Freescale Semiconductor Technical Data Document Number: MHV5IC1810N Rev. 1, 3/2011 RF LDMOS Wideband Integrated Power Amplifier The MHV5IC1810N wideband integrated circuit is designed with on--chip matching that makes it usable from 1805 to 1990 MHz. This multi--stage structure is rated for 24 to 32 Volt operation and covers all typical cellular base station modulation formats. Final Application • Typical Two--Tone Performance: VDD = 28 Volts, IDQ1 = 120 mA, IDQ2 = 90 mA, Pout = 5 Watts Avg., Full Frequency Band (1805--1880 MHz or 1930--1990 MHz) Power Gain — 29 dB Power Added Efficiency — 29% IMD — --34 dBc Driver Application • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 105 mA, IDQ2 = 95 mA, Pout = 35 dBm, Full Frequency Band (1805--1880 MHz or 1930--1990 MHz) Power Gain — 29 dB Spectral Regrowth @ 400 kHz Offset = --67 dBc Spectral Regrowth @ 600 kHz Offset = --76 dBc EVM — 1.1% rms • Capable of Handling 3:1 VSWR, @ 28 Vdc, 1990 MHz, 10 Watts CW Output Power • Stable into a 3:1 VSWR. All Spurs Below --60 dBc @ 100 mW to 10 W CW Pout. Features • Characterized with Series Equivalent Large--Signal Impedance Parameters and Common Source Parameters • On--Chip Matching (50 Ohm Input, >5 Ohm Output) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function • On--Chip Current Mirror gm Reference FET for Self Biasing Application (1) • Integrated ESD Protection • RoHS Compliant • In Tape and Reel. R2 Suffix = 1500 Units, 16 mm Tape Width, 13 inch Reel. MHV5IC1810NR2 1805--1990 MHz, 5 W AVG., 28 V GSM/GSM EDGE RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIER 16 1 CASE 978--03 PFP--16 PLASTIC VRD1 NC 1 16 NC VRG1 VRD1 2 15 VDS2/RFout VRG1 3 14 VDS2/RFout VDS1 4 13 VDS2/RFout GND 5 12 VDS2/RFout RFin 6 11 VDS2/RFout VGS1 VGS2 7 8 10 9 VDS2/RFout NC VDS1 2 Stage IC RFin VDS2/RFout VGS1 Quiescent Current Temperature Compensation VGS2 (Top View) Note: Exposed backside flag is source terminal for transistors. Figure 1. Functional Block Diagram Figure 2. Pin Connections 1. Refer to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1987. © Freescale Semiconductor, Inc., 2006, 2011. All rights reserved. RF Device Data Freescale Semiconductor MHV5IC1810NR2 1 Table 1. Maximum Ratings Symbol Value Unit Drain--Source Voltage Rating VDSS --0.5, +65 Vdc Gate--Source Voltage VGS --0.5, +12 Vdc Storage Temperature Range Tstg --65 to +150 °C Operating Junction Temperature TJ 150 °C Input Power Pin 12 dBm Symbol Value (1) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case RθJC °C/W Final Application (Pout = 10 W CW) Stage 1, 28 Vdc, IDQ1 = 120 mA Stage 2, 28 Vdc, IDQ2 = 90 mA 9.2 3.3 Driver Application (Pout = 2.25 W CW) Stage 1, 28 Vdc, IDQ1 = 120 mA Stage 2, 28 Vdc, IDQ2 = 90 mA 10 3.5 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 0 (Minimum) Machine Model (per EIA/JESD22--A115) A (Minimum) Charge Device Model (per JESD22--C101) III (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Functional Tests (In Freescale Wideband 1930--1990 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 120 mA, IDQ2 = 90 mA, Pout = 5 W Avg., f1 = 1990 MHz, f2 = 1990.1 MHz, Two--Tone Test Power Gain Gps 26.5 Power Added Efficiency PAE 25 29 — % Intermodulation Distortion IMD — --34 --27 dBc Input Return Loss IRL — --10 dB 29 — dB Typical Two--Tone Performances (In Freescale Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ1 = 120 mA, IDQ2 = 90 mA, Pout = 5 W Avg., 