FREESCALE MHV5IC1810N_11

Freescale Semiconductor
Technical Data
Document Number: MHV5IC1810N
Rev. 1, 3/2011
RF LDMOS Wideband Integrated
Power Amplifier
The MHV5IC1810N wideband integrated circuit is designed with on--chip
matching that makes it usable from 1805 to 1990 MHz. This multi--stage
structure is rated for 24 to 32 Volt operation and covers all typical cellular base
station modulation formats.
Final Application
• Typical Two--Tone Performance: VDD = 28 Volts, IDQ1 = 120 mA, IDQ2 =
90 mA, Pout = 5 Watts Avg., Full Frequency Band (1805--1880 MHz or
1930--1990 MHz)
Power Gain — 29 dB
Power Added Efficiency — 29%
IMD — --34 dBc
Driver Application
• Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 105 mA, IDQ2 =
95 mA, Pout = 35 dBm, Full Frequency Band (1805--1880 MHz or
1930--1990 MHz)
Power Gain — 29 dB
Spectral Regrowth @ 400 kHz Offset = --67 dBc
Spectral Regrowth @ 600 kHz Offset = --76 dBc
EVM — 1.1% rms
• Capable of Handling 3:1 VSWR, @ 28 Vdc, 1990 MHz, 10 Watts CW
Output Power
• Stable into a 3:1 VSWR. All Spurs Below --60 dBc @ 100 mW to 10 W CW
Pout.
Features
• Characterized with Series Equivalent Large--Signal Impedance Parameters
and Common Source Parameters
• On--Chip Matching (50 Ohm Input, >5 Ohm Output)
• Integrated Quiescent Current Temperature Compensation
with Enable/Disable Function
• On--Chip Current Mirror gm Reference FET for Self Biasing Application (1)
• Integrated ESD Protection
• RoHS Compliant
• In Tape and Reel. R2 Suffix = 1500 Units, 16 mm Tape Width, 13 inch Reel.
MHV5IC1810NR2
1805--1990 MHz, 5 W AVG., 28 V
GSM/GSM EDGE
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIER
16
1
CASE 978--03
PFP--16
PLASTIC
VRD1
NC
1
16
NC
VRG1
VRD1
2
15
VDS2/RFout
VRG1
3
14
VDS2/RFout
VDS1
4
13
VDS2/RFout
GND
5
12
VDS2/RFout
RFin
6
11
VDS2/RFout
VGS1
VGS2
7
8
10
9
VDS2/RFout
NC
VDS1
2 Stage IC
RFin
VDS2/RFout
VGS1
Quiescent Current
Temperature Compensation
VGS2
(Top View)
Note: Exposed backside flag is source
terminal for transistors.
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
1. Refer to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1987.
© Freescale Semiconductor, Inc., 2006, 2011. All rights reserved.
RF Device Data
Freescale Semiconductor
MHV5IC1810NR2
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain--Source Voltage
Rating
VDSS
--0.5, +65
Vdc
Gate--Source Voltage
VGS
--0.5, +12
Vdc
Storage Temperature Range
Tstg
--65 to +150
°C
Operating Junction Temperature
TJ
150
°C
Input Power
Pin
12
dBm
Symbol
Value (1)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
RθJC
°C/W
Final Application
(Pout = 10 W CW)
Stage 1, 28 Vdc, IDQ1 = 120 mA
Stage 2, 28 Vdc, IDQ2 = 90 mA
9.2
3.3
Driver Application
(Pout = 2.25 W CW)
Stage 1, 28 Vdc, IDQ1 = 120 mA
Stage 2, 28 Vdc, IDQ2 = 90 mA
10
3.5
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
0 (Minimum)
Machine Model (per EIA/JESD22--A115)
A (Minimum)
Charge Device Model (per JESD22--C101)
