table 8. Thermal Characteristics Characteristic Symbol 256MBGA 208LQFP Unit Junction to ambient, natural convection Four layer board (2s2p) θJMA 361,2 TBD °C/W Junction to ambient (@200 ft/min) Four layer board (2s2p) θJMA 321,2 TBD °C/W Junction to board θJB 253 TBD °C/W Junction to case θJC 4 TBD °C/W Junction to top of package Ψjt 1,5 2 TBD °C/W Maximum operating junction temperature Tj 105 TBD 1 2 3 4 5 14 o C θJMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θJmA and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer’s system using the Ψjt parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT. The average chip-junction temperature (TJ) in °C can be obtained from: T J = T A + ( P D × Θ JMA ) Eqn. 1 Where: TA QJMA PD PINT PI/O = = = = = Ambient Temperature, °C Package Thermal Resistance, Junction-to-Ambient, °C/W PINT + PI/O IDD × IVDD, Watts - Chip Internal Power Power Dissipation on Input and Output Pins — User Determined For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if PI/O is neglected) is: K P D = --------------------------------( T J + 273°C ) Eqn. 2 Solving equations 1 and 2 for K gives: 2 K = P D × ( T A × 273°C ) + Q JMA × P D Eqn. 3 MCF5301x Data Sheet, Rev. 3 20 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively for any value of TA. 5.3 ESD Protection Table 9. ESD Protection Characteristics1, 2 Characteristics ESD Target for Human Body Model 1 2 5.4 Symbol Value Units HBM 2000 V All ESD testing is in conformity with JEDEC JESD22-A114 specification. A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. DC Electrical Specifications Table 10. DC Electrical Specifications Characteristic Symbol Min Max Unit IVDD 1.08 1.32 V SRAMVSTBY 1.08 1.32 V RTCVSTBY 3.0 3.6 V PLLVDD 3.0 3.6 V EVDD 3.0 3.6 V 1.70 2.25 3.0 1.95 2.75 3.6 USBVDD 3.0 3.6 V CMOS Input High Voltage EVIH 0.51 × EVDD EVDD + 0.3 V CMOS Input Low Voltage EVIL VSS – 0.3 0.42 × EVDD V CMOS Output High Voltage IOH = –2.0 mA EVOH 0.8 × EVDD — V CMOS Output Low Voltage IOL = 2.0 mA EVOL — 0.2 × EVDD V SDRAM and FlexBus Input High Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) SDVIH SDVDD × 0.7 Vref+0.15 2 SDVDD+0.3 SDVDD+0.3 SDVDD + 0.3 SDRAM and FlexBus Input Low Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) SDVIL –0.3 –0.3 VSS – 0.3 SDVDD × 0.3 Vref+0.15 0.8 Core Supply Voltage SRAM Standby Voltage RTC Standby Voltage PLL Supply Voltage CMOS Pad Supply Voltage SDRAM and FlexBus Supply Voltage Mobile DDR/Bus Pad Supply Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) USB Supply Voltage SDVDD V V V MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 21 Preliminary Electrical Characteristics Table 10. DC Electrical Specifications (continued) Characteristic Symbol Min Max SDVDD × 0.9 SDVDD – 0.35 2.9 — — — — — — SDVDD × 0.1 0.35 0.4 Iin –2.5 2.5 μA Weak Internal Pull-Up/Pull-down Device Current1 IAPU 10 315 μA Selectable Weak Internal Pull-Up/Pull-down Device Current2 IAPU 25 150 μA — — 7 7 SDRAM and FlexBus Output High Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) IOH = –5.0 mA for all modes SDVOH SDRAM and FlexBus Output Low Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) IOL = 5.0 mA for all modes SDVOL Input Leakage Current Vin = VDD or VSS, Input-only pins 3 V V Cin Input Capacitance All input-only pins All input/output (three-state) pins Unit pF 1 Refer to the signals section for pins having weak internal pull-up devices. Refer to the signals section for pins having weak internal pull-up devices. 3 This parameter is characterized before qualification rather than 100% tested. 2 5.4.1 PLL Power Filtering To further enhance noise isolation, an external filter is strongly recommended for PLL analog VDD pins. The filter shown in Figure 8 should be connected between the board VDD and the PLLVDD pins. The resistor and capacitors should be placed as close to the dedicated PLLVDD pin as possible. 10 Ω Board IVDD PLL VDD Pin 10 µF 0.1 µF GND Figure 8. System PLL VDD Power Filter 5.4.2 USB Power Filtering To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 2 should be connected between the board EVDD or IVDD and each of the USBVDD pins. The resistor and capacitors should be placed as close to the dedicated USBVDD pin as possible. MCF5301x Data Sheet, Rev. 3 22 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics 0Ω Board EVDD USB VDD Pin 10 µF 0.1 µF GND Figure 9. USB VDD Power Filter NOTE In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel with those shown. 5.4.3 Supply Voltage Sequencing and Separation Cautions The relationship between SDVDD and EVDD is non-critical during power-up and power-down sequences. Both SDVDD (2.5V or 3.3V) and EVDD are specified relative to IVDD. 5.4.3.1 Power Up Sequence If EVDD/SDVDD are powered up with IVDD at 0 V, then the sense circuits in the I/O pads will cause all pad output drivers connected to the EVDD/SDVDD to be in a high impedance state. There is no limit on how long after EVDD/SDVDD powers up before IVDD must powered up. IVDD should not lead the EVDD, SDVDD or PLLVDD by more than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 500 us to avoid turning on the internal ESD protection clamp diodes. 5.4.3.2 Power Down Sequence If IVDD/PLLVDD are powered down first, then sense circuits in the I/O pads will cause all output drivers to be in a high impedance state. There is no limit on how long after IVDD and PLLVDD power down before EVDD or SDVDD must power down. IVDD should not lag EVDD, SDVDD, or PLLVDD going low by more than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies. The recommended power down sequence is as follows: 1. 2. Drop IVDD/PLLVDD to 0 V. Drop EVDD/SDVDD supplies. MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 23 Preliminary Electrical Characteristics 5.5 Oscillator and PLL Electrical Characteristics Table 11. PLL Electrical Characteristics Num 1 2 2 4 5 6 7 Core frequency CLKOUT Frequency2 Min. Value Max. Value Unit fref_crystal fref_ext 14 14 251 481 MHz MHz fsys fsys/3 488 x 10-6 163 x 10-6 240 80 MHz MHz tcst — 10 ms Crystal Start-up Time3, 4 4 EXTAL Input High Voltage Crystal Mode5 All other modes (External, Limp) VIHEXT VIHEXT VXTAL + 0.4 EVDD/2 + 0.4 — — V V EXTAL Input Low Voltage Crystal Mode5 All other modes (External, Limp) VILEXT VILEXT — — VXTAL – 0.4 EVDD/2 – 0.4 V V tlpll — 750 us tdc 40 60 % IXTAL 1 3 mA 7 3 PLL Reference Frequency Range Crystal reference External reference Symbol 3 5 1 Characteristic PLL Lock Time 3, 6 3 8 Duty Cycle of reference 9 XTAL Current 10 Total on-chip stray capacitance on XTAL CS_XTAL — 1.5 pF 11 Total on-chip stray capacitance on EXTAL CS_EXTAL — 1.5 pF 12 Crystal capacitive load CL — See crystal spec 13 Discrete load capacitance for XTAL CL_XTAL — 2 × CL – CS_XTAL – CPCB_XTAL7 pF 14 Discrete load capacitance for EXTAL CL_EXTAL — 2 × CL – CS_EXTAL – CPCB_EXTAL7 pF 17 CLKOUT Period Jitter, 3, 4, 7, 8, 9 Measured at fSYS Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter Cjitter — — TBD TBD % fsys/3 % fsys/3 18 Frequency Modulation Range Limit 3, 10, 