1805--1880 MHz Power Gain Gps — 29 — dB Power Added Efficiency PAE — 29 — % Intermodulation Distortion IMD — --34 — dBc Input Return Loss IRL — --15 — dB Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ1 = 105 mA, IDQ2 = 95 mA, Pout = 3.2 W Avg., 1805--1880 MHz or 1930--1990 MHz EDGE Modulation Power Gain Gps — Error Vector Magnitude EVM Spectral Regrowth at 400 kHz Offset SR1 Spectral Regrowth at 600 kHz Offset SR2 29 — dB — 1.1 — % rms — --67 — dBc — --76 — dBc 1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. (continued) MHV5IC1810NR2 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical CW Performances (In Freescale CW Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ1 = 120 mA, IDQ2 = 90 mA, Pout = 2.25 W Avg., 1805--1990 MHz Power Gain Gps — 29 — dB Power Added Efficiency PAE — 19 — % Input Return Loss IRL — --13 — dB MHV5IC1810NR2 RF Device Data Freescale Semiconductor 3 1 NC NC 16 VRD1 2 15 VRG1 3 14 4 13 5 12 Z11 VDS1 C10 RF INPUT Z1 Z2 6 11 Z10 Z9 Z8 C5 C9 C13 Z3 Z4 Z5 C11 C14 Z6 Z7 C6 C12 VDS2 RF OUTPUT C15 C2 VGS1 VGS2 R1 R2 Z1 Z2 Z3 Z4 Z5 Z6 7 C7 C3 8 C8 Quiescent Current Temperature Compensation C4 10 NC Z7 Z8 Z9 Z10 Z11 PCB 0.120″ x 0.044″ Microstrip 0.257″ x 0.044″ Microstrip 0.130″ x 0.170″ Microstrip 0.067″ x 0.122″ Microstrip 0.127″ x 0.122″ Microstrip 0.355″ x 0.084″ Microstrip 9 0.273″ x 0.044″ Microstrip 0.917″ x 0.050″ Microstrip 0.304″ x 0.050″ Microstrip 0.710″ x 0.050″ Microstrip 1.296″ x 0.400″ Microstrip Rogers 4350, 0.020″, εr = 3.50 Figure 3. MHV5IC1810NR2 Test Circuit Schematic — 1930--1990 MHz Table 6. MHV5IC1810NR2 Test Circuit Component Designations and Values — 1930--1990 MHz Part Description Part Number Manufacturer C2 22 pF Chip Capacitor ATC100A220GT500XT ATC C3, C4, C5, C6 8.2 pF Chip Capacitors ATC100A8R2CT500XT ATC C7, C8, C9 10 nF Chip Capacitors 08055C103KAT AVX C10, C11 6.8 μF Chip Capacitors C4532X5R1H685MT TDK C12, C13 3.3 pF Chip Capacitors ATC100A3R3BT500XT ATC C14, C15 0.5 pF Chip Capacitors ATC100A0R5BT500XT ATC R1, R2 1 kΩ, 1/8 W Chip Resistors CRCW1K00FKEA Vishay MHV5IC1810NR2 4 RF Device Data Freescale Semiconductor VD1 VD2 C11 C10 C5 C13 C2 C6 C12 C3 C7 C9 C14 C15 C4 MHV5IC1810N Rev. 0 C8 R2 R1 VGS1 VGS2 Figure 4. MHV5IC1810NR2 Test Circuit Component Layout — 1930--1990 MHz MHV5IC1810NR2 RF Device Data Freescale Semiconductor 5 PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) 35 --10 IRL 34 33 --20 VDD = 28 Vdc, Pout = 5 W (Avg.) IDQ1 = 120 mA, IDQ2 = 90 mA 100 kHz Tone Spacing 32 31 --15 --25 PAE Gps 30 --30 --35 IMD 29 --40 28 --45 27 1900 1920 1940 1960 --50 2000 1980 IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) TYPICAL CHARACTERISTICS — 1930--1990 MHz f, FREQUENCY (MHz) PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) 35 0 Gps 30 --10 IRL 25 --20 VDD = 28 Vdc, Pout = 20 dBm (Avg.) IDQ1 = 120 mA, IDQ2 = 90 mA 100 kHz Tone Spacing 20 15 --30 --40 10 --50 IMD 5 --60 PAE 0 1900 1920 1940 1980 1960 --70 2000 IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) Figure 5. Two--Tone Wideband Performance @ Pout = 5 Watts (Avg.) f, FREQUENCY (MHz) Figure 6. Two--Tone Wideband Performance @ Pout = 20 dBm (Avg.) 31 Gps, POWER GAIN (dB) --10 IDQ1 = 120 mA IDQ2 = 140 mA 30 IDQ1 = 120 mA IDQ2 = 115 mA 29 IDQ1 = 120 mA IDQ2 = 90 mA 28 IDQ1 = 60 mA IDQ2 = 90 mA IDQ1 = 120 mA IDQ2 = 45 mA 27 IDQ1 = 120 mA IDQ2 = 65 mA VDD = 28 Vdc 26 Center Frequency = 1960 MHz 100 kHz Tone Spacing 25 