III (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (In Freescale Wideband 1930--1990 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 120 mA, IDQ2 = 90 mA,
Pout = 5 W Avg., f1 = 1990 MHz, f2 = 1990.1 MHz, Two--Tone Test
Power Gain
Gps
26.5
Power Added Efficiency
PAE
25
29
—
%
Intermodulation Distortion
IMD
—
--34
--27
dBc
Input Return Loss
IRL
—
--10
dB
29
—
dB
Typical Two--Tone Performances (In Freescale Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ1 = 120 mA, IDQ2 = 90 mA, Pout =
5 W Avg., 1805--1880 MHz
Power Gain
Gps
—
29
—
dB
Power Added Efficiency
PAE
—
29
—
%
Intermodulation Distortion
IMD
—
--34
—
dBc
Input Return Loss
IRL
—
--15
—
dB
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ1 = 105 mA, IDQ2 = 95 mA,
Pout = 3.2 W Avg., 1805--1880 MHz or 1930--1990 MHz EDGE Modulation
Power Gain
Gps
—
Error Vector Magnitude
EVM
Spectral Regrowth at 400 kHz Offset
SR1
Spectral Regrowth at 600 kHz Offset
SR2
29
—
dB
—
1.1
—
% rms
—
--67
—
dBc
—
--76
—
dBc
1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
(continued)
MHV5IC1810NR2
2
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical CW Performances (In Freescale CW Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ1 = 120 mA, IDQ2 = 90 mA, Pout =
2.25 W Avg., 1805--1990 MHz
Power Gain
Gps
—
29
—
dB
Power Added Efficiency
PAE
—
19
—
%
Input Return Loss
IRL
—
--13
—
dB
MHV5IC1810NR2
RF Device Data
Freescale Semiconductor
3
1
NC
NC
16
VRD1
2
15
VRG1
3
14
4
13
5
12
Z11
VDS1
C10
RF
INPUT
Z1
Z2
6
11
Z10
Z9
Z8
C5
C9
C13
Z3
Z4
Z5
C11
C14
Z6
Z7
C6
C12
VDS2
RF
OUTPUT
C15
C2
VGS1
VGS2
R1
R2
Z1
Z2
Z3
Z4
Z5
Z6
7
C7
C3
8
C8
Quiescent Current
Temperature Compensation
C4
10
NC
Z7
Z8
Z9
Z10
Z11
PCB
0.120″ x 0.044″ Microstrip
0.257″ x 0.044″ Microstrip
0.130″ x 0.170″ Microstrip
0.067″ x 0.122″ Microstrip
0.127″ x 0.122″ Microstrip
0.355″ x 0.084″ Microstrip
9
0.273″ x 0.044″ Microstrip
0.917″ x 0.050″ Microstrip
0.304″ x 0.050″ Microstrip
0.710″ x 0.050″ Microstrip
1.296″ x 0.400″ Microstrip
Rogers 4350, 0.020″, εr = 3.50
Figure 3. MHV5IC1810NR2 Test Circuit Schematic — 1930--1990 MHz
Table 6. MHV5IC1810NR2 Test Circuit Component Designations and Values — 1930--1990 MHz
Part
Description
Part Number
Manufacturer
C2
22 pF Chip Capacitor
ATC100A220GT500XT
ATC
C3, C4, C5, C6
8.2 pF Chip Capacitors
ATC100A8R2CT500XT
ATC
C7, C8, C9
10 nF Chip Capacitors
08055C103KAT
AVX
C10, C11
6.8 μF Chip Capacitors
C4532X5R1H685MT
TDK
C12, C13
3.3 pF Chip Capacitors
ATC100A3R3BT500XT
ATC
C14, C15
0.5 pF Chip Capacitors
ATC100A0R5BT500XT
ATC
R1, R2
1 kΩ, 1/8 W Chip Resistors
CRCW1K00FKEA
Vishay
MHV5IC1810NR2
4
RF Device Data
Freescale Semiconductor
VD1
VD2
C11
C10
C5
C13
C2
C6
C12
C3
C7
C9
C14
C15
C4
MHV5IC1810N
Rev. 0
C8
R2
R1
VGS1
VGS2
Figure 4. MHV5IC1810NR2 Test Circuit Component Layout — 1930--1990 MHz
MHV5IC1810NR2
RF Device Data
Freescale Semiconductor
5
PAE, POWER ADDED EFFICIENCY (%)
Gps, POWER GAIN (dB)
35
--10
IRL
34
33
--20
VDD = 28 Vdc, Pout = 5 W (Avg.)