11 (fsysMax must not be exceeded) Cmod 0.8 2.2 %fsys/3 19 VCO Frequency. fvco = (fref × PFD)/4 fvco 200 667 MHz The maximum allowable input clock frequency when booting with the PLL enabled is 24MHz. For higher input clock frequencies the processor must boot in LIMP mode to avoid violating the maximum allowable CPU frequency. All internal registers retain data at 0 Hz. This parameter is guaranteed by characterization before qualification rather than 100% tested. Proper PC board layout procedures must be followed to achieve specifications. This parameter is guaranteed by design rather than 100% tested. This specification is the PLL lock time only and does not include oscillator start-up time.. CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively. MCF5301x Data Sheet, Rev. 3 24 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics 8 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL VDD, EVDD, and VSS and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval. 9 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod. 10 Modulation percentage applies over an interval of 10μs, or equivalently the modulation rate is 100kHz. 11 Modulation range determined by hardware design. 5.6 External Interface Timing Characteristics Table 12 lists processor bus input timings. NOTE All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the FB_CLK output. All other timing relationships can be derived from these values. Timings listed in Table 12 are shown in Figure 11 and Figure 12. * The timings are also valid for inputs sampled on the negative clock edge. 1.5V FB_CLK (80MHz) TSETUP THOLD Input Setup And Hold Invalid 1.5V Valid 1.5V Invalid trise Input Rise Time Vh = VIH Vl = VIL tfall Input Fall Time FB_CLK Vh = VIH Vl = VIL B4 B5 Inputs Figure 10. General Input Timing Requirements 5.6.1 FlexBus A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 80MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple chip-select based interface can be used. The FlexBus interface has six general purpose chip-selects (FB_CS[5:0]) which can be configured to be distributed between the FlexBus or SDRAM memory interfaces. MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 25 Preliminary Electrical Characteristics Chip-select, FB_CS0 can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or longword (32 bits) wide. Control signal timing is 1‘compatible with common ROM/flash memories. 5.6.1.1 FlexBus AC Timing Characteristics The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the system clock. Table 12. FlexBus AC Timing Specifications Num Characteristic Symbol Min Max Unit Notes — 80 Mhz fsys/3 tFBCK 12.5 — ns tcyc Frequency of Operation FB1 Clock Period (FB_CLK) FB2 Address, Data, and Control Output Valid (A[23:0], D[31:0], FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE) tFBCHDCV — 7.0 ns 1 FB3 Address, Data, and Control Output Hold (A[23:0], D[31:0], FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE) tFBCHDCI 1 — ns 1, 2 FB4 Data Input Setup tDVFBCH 3.5 — ns FB5 Data Input Hold tDIFBCH 0 — ns FB6 Transfer Acknowledge (TA) Input Setup tCVFBCH 4 — ns FB7 Transfer Acknowledge (TA) Input Hold tCIFBCH 0 — ns 1 Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.7.2, “DDR SDRAM AC Timing Characteristics” for SD_CS[3:0] timing. 2 The FlexBus supports programming an extension of the address hold. Please consult the MCF5301x Reference Manual for more information. NOTE The processor drives the data lines during the first clock cycle of the transfer with the full 32-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial. The address and data busses are muxed between the FlexBus and SDRAM controller. At the end of the read and write bus cycles the address signals are indeterminate. MCF5301x Data Sheet, Rev. 3 26 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics S0 S1 S2 S3 FB_CLK FB1 FB3 ADDR[23:0] FB_A[23:0] FB2 FB_D[31:X] FB5 ADDR[31:X] DATA FB4 FB_R/W FB_TS FB_CSn, FB_OE, FB_BE/BWEn FB6 FB7 FB_TA Figure 11. FlexBus Read Timing S0 S1 S2 S3 FB_CLK FB1 FB3 ADDR[23:0] FB_A[23:0] FB2 FB_D[31:X] ADDR[31:X] DATA FB_R/W FB_TS FB_CSn, FB_BE/BWEn FB_OE FB6 FB7 FB_TA Figure 12. Flexbus Write Timing 5.7 SDRAM Bus The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports either standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time. 5.7.1 SDR SDRAM AC Timing Characteristics The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read cycles. The device’s SDRAM controller is a DDR controller that has an SDR mode. Because it is designed to support DDR, a DQS pulse must still be supplied to the device for each data beat of an SDR read. The processor accomplishes this by asserting a signal named SD_SDR_DQS during MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 27 Preliminary Electrical Characteristics read cycles. Care must be taken during board design to adhere to the following guidelines and specs with regard to the SD_SDR_DQS signal and its usage. Table 13. SDR Timing Specifications Symbol Characteristic Symbol Frequency of operation 1 2 3 4 5 6 7 8 Min Max Unit Notes 50 80 Mhz 1 SD1 Clock period tSDCK 12.5 20 ns 2 SD2 Pulse width high tSDCKH 0.45 0.55 SD_CLK 3 SD3 Pulse width low tSDCKH 0.45 0.55 SD_CLK 4 SD4 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA, SD_CS[1:0] output valid tSDCHACV — 0.5 × SD_CLK + 1.0 ns SD5 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA, SD_CS[1:0] output hold tSDCHACI 2.0 — ns SD6 SD_SDR_DQS output valid tDQSOV — Self timed ns 5 SD7 SD_DQS[3:0] input setup relative to SD_CLK tDQVSDCH 0.25 × SD_CLK 0.40 × SD_CLK ns 6 SD8 SD_DQS[3:2] input hold relative to SD_CLK tDQISDCH SD9 Data (D[31:0]) input setup relative to SD_CLK (reference only) tDVSDCH 0.25 × SD_CLK — ns SD10 Data input hold relative to SD_CLK (reference only) tDISDCH 1.0 — ns SD11 Data (D[31:0]) and data mask (SD_DQM[3:0]) output valid tSDCHDMV — 0.75 × SD_CLK + 0.5 ns SD12 Data (D[31:0]) and data mask (SD_DQM[3:0]) output hold tSDCHDMI 1.5 — ns Does not apply. 0.5×SD_CLK fixed width. 