10 1 100 IMD, INTERMODULATION DISTORTION (dBc) 32 VDD = 28 Vdc IDQ1 = 120 mA, IDQ2 = 90 mA f = 1960 MHz, 100 kHz Tone Spacing --20 3rd Order --30 5th Order --40 7th Order --50 --60 --70 --80 0.1 1 10 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 7. Two--Tone Power Gain versus Output Power Figure 8. Intermodulation Distortion Products versus Output Power 100 MHV5IC1810NR2 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1930--1990 MHz 47 Ideal P3dB = 42.5 dBm (17.78 W) Pout, OUTPUT POWER (dBc) 45 P1dB = 42 dBm (15.85 W) 43 Actual 41 39 VDD = 28 Vdc IDQ1 = 120 mA, IDQ2 = 90 mA Pulsed CW, 12 μsec(on), 1% Duty Cycle f = 1960 MHz 37 35 --2 2 0 4 6 8 10 Pin, INPUT POWER (dBm) Figure 9. Pulse CW Output Power versus Input Power 32 30 28 TC = --30_C 50 25_C Gps 85_C 40 25_C 30 85_C 20 26 24 0.1 --30_C 10 PAE 1 0 100 10 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 34 60 VDD = 28 Vdc, IDQ1 = 120 mA IDQ2 = 90 mA, f = 1960 MHz PAE, POWER ADDED EFFICIENCY (%) 36 34 32 30 28 26 24 22 20 18 16 14 12 10 24 V 16 V 2 4 Gps, POWER GAIN (dB) 6 8 10 12 14 16 18 20 22 24 Pout, OUTPUT POWER (WATTS) CW Figure 10. Power Gain and Power Added Efficiency versus CW Output Power 32 IDQ1 = 120 mA IDQ2 = 90 mA f = 1960 MHz 20 V VDD = 12 V 0 Pout, OUTPUT POWER (WATTS) CW 33 32 V 28 V Figure 11. Power Gain versus Output Power VDD = 28 Vdc, Pout = 1 W Avg., IDQ1 = 120 mA, IDQ2 = 90 mA Two--Tone Measurements, Center Frequency = 1960 MHz 31 TC = --30_C 30 29 25_C 28 27 26 1800 85_C 1850 1900 1950 2000 f, FREQUENCY (MHz) Figure 12. Power Gain versus Frequency MHV5IC1810NR2 RF Device Data Freescale Semiconductor 7 50 TC = 85_C EVM 25_C 40 8 --30_C 6 4 30 VDD = 28 Vdc IDQ1 = 105 mA IDQ2 = 90 mA f = 1960 MHz EDGE Modulation PAE 2 0 0.1 10 1 SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) 10 20 10 PAE, POWER ADDED EFFICIENCY (%) EVM, ERROR VECTOR MAGNITUDE (% ms) TYPICAL CHARACTERISTICS — 1930--1990 MHz 0 100 --45 --30_C TC = 85_C --50 25_C --55 --30_C --60 25_C SR @ 400 kHz --65 --70 VDD = 28 Vdc IDQ1 = 105 mA IDQ2 = 90 mA f = 1960 MHz EDGE Modulation 85_C --75 SR @ 600 kHz --80 --85 1 0.1 10 100 Pout, OUTPUT POWER (WATTS) AVG. Pout, OUTPUT POWER (WATTS) AVG. Figure 13. EVM and Power Added Efficiency versus Output Power Figure 14. Spectral Regrowth at 400 and 600 kHz versus Output Power GSM TEST SIGNAL 2nd Stage 107 --10 --20 106 90 VBW = 30 kHz Sweep Time = 70 ms VBW = 30 kHz --40 105 104 Reference Power --30 1st Stage --50 (dB) MTTF FACTOR (HOURS X AMPS2) 108 --60 --70 100 110 120 130 140 150 160 170 180 190 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours x ampere2 drain current. Life tests at elevated temperatures have correlated to better than ±10% of the theoretical prediction for metal failure. Divide MTTF factor by ID2 for MTTF in a particular application. Figure 15. MTTF Factor versus Junction Temperature --80 --90 400 kHz 400 kHz 600 kHz 600 kHz --100 --110 Center 1.96 GHz 200 kHz Span 2 MHz Figure 16. EDGE Spectrum MHV5IC1810NR2 8 RF Device Data Freescale Semiconductor 1 NC NC 16 VRD1 2 15 VRG1 3 14 4 13 5 12 Z12 VDS1 C10 RF INPUT Z1 VGS2 R1 6 7 C7 R2 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z10 Z9 C5 C9 C11 C13 Z3 Z4 Z5 Z6 Z7 C12 Z2 C1 C2 VGS1 Z11 C3 8 C8 Z8 VDS2 RF OUTPUT C6 11 Quiescent Current Temperature Compensation C4 10 NC Z8 Z9 Z10 Z11 Z12 PCB 0.120″ x 0.044″ Microstrip 0.257″ x 0.044″ Microstrip 0.130″ x 0.170″ Microstrip 0.070″ x 0.122″ Microstrip 0.125″ x 0.122″ Microstrip 0.095″ x 0.084″ Microstrip 0.260″ x 0.085″ Microstrip 9 0.273″ x 0.044″ Microstrip 0.917″ x 0.050″ Microstrip 0.304″ x 0.050″ Microstrip 0.710″ x 0.050″ Microstrip 1.296″ x 0.400″ Microstrip Rogers 4350, 0.020″, εr = 3.50 Figure 17. MHV5IC1810NR2 Test Circuit Schematic — 1805--1880 MHz Table 7. MHV5IC1810NR2 Test Circuit Component Designations and Values — 1805--1880 MHz Part Description Part Number Manufacturer C1 0.8 pF Chip Capacitor ATC100A0R8BT500XT ATC C2 27 pF Chip Capacitor ATC100A270GT500XT ATC C3, C4, C5, C6 8.2 pF Chip Capacitors ATC100A8R2CT500XT ATC C7, C8, C9 10 nF Chip Capacitors 08055C103KAT AVX C10, C11 6.8 μF Chip Capacitors C4532X5R1H685MT TDK C12, C13 3.3 pF Chip Capacitors ATC100A3R3BT500XT ATC R1, R2 1 kΩ, 1/8 W Chip Resistors CRCW1K00FKEA Vishay MHV5IC1810NR2 RF Device Data Freescale Semiconductor 9 VD1 VD2 C11 C10 C5 C2 C9 C13 C12 C6 C1 C3 C7 C4 MHV5IC1810N Rev. 0 C8 R2 R1 VGS1 VGS2 Figure 18. MHV5IC1810NR2 Test Circuit Component Layout — 1805--1880 MHz MHV5IC1810NR2 10 RF Device Data Freescale Semiconductor TC = 85_C EVM 10 8 60 25_C 50 40 --30_C 6 30 PAE VDD = 28 Vdc IDQ1 = 105 mA IDQ2 = 90 mA f = 1840 MHz EDGE Modulation 4 2 0 1 10 20 10 0 100 SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) 12 PAE, POWER ADDED EFFICIENCY (%) EVM, ERROR VECTOR MAGNITUDE (% ms) TYPICAL CHARACTERISTICS — 1805--1880 MHz --45 --50 25_C --55 --60 25_C SR @ 400 kHz --65 TC = 85_C --70 VDD = 28 Vdc IDQ1 = 105 mA IDQ2 = 90 mA f = 1840 MHz EDGE Modulation --30_C --75 85_C SR @ 600 kHz --80 --30_C --85 0.1 1 10 100 Pout, OUTPUT POWER (WATTS) AVG. Pout, OUTPUT POWER (WATTS) AVG. Figure 19. Spectral Regrowth at 400 and 600 kHz versus Output Power Figure 20. Spectral Regrowth at 400 and 600 kHz versus Output Power MHV5IC1810NR2 RF Device Data Freescale Semiconductor 11 Zo = 50 Ω f = 2000 MHz Zload f = 1800 MHz f = 2000 MHz Zin f = 1800 MHz VDD = 28 Vdc, IDQ1 = 120 mA, IDQ2 = 90 mA,Pout = 5 W Avg. f MHz Zin Ω Zload Ω 1800 43.82 + j6.83 3.49 + j8.58 1820 43.67 + j7.10 3.43 + j8.96 1840 43.50 + j7.34 3.36 + j9.33 1860 43.31 + j7.55 3.31 + j9.68 1880 43.13 + j7.76 3.24 + j10.04 1900 42.96 + j7.96 3.19 + j10.38 1920 42.76 + j8.15 3.14 + j10.72 1940 42.56 + j8.34 3.07 + j11.03 1960 42.36 + j8.50 3.04 + j11.36 1980 42.16 + j8.65 2.99 + j11.65 2000 41.97 + j8.79 2.94 + j11.94 Zin = Zload = Test circuit impedance as measured from gate to ground. Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Z in Z load Figure 21. Series Equivalent Input and Load Impedance MHV5IC1810NR2 12 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MHV5IC1810NR2 RF Device Data Freescale Semiconductor 13 MHV5IC1810NR2 14 RF Device Data Freescale Semiconductor MHV5IC1810NR2 RF Device Data Freescale Semiconductor 15 PRODUCT DOCUMENTATION Refer to the following documents, Tools and software to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date 1 Mar. 2011 Description • Figs. 3 and 17, Test Circuit Schematic, redrawn to reflect correct trace lengths and trace length measurements, p. 4, 9 • Updated Part Numbers in Tables 6, 7, Component Designations and Values, to RoHS compliant part numbers, p. 4, 9 • Added Product Documentation and Revision History, p. 16 MHV5IC1810NR2 16 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006, 2011. All rights reserved. MHV5IC1810NR2 Document Number: RF Device Data MHV5IC1810N Rev. 1, 3/2011 Freescale Semiconductor 17