IDQ1 = 120 mA, IDQ2 = 90 mA
100 kHz Tone Spacing
32
31
--15
--25
PAE
Gps
30
--30
--35
IMD
29
--40
28
--45
27
1900
1920
1940
1960
--50
2000
1980
IMD, INTERMODULATION DISTORTION (dBc)
IRL, INPUT RETURN LOSS (dB)
TYPICAL CHARACTERISTICS — 1930--1990 MHz
f, FREQUENCY (MHz)
PAE, POWER ADDED EFFICIENCY (%)
Gps, POWER GAIN (dB)
35
0
Gps
30
--10
IRL
25
--20
VDD = 28 Vdc, Pout = 20 dBm (Avg.)
IDQ1 = 120 mA, IDQ2 = 90 mA
100 kHz Tone Spacing
20
15
--30
--40
10
--50
IMD
5
--60
PAE
0
1900
1920
1940
1980
1960
--70
2000
IMD, INTERMODULATION DISTORTION (dBc)
IRL, INPUT RETURN LOSS (dB)
Figure 5. Two--Tone Wideband Performance
@ Pout = 5 Watts (Avg.)
f, FREQUENCY (MHz)
Figure 6. Two--Tone Wideband Performance
@ Pout = 20 dBm (Avg.)
31
Gps, POWER GAIN (dB)
--10
IDQ1 = 120 mA
IDQ2 = 140 mA
30
IDQ1 = 120 mA
IDQ2 = 115 mA
29
IDQ1 = 120 mA
IDQ2 = 90 mA
28
IDQ1 = 60 mA
IDQ2 = 90 mA
IDQ1 = 120 mA
IDQ2 = 45 mA
27
IDQ1 = 120 mA
IDQ2 = 65 mA
VDD = 28 Vdc
26 Center Frequency = 1960 MHz
100 kHz Tone Spacing
25
10
1
100
IMD, INTERMODULATION DISTORTION (dBc)
32
VDD = 28 Vdc
IDQ1 = 120 mA, IDQ2 = 90 mA
f = 1960 MHz, 100 kHz Tone Spacing
--20
3rd Order
--30
5th Order
--40
7th Order
--50
--60
--70
--80
0.1
1
10
Pout, OUTPUT POWER (WATTS) PEP
Pout, OUTPUT POWER (WATTS) PEP
Figure 7. Two--Tone Power Gain versus
Output Power
Figure 8. Intermodulation Distortion Products
versus Output Power
100
MHV5IC1810NR2
6
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — 1930--1990 MHz
47
Ideal
P3dB = 42.5 dBm (17.78 W)
Pout, OUTPUT POWER (dBc)
45
P1dB = 42 dBm (15.85 W)
43
Actual
41
39
VDD = 28 Vdc
IDQ1 = 120 mA, IDQ2 = 90 mA
Pulsed CW, 12 μsec(on), 1% Duty Cycle
f = 1960 MHz
37
35
--2
2
0
4
6
8
10
Pin, INPUT POWER (dBm)
Figure 9. Pulse CW Output Power versus Input
Power
32
30
28
TC = --30_C
50
25_C
Gps
85_C
40
25_C
30
85_C
20
26
24
0.1
--30_C
10
PAE
1
0
100
10
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
34
60
VDD = 28 Vdc, IDQ1 = 120 mA
IDQ2 = 90 mA, f = 1960 MHz
PAE, POWER ADDED EFFICIENCY (%)
36
34
32
30
28
26
24
22
20
18
16
14
12
10
24 V
16 V
2
4
Gps, POWER GAIN (dB)
6
8
10
12
14
16
18
20
22
24
Pout, OUTPUT POWER (WATTS) CW
Figure 10. Power Gain and Power Added
Efficiency versus CW Output Power
32
IDQ1 = 120 mA
IDQ2 = 90 mA
f = 1960 MHz
20 V
VDD = 12 V
0
Pout, OUTPUT POWER (WATTS) CW
33
32 V
28 V
Figure 11. Power Gain versus Output Power
VDD = 28 Vdc, Pout = 1 W Avg., IDQ1 = 120 mA, IDQ2 = 90 mA
Two--Tone Measurements, Center Frequency = 1960 MHz
31
TC = --30_C
30
29
25_C
28
27
26
1800
85_C
1850
1900
1950
2000
f, FREQUENCY (MHz)
Figure 12. Power Gain versus Frequency
MHV5IC1810NR2
RF Device Data
Freescale Semiconductor
7
50
TC = 85_C
EVM
25_C
40
8
--30_C
6
4
30
VDD = 28 Vdc
IDQ1 = 105 mA
IDQ2 = 90 mA
f = 1960 MHz
EDGE Modulation
PAE
2
0
0.1
10
1
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
10
20
10
PAE, POWER ADDED EFFICIENCY (%)
EVM, ERROR VECTOR MAGNITUDE (% ms)
TYPICAL CHARACTERISTICS — 1930--1990 MHz
0
100
--45
--30_C
TC = 85_C
--50
25_C
--55
--30_C
--60
25_C
SR @ 400 kHz
--65
--70
VDD = 28 Vdc
IDQ1 = 105 mA
IDQ2 = 90 mA
f = 1960 MHz
EDGE Modulation
85_C
--75
SR @ 600 kHz
--80
--85
1
0.1
10
100
Pout, OUTPUT POWER (WATTS) AVG.