7 8 The device supports same frequency of operation for both FlexBus and SDRAM clock operates as that of the internal bus clock. Please see the PLL chapter of the MCF5301x Reference Manual for more information on setting the SDRAM clock rate. SD_CLK is one SDRAM clock in (ns). Pulse width high plus pulse width low cannot exceed min and max clock period. Pulse width high plus pulse width low cannot exceed min and max clock period. SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation from this guideline is expected. SD_DQS will only pulse during a read cycle and one pulse will occur for each data beat. SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle variation from this guideline is expected. SDR_DQS will only pulse during a read cycle and one pulse will occur for each data beat. The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does not affect the memory controller. Since a read cycle in SDR mode still uses the DQS circuit within the device, it is most critical that the data valid window be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens will result in successful SDR reads. The input setup spec is just provided as guidance. MCF5301x Data Sheet, Rev. 3 28 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics SD2 SD1 SD_CLK SD3 SD5 SD_CSn SD_RAS SD_CAS SD_WE CMD SD4 A[23:0] SD_BA[1:0] ROW COL SD11 SDDM SD12 WD1 D[31:0] WD2 WD3 WD4 Figure 13. SDR Write Timing SD2 SD1 SD_CLK SD5 SD_CSn, SD_RAS, SD_CAS, SD_WE SD3 CMD 3/4 MCLK Reference SD4 A[23:0], SD_BA[1:0] ROW COL tDQS SDDM SD6 SD_SDR_DQS (Measured at Output Pin) Board Delay SD_DQS[3:2] SD8 (Measured at Input Pin) SD7 Board Delay Delayed SD_CLK SD9 D[31:0] from Memories WD1 NOTE: Data driven from memories relative to delayed memory clock. WD2 WD3 WD4 SD10 Figure 14. SDR Read Timing MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 29 Preliminary Electrical Characteristics 5.7.2 DDR SDRAM AC Timing Characteristics When the SDRAM controller is configured for DDR SDRAM, the following timing numbers must be followed to properly latch or drive data onto the memory bus. All timing numbers are relative to the four DQS byte lanes. The following timing numbers are subject to change at anytime, and are only provided to aid in early board design. Table 14. DDR Timing Specifications Num Characteristic Symbol Min Max Unit Notes Frequency of Operation tDDCK 50 80 Mhz 1 DD1 Clock Period tDDSK 12.5 20 ns 2 DD2 Pulse Width High tDDCKH 0.45 0.55 SD_CLK 3 DD3 Pulse Width Low tDDCKL 0.45 0.55 SD_CLK 3 DD4 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] Output Valid tSDCHACV — 0.5 × SD_CLK + 1.0 ns 4 DD5 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] Output Hold tSDCHACI 2.0 — ns DD6 Write Command to first DQS Latching Transition tCMDVDQ — 1.25 SD_CLK DD7 Data and Data Mask Output Setup (DQ-->DQS) Relative to DQS (DDR Write Mode) tDQDMV 1.5 — ns DD8 Data and Data Mask Output Hold (DQS-->DQ) Relative to DQS (DDR Write Mode) tDQDMI 1.0 — ns 7 DD9 Input Data Skew Relative to DQS (Input Setup) tDVDQ — 1 ns 8 tDIDQ 0.25 × SD_CLK + 0.5ns — ns 9 DD11 DQS falling edge from SDCLK rising (output hold time) tDQLSDCH 0.5 — ns DD12 DQS input read preamble width tDQRPRE 0.9 1.1 SD_CLK DD13 DQS input read postamble width tDQRPST 0.4 0.6 SD_CLK DD14 DQS output write preamble width tDQWPRE 0.25 — SD_CLK DD15 DQS output write postamble width tDQWPST 0.4 0.6 SD_CLK DD10 Input Data Hold Relative to DQS. 1 2 3 4 5 6 7 5 6 The frequency of operation is either 2x or 4x the FB_CLK frequency of operation. FlexBus and SDRAM clock operate at the same frequency as the internal bus clock. SD_CLK is one SDRAM clock in (ns). Pulse width high plus pulse width low cannot exceed min and max clock period. Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process, temperature, and voltage variations. This specification relates to the required input setup time of today’s DDR memories. The device’s output setup should be larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory will be in violation. SD_D[31:24] is relative to SD_DQS3, SD_D[23:16] is relative to SD_DQS2, SD_D[15:8] is relative to SD_DQS1, and SD_D[7:0] is relative SD_DQS0. The first data beat will be valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats will be valid for each subsequent DQS edge. This specification relates to the required hold time of today’s DDR memories. SD_D[31:24] is relative to SD_DQS3, SD_D[23:16] is relative to SD_DQS2, SD_D[15:8] is relative to SD_DQS1, and SD_D[7:0] is relative SD_DQS0. MCF5301x Data Sheet, Rev. 3 30 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics 8 Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors). 9 Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid. SD_CLK VIX VMP VIX VID SD_CLK Figure 15. SD_CLK and SD_CLK Crossover Timing DD1 DD2 SD_CLK DD3 SD_CLK DD5 SD_CSn,SD_WE, SD_RAS, SD_CAS CMD DD6 DD4 A[13:0] ROW COL DD7 DM3/DM2 DD8 SD_DQS3/SD_DQS2 DD7 D[31:24]/D[23:16] WD1 WD2 WD3 WD4 DD8 Figure 16. DDR Write Timing MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 31 Preliminary Electrical Characteristics DD1 DD2 SD_CLK DD3 SD_CLK CL=2 DD5 SD_CSn,SD_WE, SD_RAS, SD_CAS CMD CL=2.5 DD4 A[13:0] ROW COL DD9 DQS Read Preamble CL = 2 SD_DQS3/SD_DQS2 DQS Read Postamble DD10 D[31:24]/D[23:16] WD1 WD2 WD3 WD4 DQS Read DQS Read Preamble Postamble CL = 2.5 SD_DQS3/SD_DQS2 D[31:24]/D[23:16] WD1 WD2 WD3 WD4 Figure 17. DDR Read Timing 5.8 General Purpose I/O Timing Table 15. GPIO Timing1 Num 1 Characteristic Symbol Min Max Unit G1 FB_CLK High to GPIO Output Valid tCHPOV — 10 ns G2 FB_CLK High to GPIO Output Invalid tCHPOI 1.5 — ns G3 GPIO Input Valid to FB_CLK High tPVCH 9 — ns G4 FB_CLK High to GPIO Input Invalid tCHPI 1.5 — ns GPIO pins include: IRQn, PWM, UART, and Timer pins. MCF5301x Data Sheet, Rev. 3 32 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics FB_CLK G2 G1 GPIO Outputs G3 G4 GPIO Inputs Figure 18. GPIO Timing 5.9 Reset and Configuration Override Timing Table 16. Reset and Configuration Override Timing Num 1 Characteristic Symbol Min Max Unit R1 RESET Input valid to FB_CLK High tRVCH 9 — ns R2 FB_CLK High to RESET Input invalid tCHRI 1.5 — ns tRIVT 5 — tCYC 1 R3 RESET Input valid Time R4 FB_CLK High to RSTOUT Valid tCHROV — 10 ns R5 RSTOUT valid to Config. Overrides valid tROVCV 0 — ns R6 Configuration Override Setup Time to RSTOUT invalid tCOS 20 — tCYC R7 Configuration Override Hold Time after RSTOUT invalid tCOH 0 — ns R8 RSTOUT invalid to Configuration Override High Impedance tROICZ — 1 tCYC During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns. FB_CLK R1 R2 R3 RESET R4 R4 RSTOUT R8 R5 R6 R7 Configuration Overrides*: (RCON, Override pins]) Figure 19. RESET and Configuration Override Timing NOTE Refer to the CCM chapter of the MCF5301x Reference Manual for more information. MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 33 Preliminary Electrical Characteristics 5.10 USB On-The-Go The MCF53017 device is compliant with industry standard USB 2.0 specification. 5.11 SSI Timing Specifications This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync (SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below. Table 17. SSI Timing - Master Modes1 Num Description Symbol Min Max Units Notes tMCLK 8 × tSYS — ns 2 45% 55% tMCLK 8 × tSYS — ns 45% 55% tBCLK S1 SSI_MCLK cycle time S2 SSI_MCLK pulse width high / low S3 SSI_BCLK cycle time S4 SSI_BCLK pulse width S5 SSI_BCLK to SSI_FS output valid — 15 ns S6 SSI_BCLK to SSI_FS output invalid 0 — ns S7 SSI_BCLK to SSI_TXD valid — 15 ns S8 SSI_BCLK to SSI_TXD invalid / high impedence –2 — ns S9 SSI_RXD / SSI_FS input setup before SSI_BCLK 10 — ns S10 SSI_RXD / SSI_FS input hold after SSI_BCLK 0 — ns tBCLK 3 1 All timings specified with a capactive load of 25pF. SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock (SYSCLK). 3 SSI_BCLK can be derived from SSI_CLKIN or a divided version of SYSCLK. If the SYSCLK is used, the minimum divider is 6. If the SSI_CLKIN input is used, the programmable dividers must be set to ensure that SSI_BCLK does not exceed 4 x fSYS. 2 Table 18. SSI Timing — Slave Modes1 Num 1 Description Symbol Min Max Units tBCLK 8 × tSYS — ns 45% 55% tBCLK S11 SSI_BCLK cycle time S12 SSI_BCLK pulse width high / low S13 SSI_FS input setup before SSI_BCLK 10 — ns S14 SSI_FS input hold after SSI_BCLK 2 — ns S15 SSI_BCLK to SSI_TXD / SSI_FS output valid — 15 ns S16 SSI_BCLK to SSI_TXD / SSI_FS output invalid / high impedence 0 — ns S17 SSI_RXD setup before SSI_BCLK 10 — ns S18 SSI_RXD hold after SSI_BCLK 2 — ns Notes All timings specified with a capactive load of 25pF. MCF5301x Data Sheet, Rev. 3 34 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics S1 S2 S2 SSI_MCLK (Output) S3 SSI_BCLK (Output) S4 S4 S5 S6 SSI_FS (Output) S9 S10 SSI_FS (Input) S7 S7 S8 S8 SSI_TXD S9 S10 SSI_RXD Figure 20. SSI Timing — Master Modes S11 SSI_BCLK (Input) S12 S12 S15 S16 SSI_FS (Output) S13 S14 SSI_FS (Input) S15 S16 S16 S15 SSI_TXD S17 S18 SSI_RXD Figure 21. SSI Timing — Slave Modes 5.12 I2C Input/Output Timing Specifications Table 19 lists specifications for the I2C input timing parameters shown in Figure 22. Table 19. I2C Input Timing Specifications between SCL and SDA Num Characteristic Min Max Units I1 Start condition hold time 2 — tcyc I2 Clock low period 8 — tcyc I3 I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) — 1 ms I4 Data hold time 0 — ns MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 35 Preliminary Electrical Characteristics Table 19. I2C Input Timing Specifications between SCL and SDA (continued) Num Characteristic Min Max Units I5 I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) — 1 ms I6 Clock high time 4 — tcyc I7 Data setup time 0 — ns I8 Start condition setup time (for repeated start condition only) 2 — tcyc I9 Stop condition setup time 2 — tcyc Table 20 lists specifications for the I2C output timing parameters shown in Figure 22. Table 20. I2C Output Timing Specifications between SCL and SDA Num Characteristic Min Max Units I11 Start condition hold time 6 — tcyc I2 1 Clock low period 10 — tcyc I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) — — µs I4 1 Data hold time 7 — tcyc I5 3 I3 2 I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) — 3 ns I6 1 Clock high time 10 — tcyc I7 1 Data setup time 2 — tcyc I8 1 Start condition setup time (for repeated start condition only) 20 — tcyc Stop condition setup time 10 — tcyc I9 1 1 Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 20. The I2C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 20 are minimum values. 2 Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values. 3 Specified at a nominal 50-pF load. Figure 22 shows timing for the values in Table 20 and Table 19. I5 I6 I2 I2C_SCL I1 I4 I7 I8 I3 I9 I2C_SDA Figure 22. I2C Input/Output Timings MCF5301x Data Sheet, Rev. 3 36 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics 5.13 Fast Ethernet AC Timing Specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. 5.13.1 Receive Signal Timing Specifications The following timing specs meet the requirements for both MII and 7-Wire style interfaces for a range of transceiver devices. Table 21. Receive Signal Timing MII Mode Num E1 1 RMII Mode Characteristic Unit RXD[n:0], RXDV, RXER to RXCLK setup1 1 Min Max Min Max 5 — 4 — ns 5 — 2 — ns E2 RXCLK to RXD[n:0], RXDV, RXER hold E3 RXCLK pulse width high 35% 65% 35% 65% RXCLK period E4 RXCLK pulse width low 35% 65% 35% 65% RXCLK period In MII mode, n = 3; In RMII mode, n = 1 E4 RXCLK (Input) E3 E1 RXD[n:0] RXDV, RXER E2 Valid Data Figure 23. MII Receive Signal Timing Diagram 5.13.2 Transmit Signal Timing Specifications Table 22. Transmit Signal Timing MII Mode Num E5 1 RMII Mode Characteristic Unit TXCLK to TXD[n:0], TXEN, TXER invalid1 1 Min Max Min Max 5 — 5 — ns — 25 — 10 ns E6 TXCLK to TXD[n:0], TXEN, TXER valid E7 TXCLK pulse width high 35% 65% 35% 65% tTXCLK E8 TXCLK pulse width low 35% 65% 35% 65% tTXCLK In MII mode, n = 3; In RMII mode, n = 1 MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 37 Preliminary Electrical Characteristics E8 TXCLK (Input) E7 E6 E5 TXD[n:0] TXEN, TXER Valid Data Figure 24. MII Transmit Signal Timing Diagram 5.13.3 Asynchronous Input Signal Timing Specifications Table 23. MII Transmit Signal Timing Num Characteristic E9 CRS, COL minimum pulse width Min Max Unit 1.5 — TXCLK period CRS, COL E9 Figure 25. MII Async Inputs Timing Diagram 5.13.4 MII Serial Management Timing Specifications Table 24. MII Serial Management Channel Signal Timing Num Characteristic Symbol Min Max Unit tMDC 400 — ns E10 MDC cycle time E11 MDC pulse width 40 60 % tMDC E12 MDC to MDIO output valid — 375 ns E13 MDC to MDIO output invalid 25 — ns E14 MDIO input to MDC setup 10 — ns E15 MDIO input to MDC hold 0 — ns MCF5301x Data Sheet, Rev. 3 38 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics E10 E11 MDC (Output) E11 E13 E12 Valid Data MDIO (Output) E14 MDIO (Input) E15 Valid Data Figure 26. MII Serial Management Channel TIming Diagram 5.14 32-Bit Timer Module Timing Specifications Table 25 lists timer module AC timings. Table 25. Timer Module AC Timing Specifications Name 5.15 Characteristic Min Max Unit T1 DT0IN / DT1IN / DT2IN / DT3IN cycle time 3 — tCYC T2 DT0IN / DT1IN / DT2IN / DT3IN pulse width 1 — tCYC DSPI Timing Specifications The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with both master and slave operations. Many of the transfer attributes are programmable. Table 26 provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the MCF5301x Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 26. DSPI Module AC Timing Specifications1 Name Characteristic Symbol Min Max Unit Notes DS1 DSPI_SCK Cycle Time tSCK 4 x tSYS — ns 2 DS2 DSPI_SCK Duty Cycle — (tsck ÷ 2) – 2.0 (tsck ÷ 2) + 2.0 ns 3 Master Mode DS3 DSPI_PCSn to DSPI_SCK delay tCSC (2 × tSYS) – 1.5 — ns 4 DS4 DSPI_SCK to DSPI_PCSn delay tASC (2 × tSYS) – 3.0 — ns 5 DS5 DSPI_SCK to DSPI_SOUT valid — — 5 ns DS6 DSPI_SCK to DSPI_SOUT invalid — –5 — ns DS7 DSPI_SIN to DSPI_SCK input setup — 9 — ns DS8 DSPI_SCK to DSPI_SIN input hold — 0 — ns — — 4 ns Slave Mode DS9 DSPI_SCK to DSPI_SOUT valid MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 39 Preliminary Electrical Characteristics Table 26. DSPI Module AC Timing Specifications1 (continued) Name 1 2 3 4 5 Characteristic Symbol Min Max Unit DS10 DSPI_SCK to DSPI_SOUT invalid — 0 — ns DS11 DSPI_SIN to DSPI_SCK input setup — 2 — ns DS12 DSPI_SCK to DSPI_SIN input hold — 7 — ns DS13 DSPI_SS active to DSPI_SOUT driven — — 20 ns DS14 DSPI_SS inactive to DSPI_SOUT not driven — — 18 ns Notes Timings shown are for DMCR[MTFE] = 0 (classic SPI) and DCTARn[CPHA] = 0. Data is sampled on the DSPI_SIN pin on the odd-numbered DSPI_SCK edges and driven on the DSPI_SOUT pin on even-numbered DSPI edges. When in master mode, the baud rate is programmable in DCTARn[DBR], DCTARn[PBR], and DCTARn[BR]. This specification assumes a 50/50 duty cycle setting. The duty cycle is programmable in DCTARn[DBR], DCTARn[CPHA], and DCTARn[PBR]. The DSPI_PCSn to DSPI_SCK delay is programmable in DCTARn[PCSSCK] and DCTARn[CSSCK]. The DSPI_SCK to DSPI_PCSn delay is programmable in DCTARn[PASC] and DCTARn[ASC]. DS3 DS4 DSPI_PCSn DS1 DS2 DSPI_SCK (DCTARn[CPOL] = 0) DS2 DSPI_SCK (DCTARn[CPOL] = 1) DS7 DS8 DSPI_SIN First Data Data DS6 DSPI_SOUT First Data Last Data DS5 Data Last Data Figure 27. DSPI Classic SPI Timing — Master Mode MCF5301x Data Sheet, Rev. 3 40 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics DSPI_SS DS1 DSPI_SCK (DCTARn[CPOL] = 0) DS2 DS2 DSPI_SCK (DCTARn[CPOL] = 1) DS13 DSPI_SOUT First Data DS11 DSPI_SIN DS9 DS10 Data Last Data Data Last Data DS14 DS12 First Data Figure 28. DSPI Classic SPI Timing — Slave Mode 5.16 eSDHC Electrical Specifications This section describes the electrical information of the eSDHC. 