Pout, OUTPUT POWER (WATTS) AVG.
Figure 13. EVM and Power Added Efficiency
versus Output Power
Figure 14. Spectral Regrowth at 400 and 600 kHz
versus Output Power
GSM TEST SIGNAL
2nd Stage
107
--10
--20
106
90
VBW = 30 kHz
Sweep Time = 70 ms
VBW = 30 kHz
--40
105
104
Reference Power
--30
1st Stage
--50
(dB)
MTTF FACTOR (HOURS X AMPS2)
108
--60
--70
100
110
120
130
140
150
160
170
180 190
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours x ampere2
drain current. Life tests at elevated temperatures have correlated to
better than ±10% of the theoretical prediction for metal failure. Divide
MTTF factor by ID2 for MTTF in a particular application.
Figure 15. MTTF Factor versus Junction Temperature
--80
--90
400 kHz
400 kHz
600 kHz
600 kHz
--100
--110
Center 1.96 GHz
200 kHz
Span 2 MHz
Figure 16. EDGE Spectrum
MHV5IC1810NR2
8
RF Device Data
Freescale Semiconductor
1
NC
NC
16
VRD1
2
15
VRG1
3
14
4
13
5
12
Z12
VDS1
C10
RF
INPUT
Z1
VGS2
R1
6
7
C7
R2
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z10
Z9
C5
C9
C11
C13
Z3
Z4
Z5
Z6
Z7
C12
Z2
C1 C2
VGS1
Z11
C3
8
C8
Z8
VDS2
RF
OUTPUT
C6
11
Quiescent Current
Temperature Compensation
C4
10
NC
Z8
Z9
Z10
Z11
Z12
PCB
0.120″ x 0.044″ Microstrip
0.257″ x 0.044″ Microstrip
0.130″ x 0.170″ Microstrip
0.070″ x 0.122″ Microstrip
0.125″ x 0.122″ Microstrip
0.095″ x 0.084″ Microstrip
0.260″ x 0.085″ Microstrip
9
0.273″ x 0.044″ Microstrip
0.917″ x 0.050″ Microstrip
0.304″ x 0.050″ Microstrip
0.710″ x 0.050″ Microstrip
1.296″ x 0.400″ Microstrip
Rogers 4350, 0.020″, εr = 3.50
Figure 17. MHV5IC1810NR2 Test Circuit Schematic — 1805--1880 MHz
Table 7. MHV5IC1810NR2 Test Circuit Component Designations and Values — 1805--1880 MHz
Part
Description
Part Number
Manufacturer
C1
0.8 pF Chip Capacitor
ATC100A0R8BT500XT
ATC
C2
27 pF Chip Capacitor
ATC100A270GT500XT
ATC
C3, C4, C5, C6
8.2 pF Chip Capacitors
ATC100A8R2CT500XT
ATC
C7, C8, C9
10 nF Chip Capacitors
08055C103KAT
AVX
C10, C11
6.8 μF Chip Capacitors
C4532X5R1H685MT
TDK
C12, C13
3.3 pF Chip Capacitors
ATC100A3R3BT500XT
ATC
R1, R2
1 kΩ, 1/8 W Chip Resistors
CRCW1K00FKEA
Vishay
MHV5IC1810NR2
RF Device Data
Freescale Semiconductor
9
VD1
VD2
C11
C10
C5
C2
C9
C13
C12
C6
C1
C3
C7
C4
MHV5IC1810N
Rev. 0
C8
R2
R1
VGS1
VGS2
Figure 18. MHV5IC1810NR2 Test Circuit Component Layout — 1805--1880 MHz
MHV5IC1810NR2
10
RF Device Data
Freescale Semiconductor
TC = 85_C
EVM
10
8
60
25_C
50
40
--30_C
6
30
PAE
VDD = 28 Vdc
IDQ1 = 105 mA
IDQ2 = 90 mA
f = 1840 MHz
EDGE Modulation
4
2
0
1
10
20
10
0
100