5.16.1 eSDHC Timing Figure 29 depicts the timing of eSDHC, and Table 29 lists the eSDHC timing characteristics. SD2 SD5 SD1 SD4 SDHC_CLK SD3 Output from eSDHC to card SDHC_CMD SDHC_DAT[3:0] SD6 SD7 SD8 Input from card to eSDHC SDHC_CMD SDHC_DAT[3:0] Figure 29. eSDHC Timing MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 41 Preliminary Electrical Characteristics Table 27. eSDHC Interfacde Timing Specifications ID Parameter Symbols Min Max Unit Clock Frequency (Low Speed) fPP1 0 400 kHz Clock Frequency (SD/SDIO Full Speed) fPP2 0 25 MHz Clock Frequency (MMC Full Speed) fPP3 0 20 MHz Clock Frequency (Identification Mode) fOD4 100 400 kHz SD2 Clock Low Time tWL 7 — ns SD3 Clock High Time tWH 7 — ns SD4 Clock Rise Time tTLH — 3 ns SD5 Clock Fall Time tTHL — 3 ns –5 5 ns Card Input Clock SD1 eSDHC Output / Card Inputs SDHC_CMD, SDHC_DAT (Reference to SDHC_CLK) SD6 eSDHC Output Delay tOD eSDHC Input / Card Outputs SDHC_CMD, SDHC_DAT (Reference to SDHC_CLK) SD7 eSDHC Input Setup Time tISU 4 — ns SD8 eSDHC Input Hold Time tIH 0 — ns 1 In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. In normal data transfer mode for SD/SDIO card, clock frequency can be any value from 0 to 25 MHz. 3 In normal data transfer mode for MMC card, clock frequency can be any value from 0 to 20 MHz. 4 In card identification mode, card clock must be 100 kHz – 400 kHz, voltage ranges from 2.7 to 3.6 V. 2 5.16.2 eSDHC Electrical DC Characterisics Table 28 lists the eSDHC electrical DC characteristics. Table 28. MMC/SD Interface Electrical Specifications Num Parameter Design Value Min Max Unit — –0.3 VDD + 0.3 V — –10 10 uA — –10 10 uA Condition/Remark General 1 Peak Voltage on All Lines All Inputs 2 Input Leakage Current All Outputs 3 Output Leakage Current Power Supply 4 Supply Voltage (HV card) 3.1 2.7 3.6 V for high voltage cards, must provide this voltage for card initialization 5 Supply Voltage (LV card) 1.8 1.65 1.95 V for low voltage cards MCF5301x Data Sheet, Rev. 3 42 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics Table 28. MMC/SD Interface Electrical Specifications (continued) Num Parameter Design Value Min Max Unit 5 Power Up Time — — 250 ms 6 Supply Current — 100 200 mA Condition/Remark Bus Signal Line Load 7 Pull-up Resistance 47 10 100 kohm Internal PU 8 Open Drain Resistance NA NA NA kohm For MMC cards only Open Drain Signal Level For MMC cards only 9 Output High Voltage — VDD – 0.2 — V IOH = –100 µA 10 Output Low Voltage — — 0.3 V IOL= 2 mA Bus Signal Levels 11 Output HIGH Voltage — 0.75 x VDD — V IOH = –100 µA @VDD min 12 Output LOW Voltage — — 0.125 x VDD V IOL = 100 µA @VDD min 13 Input HIGH Voltage — 0.625 x VDD VDD + 3 V 14 Input LOW Voltage — VSS – 0.3 0.25 x VDD V 5.17 SIM Electrical Specifications Each SIM card interface consist of a total of 12 pins (two separate ports of six pins each. Mostly one port with 5 pins is used). The interface is meant to be used with synchronous SIM cards. This means that the SIM module provides a clock for the SIM card to use. The frequency of this clock is normally 372 times the data rate on the TX/RX pins, however SIM module can work with CLK equal to 16 times the data rate on TX/RX pins. There is no timing relationship between the clock and the data. The clock that the SIM module provides to the SIM card is used by the SIM card to recover the clock from the data, like a standard UART. All six (or five when a bidirectional TXRX is used) of the pins for each half of the SIM module are asynchronous to each other. There are no required timing relationships between the signals in normal mode. However, there are some in reset and power down sequences. 5.17.1 General Timing Requirements Figure 30 shows the timing of the SIM module, and Table 29 lists the timing parameters. 1/Sfreq SIM_CLK Sfall Srise Figure 30. SIM Clock Timing Diagram MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 43 Preliminary Electrical Characteristics Table 29. SIM Timing Specification—High Drive Strength Num Description Symbol Min Max Unit 1 SIM Clock Frequency (SIM_CLK)1 Sfreq 0.01 5 (Some new cards may reach 10) MHz 2 SIM_CLK Rise Time 2 Srise – 20 ns 3 SIM_CLK Fall Time 3 Sfall – 20 ns 4 SIM Input Transition Time (RX, SIM_PD) Strans – 25 ns 1 50% duty cycle clock With C = 50pF 3 With C = 50pF 2 5.17.2 5.17.2.1 Reset Sequence Cards with Internal Reset The reset sequence for this kind of SIM card is as follows (see Figure 31): • • • After powerup, the clock signal is enabled on SIM_CLK (time T0) After 200 clock cycles, RX must be high. The card must send a response on RX acknowledging the reset between 400 and 40,000 clock cycles after T0. SIM_VEN SIM_CLK Response SIM_RX 1 2 T0 400 clock cycles < 1 < 200 clock cycles 2 < 40,000 clock cycles Figure 31. Internal-Reset Card Reset Sequence 5.17.2.2 Cards with Active-Low Reset The sequence of reset for this kind of card is as follows (see Figure 32): 1. 2. 3. 4. 5. After powerup, the clock signal is enabled on SIM_CLK (time T0) After 200 clock cycles, RX must be high. SIM_RST must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those 40,000 clock cycles) SIM_RST is set high (time T1) SIM_RST must remain high for at least 40,000 clock cycles after T1 and a response must be received on RX between 400 and 40,000 clock cycles after T1. MCF5301x Data Sheet, Rev. 3 44 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics SIM_VEN SIM_RST SIM_CLK Response SIM_RX 2 1 3 3 T0 T1 1 < 200 clock cycles 400 clock cycles < 2 < 40,000 clock cycles 400,000 clock cycles < 3 Figure 32. Active-Low-Reset Card Reset Sequence 5.17.3 Power Down Sequence Power down sequence for SIM interface is as follows: 1. 2. 3. 4. 5. SIM_PD port detects the removal of the SIM card SIM_RST goes low SIM_CLK goes low SIM_TX goes low SIM_VEN goes low Each of these steps is completed in one CKIL period (usually 32 kHz). Power-down may be started in response to a card-removal detection or launched by the processor. Figure 33 and Table 30 show the usual timing requirements for this sequence, with Fckil = CKIL frequency value. Table 30. Timing Requirements for Power Down Sequence Num Description Symbol Min Max Unit 1 SIM reset to SIM clock stop Srst2clk 0.9 ÷ fCKIL 0.8 µs 2 SIM reset to SIM TX data low Srst2dat 1.8 ÷ fCKIL 1.2 µs 3 SIM reset to SIM Voltage Enable Low Srst2ven 2.7 ÷ fCKIL 1.8 µs 4 SIM Presence Detect to SIM reset Low Spd2rst 0.9 ÷ fCKIL 25 ns MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 45 Preliminary Electrical Characteristics Spd2rst SIM_PD SIM_RST Srst2clk SIM_CLK Srst2dat SIM__TX Srst2ven SIM_VEN Figure 33. SmartCard Interface Power-Down AC Timing 5.18 IIM/Fusebox Electrical Specifications Table 31. IIM/Fusebox Timing Characteristics Num 1 1 Description Program time for eFuse1 Symbol Min Max Unit tprogram 125 — µs The program length is defined by the value defined in IIM_FCR[PRG_LENGTH] of the IIM module. The value to program is based on a 32 kHz clock source (4 ÷ 32 kHz = 125 μs) 5.19 Voice Codec The voice codec function is analog-to-digital and digital-to-analog conversion of the voice signal. The following section contains detailed electrical specifications for the analog and digital parts’ performance. The voice codec is powered down when not enabled for power consumption. MCF5301x Data Sheet, Rev. 3 46 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics Table 32 shows the voice codec general specifications. Table 32. Voice Codec General Specifications Parameter Condition Min Typ Max Units — — — — — — — 16.8 19.44 20.0 24.0 26.0 28.0 30.0 — — — — — — — MHz MHz MHz MHz MHz MHz MHz 1.225 1.325 1.425 V Ref_Codec_p TBD 1.665 TBD V Ref_Codec_n TBD 0.985 TBD V VAG External Cap — 0.1 — μF avoco_ref_codec_p External Cap — 0.1 — μF avoco_ref_codec_n External Cap — 0.1 — μF avoco_vagout_codec External Cap — 0.1 — μF AVDD (CODEC_REGBYP) = 2.5V, operational — 5 6 mA Power-down mode — — 5 μA Operational mode — — 1 mA — — 1 ms CODEC Input clock CODEC_CLK VCLK[2:0]=0 VCLK[2:0]=1,2 VCLK[2:0]=3 VCLK[2:0]=4 VCLK[2:0]=5 VCLK[2:0]=6 VCLK[2:0]=7 VAG input Voltage No Load, AVDD (CODEC_REGBYP) = 2.5V Codec Analog Supply Current (includes Rx and Tx paths) Codec Digital Supply Current1 Response to input ON/OFF (settling time at turn on) 1 More accurate estimation will be given after some progress in design. 5.19.1 Voice Codec ADC Specifications Voice coding function includes a 50 kHz second-order, low-pass anti-aliasing filter, an analog-to-digital converter, digital filters for decimation, band-passing, frequency ripple compensation, and DSP interface logic. The audio input A/D converter converts the incoming signal to 13-bit two’s-compliment linear PCM words at an 8 or 8.1 kHz rate. Following the A/D converter, the signal is digitally filtered, low-pass, and selectable high-pass. Table 33 shows the voice coding specifications. Table 33. Voice Codec ADC Specifications1 Parameter Condition Min Typ Max Units Power Supply Rejection Ratio with respect to AVDD (CODEC_REGBYP)2 20Hz to 100kHz, with 100 mVpp noise applied to AVDD, with an external VAG cap 50 60 — dB Peak Input (+3dBm0)3 on an individual differential VAG–0.34 pin (ADC_P or ADC_M) — VAG+0.34 V Tx AC Input Impedance f=1.02kHz 100 — — kΩ Absolute Gain [email protected] –1.0 — 1.0 dB MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 47 Preliminary Electrical Characteristics Table 33. Voice Codec ADC Specifications1 (continued) Parameter Gain vs. Signal Condition Relative to –10dBm0 @1.02kHz +3 to –40dBm0 –40 to –50dBm0 –50 to –55dBm0 Min Typ Max Units –0.25 –1.2 –1.3 — — — 0.25 1.2 1.3 dB dB dB Total Distortion 1.02kHz tone (linear) (noise and harmonic) (300Hz – 20kHz Noise BW in 300Hz – 4kHz measured BW out) +2dBm04 0dBm0 –6dBm0 –10dBm0 –20dBm0 –30dBm0 –40dBm0 –45dBm0 –55dBm0 57 60 60 55 45 35 25 20 15 60 64 70 65 55 45 35 30 20 — — — — — — — — — dB dB dB dB dB dB dB dB dB Idle Channel Noise5 Psophometric Weighting at the output — — –72 dBm0p — — 5 %Full Scale –8 –0.5 –1.0 — — — — — — — — — — — –25 –23 –0.5 +0.5 +0.1 –14 –35 dB dB dB dB dB dB dB –0.5 –0.5 –0.5 –1.0 — — — — — — — — +0.5 +0.5 +0.5 +0.1 –14 –35 dB dB dB dB dB dB Digital Offset6 Frequency Response Relative to [email protected] VCIHPF = logic high 50Hz 60Hz7 200Hz 300 to 3000Hz 3400Hz8 4000Hz 4600Hz Frequency Response Relative to [email protected] VCIHPF=logic low 50Hz 200Hz 300 to 3000Hz 3400Hz9 4000Hz 4600Hz Inband Spurious 1.02kHz @ 0dBm0, 300 to 3kHz — — –48 dB Crosstalk D/A to A/D D/A = 0 dBm0 @1.02kHz Measured while stimulated w/ 2667Hz @–50dBm0 — — –75 dB Intermodulation Distortion Two frequencies of amplitudes –4 to –21 dBm0 from the range 300 to 3400Hz — — –41 dB MCF5301x Data Sheet, Rev. 3 48 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics Table 33. Voice Codec ADC Specifications1 (continued) Parameter Condition Min Typ Max Units Filter Group Delay VCIHPF=logic high CODEC_CLK=26MHz (Relative to 1.6kHz) 500Hz < f < 600Hz 600Hz < f < 800Hz 800Hz < f < 1kHz 1kHz < f < 1.6kHz 1.6kHz < f < 2.6kHz 2.6kHz < f < 2.8kHz 2.8kHz < f < 3.0kHz — — — — — — — — — — — — — — 260 155 57 15 95 135 190 μS μS μS μS μS μS μS Filter Group Delay VCIHPF=logic low CODEC_CLK=26MHz (Relative to 1.6kHz) f < 1.6kHz 1.6kHz < f < 2.6kHz 2.6kHz < f < 2.8kHz 2.8kHz < f < 3.0kHz –40 0 — — — — — — 0 100 150 200 μS μS μS μS Filter Absolute Group Delay VCIHPF=logic high f=1.6kHz — — 300 μS Filter Absolute Group Delay VCIHPF=logic low f=1.6kHz — — 235 μS Out of Band input fold-in spurious with 0dBm0 input signal from 4.6 kHz to 8.4 kHz — — –50 dB 1 2 3 4 5 6 7 8 9 All analog signals are referenced to VAG unless otherwise noted. Power Supply Rejection Ratio is for Longjing IC only. Total PSRR from battery to output is obtained by summing the PSRR from Neptune to the one from the Regulator in Seaweed. It is assumed that the regulators in Seaweed will have a minimum PSRR of 45 dB. For A/D differential input (ADC_P - ADC_M) 0dBm0 = 340mVrms. The codec output will not “foldback” or oscillate if overdriven, but clip. The digital word corresponding to +3dBm0 is ‘0111111111111’b. Therefore if the audio level is set to +3dBm0, any variation in gain could cause large distortion if the digital number exceeds ‘0111111111111’b. For this reason the maximum recommended signal for low distortion is +3dBm0 − (Absolute Gain Error) = +2dBm0. GSM Spec = –64 0dB. This value is a preliminary target. The final number will be specified after obtaining the production statistical data. Small frequency response deviation from straight line in the 60:200 Hz range is acceptable by spec requirements. Small frequency response deviation from straight line in the 3400:4000 Hz range is acceptable by spec requirements. Small frequency response deviation from straight line in the 3400:4000 Hz range is acceptable by spec requirements. MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 49 Preliminary Electrical Characteristics Figure 34 and Figure 35 show the filter frequency response for the audio signal for voice coding path. (All filter frequencies increase by 8.1/8.0 if VCLK is selected to generate fSYNC=8.1kHz). 