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
12
PAE, POWER ADDED EFFICIENCY (%)
EVM, ERROR VECTOR MAGNITUDE (% ms)
TYPICAL CHARACTERISTICS — 1805--1880 MHz
--45
--50
25_C
--55
--60
25_C
SR @ 400 kHz
--65
TC = 85_C
--70
VDD = 28 Vdc
IDQ1 = 105 mA
IDQ2 = 90 mA
f = 1840 MHz
EDGE Modulation
--30_C
--75
85_C
SR @ 600 kHz
--80
--30_C
--85
0.1
1
10
100
Pout, OUTPUT POWER (WATTS) AVG.
Pout, OUTPUT POWER (WATTS) AVG.
Figure 19. Spectral Regrowth at 400 and 600 kHz
versus Output Power
Figure 20. Spectral Regrowth at 400 and 600 kHz
versus Output Power
MHV5IC1810NR2
RF Device Data
Freescale Semiconductor
11
Zo = 50 Ω
f = 2000 MHz
Zload
f = 1800 MHz
f = 2000 MHz
Zin
f = 1800 MHz
VDD = 28 Vdc, IDQ1 = 120 mA, IDQ2 = 90 mA,Pout = 5 W Avg.
f
MHz
Zin
Ω
Zload
Ω
1800
43.82 + j6.83
3.49 + j8.58
1820
43.67 + j7.10
3.43 + j8.96
1840
43.50 + j7.34
3.36 + j9.33
1860
43.31 + j7.55
3.31 + j9.68
1880
43.13 + j7.76
3.24 + j10.04
1900
42.96 + j7.96
3.19 + j10.38
1920
42.76 + j8.15
3.14 + j10.72
1940
42.56 + j8.34
3.07 + j11.03
1960
42.36 + j8.50
3.04 + j11.36
1980
42.16 + j8.65
2.99 + j11.65
2000
41.97 + j8.79
2.94 + j11.94
Zin
=
Zload =
Test circuit impedance as measured from
gate to ground.
Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under Test
Z
in
Z
load
Figure 21. Series Equivalent Input and Load Impedance
MHV5IC1810NR2
12
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
MHV5IC1810NR2
RF Device Data
Freescale Semiconductor
13
MHV5IC1810NR2
14
RF Device Data
Freescale Semiconductor
MHV5IC1810NR2
RF Device Data
Freescale Semiconductor
15
PRODUCT DOCUMENTATION
Refer to the following documents, Tools and software to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
1
Mar. 2011
Description
• Figs. 3 and 17, Test Circuit Schematic, redrawn to reflect correct trace lengths and trace length
measurements, p. 4, 9
• Updated Part Numbers in Tables 6, 7, Component Designations and Values, to RoHS compliant part
numbers, p. 4, 9
• Added Product Documentation and Revision History, p. 16
MHV5IC1810NR2
16
RF Device Data
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1--800--521--6274 or +1--480--768--2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1--8--1, Shimo--Meguro, Meguro--ku,
Tokyo 153--0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1--800--441--2447 or +1--303--675--2140
Fax: +1--303--675--2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2006, 2011. All rights reserved.
MHV5IC1810NR2
Document
Number:
RF
Device
Data MHV5IC1810N
Rev. 1, 3/2011
Freescale
Semiconductor
17