4 +0.5dB @ 3.0kHz +0.1dB @ 3.4kHz 0 -0.5dB @ 3.0kHz -5 -1.0dB @ 3.4kHz -10 -14dB @ 4.0kHz -15 dB -20 -25 -35dB @ 4.6kHz -30 -35 -38 20 30 40 50 70 100 200 300 400 500 700 1000 2000 3000 4000 5000 8000 Hz Figure 34. Voice Signal Frequency Response Requirements at the ADC Path (VCIHPF=0, LPF Alone Without HPF) MCF5301x Data Sheet, Rev. 3 50 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics 4 +0.5dB @ 3.0kHz +0.5dB @ 300Hz 0 -0.5dB @ 200Hz -5 -0.5dB @ 3.0kHz -0.5dB @ 300Hz +0.1dB @ 3.4kHz -1.0dB @ 3.4kHz -10 -23dB @ 60Hz -15 -14dB @ 4.0kHz -8.0dB @ 200Hz dB -25dB @ 50Hz -20 -25 -35dB @ 4.6kHz -30 -35 -38 20 30 40 50 70 100 200 300 400 500 700 1000 2000 3000 40005000 8000 Hz Figure 35. Voice Signal Frequency Response Requirements at the ADC Path (VCIHPF=1, HPF and LPF Together) 5.19.2 Voice Codec DAC Specifications Voice-decoding function includes frequency ripple compensation, interpolation, digital-to-analog conversion, and anti-imaging filter. The input signal for the voice-decoding function is in linear 16-bit two’s compliment PCM words at an 8 kHz or 8.1 kHz rate. Table 34 shows the voice decoding specifications. Table 34. Voice Codec DAC Specifications1 Parameter Condition Min Typ Max Units Output Level +3dbm02 (clipping level) on an individual differential output pin (CODEC_DACP or CODEC_DACN) VAG–0.5 — VAG+0.5 V Output Source Impedance 10kΩ Load — 100 — Ω Output Power Supply Rejection Ratio 20Hz to 100kHz with 100 mVrms, noise applied to AVDD (CODEC_REGBYP) 50 60 — dBa Absolute Gain [email protected] –1.0 — 1.0 dB Gain vs. Signal –[email protected] –0.25 –1.2 –1.3 — — — 0.25 1.2 1.3 dB dB dB +3 to –40dBm0 –40 to –50dB –50 to –55dBm0 MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 51 Preliminary Electrical Characteristics Table 34. Voice Codec DAC Specifications1 (continued) Parameter Min Typ Max Units +2 dBm0 0 dBm0 –6 dBm0 –10 dBm0 –20 dBm0 –30 dBm0 –40 dBm0 –45 dBm0 –55 dBm0 57 60 60 55 45 35 25 20 15 60 64 70 65 55 45 35 30 20 — — — — — — — — — dB dB dB dB dB dB dB dB dB Idle Channel Noise3 (At CODEC out) A weighted to 20kHz — –78 –73 dBm0 Differential offset TA = 70 ° C TA = 25 ° C Frequency Response VCOHPF = logic high Relative to [email protected] Total Distortion (4 kHz noise BW in 300 Hz – 20 kHz measured BW out) Condition 1.02 kHz tone (linear) 8kHz, 30Hz BW, D/A = zero code No spurious — — — — 40 30 mV — — –8 –0.5 –0.8 — — — — — — — — — –25 –23 –0.5 +0.5 +0.1 –14 –35 dB dB dB dB dB dB dB –0.5 –0.5 –0.5 –0.8 — — — — — v — — +0.5 +0.5 +0.5 +0.1 –14 –35 dB dB dB dB dB dB — — –48 dB Out-of-Band Spurious 300 to 3400Hz @ 0dBm0 input (Interpolation Image Suppression) 4600 to 7600Hz 7600 to 8400Hz 8400 to 20,000Hz — — –50 –50 –50 dB dB dB Crosstalk A/D to D/A A/D = 0dBm0 @1.02kHz — — –75 dB Intermodulation Distortion Two frequencies. of amplitudes –4 to –21 dBm0 from the range 300 to 3400Hz — — –41 dB (Min. limit valid for CODEC_CLK=26MHz) Frequency Response VCOHPF = logic low (Min. limit valid for CODEC_CLK=26MHz) Inband Spurious 50Hz 60Hz4 200Hz 300–3000Hz 3400Hz5 4000Hz 4600Hz Relative to [email protected] 50Hz 200Hz 300–3000Hz 3400Hz6 4000Hz 4600Hz 1.02kHz @ 0dBm0, 300 to 3kHz MCF5301x Data Sheet, Rev. 3 52 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics Table 34. Voice Codec DAC Specifications1 (continued) Parameter Condition Min Typ Max Units Filter Group Delay VCOHPF = logic high CODEC_CLK=26 MHz (Relative to 1.6kHz) 500Hz < f < 600Hz 600Hz < f < 800Hz 800Hz < f < 1kHz 1kHz < f < 1.6kHz 1.6kHz < f < 2.6kHz 2.6kHz < f < 2.8kHz 2.8kHz < f < 3.0kHz — — — — — — — — — — — — — — 300 200 70 30 95 135 190 μs μs μs μs μs μs μs Filter Group Delay VCOHPF = logic low CODEC_CLK=26 MHz (Relative to 1.6kHz) f < 1.6kHz 1.6kHz < f < 2.6kHz 2.6kHz < f < 2.8kHz 2.8kHz < f < 3.0kHz –40 0 — — — — — — 0 100 160 200 μs μs μs μs Filter Absolute Group Delay VCOHPF = logic high f=1.6kHz — — 350 μs Filter Absolute Group Delay VCOHPF = logic low f=1.6kHz — — 320 μs 1 2 3 4 5 6 All analog signals are referenced to VAG unless otherwise noted. Output is 0dbm0 unless noted. For D/A differential output (CODEC_DACP - CODEC_DACN) 0dBm0 = 500 mVrms. GSM Spec = –64. Small frequency response deviation from straight line in the 60:200 Hz range is acceptable by spec requirements. Small frequency response deviation from straight line in the 3400:4000 Hz range is acceptable by spec requirements. Small frequency response deviation from straight line in the 3400:4000 Hz range is acceptable by spec requirements. MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 53 Preliminary Electrical Characteristics Figure 36 and Figure 37 show the filter frequency response for the audio signal for voice decoding. The requirements for the decoding path at 3.4 kHz are slightly different from the coding path. (All filter frequencies increase by 8.1/8.0 if VCLK is selected to generate fSYNC = 8.1 kHz). 4 +0.1dB @ 3.4kHz +0.5dB @ 3.0kHz 0 -0.5dB @ 3.0kHz -5 -0.8dB @ 3.4kHz -10 -14dB @ 4.0kHz -15 dB -20 -25 -35dB @ 4.6kHz -30 -35 -38 20 30 40 50 70 100 200 300 400 500 700 1000 2000 300040005000 8000 Hz Figure 36. Voice Signal Frequency Response Requirements at the DAC Path (VCOHPF=0, LPF Alone Without HPF) MCF5301x Data Sheet, Rev. 3 54 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics 4 +0.5dB @ 3.0kHz +0.5dB @ 300Hz 0 -0.5dB @ 200Hz -5 -0.5dB @ 3.0kHz -0.5dB @ 300Hz +0.1dB @ 3.4kHz -0.8dB @ 3.4kHz -10 -23dB @ 60Hz -15 -14dB @ 4.0kHz -8.0dB @ 200Hz dB -25dB @ 50Hz -20 -25 -35dB @ 4.6kHz -30 -35 -38 20 30 40 50 70 100 200 300 400 500 700 1000 2000 3000 40005000 8000 Hz Figure 37. Voice Signal Frequency Response Requirements at the DAC Path (VCOHPF=1, HPF and LPF Together) 5.20 5.20.1 Integrated Amplifiers Speaker Amplifier The speaker amplifier boosts the power from the DAC and drives the speaker. It also provides analog volume control to optimize the noise performance of the entire channel. Table 35 shows the specifications for the speaker amplifier. Table 35. Speaker Amplifier Specifications Parameter Min Typ Max Units Quiescent Current — 800 — μA Shutdown Current — TBD — Input Reference Offset — 2 5 mV — 600 — mW Full Power, 500mW — 0.050 — % Half Power, 250mW — 0.050 — Full Power, 500mW — 0.1 — Half Power, 250mW — 0.1 — — 15 — Max Output Power Total Harmonic Distortion (THD) Conditions Fin = 1kHz, THD+N = 1%, RL = 4Ω Gain = 0dB, RL = 4Ω, Fin = 1kHz Gain = 0dB, RL = 4Ω, Fin = 4kHz Integrated Output Noise Gain = 0dB, BW = 20Hz – 20kHz μV MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 55 Preliminary Electrical Characteristics Table 35. Speaker Amplifier Specifications (continued) Parameter Signal to Noise Ratio (SNR) Power Supply Rejection Ratio (PSRR) Conditions Min Typ Max Units Gain = 0dB, VOUT = 1.4VRMS, BW = 20Hz – 20kHz — 99 — dB f = 217Hz — 60 — dB f = 1kHz — 60 — f = 4kHz — 60 — — 300 — pF — 625 — mA — ±0.5 — dB Gain = 0dB, Vripple = 200mVpp Max. Cap Load Drive No Sustained Oscillations Output SC Current Gain Error 5.20.2 Gain = –45,–21, –6, 0, 4, 6 dB Handset Amplifier The handset amplifier boosts the power from the DAC and drives the handset. It also provides analog volume control to optimize the noise performance of the entire channel. Table 36 shows the specifications for handset amplifier. Table 36. Handset Amplifier Specifications Parameter Min Typ Max Units Quiescent Current — 800 — μA Shutdown Current — TBD — Input Reference Offset — 2 5 mV — 300 — mW Full Power, 250mW — 0.050 — % Half Power, 125mW — 0.050 — Full Power, 250mW — 0.1 — Half Power, 125mW — 0.050 — Gain = 0dB, BW = 20Hz – 20kHz — 15 — μV Gain = 0dB, VOUT = 1.4VRMS , BW = 20Hz – 20kHz — 99 — dB f = 217Hz — 60 — dB f = 1kHz — 60 — f = 4kHz — 60 — — 300 — pF — 325 — mA — ±0.5 — dB Max. Output Power Total Harmonic Distortion (THD) Conditions Fin = 1kHz, THD + N = 1%, RL = 8Ω Gain = 0dB, RL = 8Ω, Fin = 1kHz Gain = 0dB, RL = 8Ω, Fin = 4kHz Integrated Output Noise Signal to Noise Ratio (SNR) Power Supply Rejection Ratio (PSRR) Maximum Cap Load Drive Gain = 0dB, Vripple = 200mVpp No Sustained Oscillations Output SC Current Gain Error Gain = –45, –21, –6, 0, 4, 6 dB MCF5301x Data Sheet, Rev. 3 56 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics 5.20.3 Headphone Amplifier The headphone amplifier boosts the power from the DAC and drives the headphone. It also provides analog volume control to optimize the noise performance of the entire channel. Table 37 shows the specifications for the microphone amplifier. Table 37. Headphone Amplifier Specifications Parameter Min Typ Max Units Quiescent Current — 600 — μA Shutdown Current — TBD — Input Reference Offset — 2 5 mV Fin = 1kHz, THD+N = 1%, RL = 16Ω — 40 — mW Gain = 0dB, RL = 16Ω, Full Power, 31.25mW BW = 200Hz – 4kHz Half Power, 16.5mW — 0.05 — % — 0.05 — Gain = 0dB, BW = 20Hz – 20kHz — 15 — μV Gain = 0dB, VOUT = 0.7VRMS , BW = 20Hz – 20kHz — 93 — dB f = 217Hz — 60 — dB f = 1kHz — 60 — f = 4kHz — 60 — — 300 — pF — 150 — mA — ±0.5 — dB Output Power Total Harmonic Distortion (THD) Integrated Output Noise Signal to Noise Ratio (SNR) Power Supply Rejection Ratio (PSRR) Maximum Cap Load Drive Conditions Gain = 0dB, Vripple = 200mVpp No Sustained Oscillations Output SC Current Gain Error 5.20.4 Gain = –45, –21, –12, –6, –2, 0 dB Microphone Amplifier The microphone amplifier boosts the signal from the microphone and provides it to the ADC. The gain control present in the microphone amplifier helps in optimizing the noise performance of the entire channel. Table 38 shows the specifications for the microphone amplifier. Table 38. Microphone Amplifier Specifications Parameter Conditions Min Typ Max Units Quiescent Current — 500 — μA Shutdown Current — TBD — Input Reference Offset — 2 5 mV MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 57 Preliminary Electrical Characteristics Table 38. Microphone Amplifier Specifications (continued) Parameter Conditions Total Harmonic Distortion (THD) Min Typ Max Units VOUT = 0.5VRMS — 0.01 — % VOUT = 0.35VRMS — 0.01 — VOUT = 0.5VRMS — 0.01 — VOUT = 0.35VRMS — 0.01 — VOUT = 0.5VRMS — 0.01 — VOUT = 0.35VRMS — 0.01 — VOUT = 0.5VRMS — 0.01 — VOUT = 0.35VRMS — 0.01 — Gain = 0dB — 12 — Gain = 20dB — 40 — Gain = 0dB — 92.4 — Gain = 20dB — 81.9 — Gain = 0dB — 80 — Gain = 20dB — 80 — Gain = 0dB, Vripple = 200mVpp f = 1kHz — 60 — f = 4kHz — 60 — Gain = 0dB, Vripple = 100mVpp f = 1kHz — 50 — f = 4kHz — 50 — Gain = 0, 6, 9.56, 15.56, 20, 24, 29.56, 39.9 dB — ±0.5 — dB Depends on the Gain Setting 1.5 — 24.0 kΩ Symbol Min Max Unit Gain = 0dB, Fin = 1k Gain = 20dB, Fin = 1k Gain = 0dB, Fin = 4k Gain = 20dB, Fin = 4k Integrated Output Noise BW = 20Hz – 20kHz VOUT = 0.5VRMS, BW = 20Hz – 20kHz Signal to Noise Ratio (SNR) VOUT = 0.35VRMS, BW = 20Hz – 20kHz THD plus Noise Power Supply Rejection Ratio Commom Mode Rejection Ratio Gain Error Input Impedance 5.21 μV dB dB dB dB JTAG and Boundary Scan Timing Table 39. JTAG and Boundary Scan Timing Characteristics1 Num J1 TCLK Frequency of Operation fJCYC DC 1/4 fsys/3 J2 TCLK Cycle Period tJCYC 4 — tCYC J3 TCLK Clock Pulse Width tJCW 26 — ns J4 TCLK Rise and Fall Times tJCRF 0 3 ns J5 Boundary Scan Input Data Setup Time to TCLK Rise tBSDST 4 — ns J6 Boundary Scan Input Data Hold Time after TCLK Rise tBSDHT 26 — ns J7 TCLK Low to Boundary Scan Output Data Valid tBSDV 0 33 ns J8 TCLK Low to Boundary Scan Output High Z tBSDZ 0 33 ns J9 TMS, TDI Input Data Setup Time to TCLK Rise tTAPBST 4 — ns J10 TMS, TDI Input Data Hold Time after TCLK Rise tTAPBHT 10 — ns MCF5301x Data Sheet, Rev. 3 58 Preliminary—Subject to Change Without Notice Freescale Semiconductor Preliminary Electrical Characteristics Table 39. JTAG and Boundary Scan Timing (continued) Characteristics1 Num 1 Symbol Min Max Unit J11 TCLK Low to TDO Data Valid tTDODV 0 26 ns J12 TCLK Low to TDO High Z tTDODZ 0 8 ns J13 TRST Assert Time tTRSTAT 100 — ns J14 TRST Setup Time (Negation) to TCLK High tTRSTST 10 — ns JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it. J2 J3 J3 VIH TCLK (input) VIL J4 J4 Figure 38. Test Clock Input Timing TCLK VIL VIH J5 Data Inputs J6 Input Data Valid J7 Data Outputs Output Data Valid J8 Data Outputs J7 Data Outputs Output Data Valid Figure 39. Boundary Scan (JTAG) Timing MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 59 Preliminary Electrical Characteristics TCLK VIL VIH J9 TDI TMS J10 Input Data Valid J11 TDO Output Data Valid J12 TDO J11 TDO Output Data Valid Figure 40. Test Access Port Timing TCLK J14 TRST J13 Figure 41. TRST Timing 5.22 Debug AC Timing Specifications Table 40 lists specifications for the debug AC timing parameters shown in Figure 42. Table 40. Debug AC Timing Specification Num 1 Characteristic Min Max Units D0 PSTCLK cycle time 1.5 1.5 tSYS D1 PSTCLK rising to PSTDDATA valid — 3.0 ns D2 PSTCLK rising to PSTDDATA invalid 1.5 — ns D3 DSI-to-DSCLK setup 1 — PSTCLK D41 DSCLK-to-DSO hold 4 — PSTCLK D5 DSCLK cycle time 5 — PSTCLK D6 BKPT assertion time 1 — PSTCLK DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of PSTCLK. MCF5301x Data Sheet, Rev. 3 60 Preliminary—Subject to Change Without Notice Freescale Semiconductor Package Information D0 PSTCLK D2 D1 PSTDDATA[7:0] Figure 42. Real-Time Trace AC Timing D5 DSCLK D3 DSI Current Next D4 DSO Past Current Figure 43. BDM Serial Port AC Timing 6 Package Information The latest package outline drawings are available on the product summary pages on our web site: http://www.freescale.com/coldfire. The following table lists the package case number per device. Use these numbers in the web page keyword search engine to find the latest package outline drawings. Table 41. Package Information Device Package Type Case Outline Number 208 LQFP TBD 256 MAPBGA 98ARH98219A MCF53010 MCF53011 MCF53012 MCF53013 MCF53014 MCF53015 MCF53016 MCF53017 7 Product Documentation Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution Center, or through the Freescale world-wide web address at http://www.freescale.com/coldfire. MCF5301x Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 61 8 Revision History Table 42 summarizes revisions to this document. Table 42. Revision History Revision Date Location 3 12 Aug 2009 — How to Reach Us: Home Page: www.freescale.com E-mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] Document Number: MCF53017 Rev. 3 8/2009 Preliminary—Subject to Change Without Notice Changes Initial public revision Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009. All rights reserved.