FREESCALE MW6IC2015NBR1_08

Freescale Semiconductor
Technical Data
Document Number: MW6IC2015N
Rev. 3, 12/2008
RF LDMOS Wideband Integrated
Power Amplifiers
MW6IC2015NBR1
MW6IC2015GNBR1
The MW6IC2015N wideband integrated circuit is designed for base station
applications. It uses Freescale’s newest High Voltage (26 to 32 Volts) LDMOS
IC technology and integrates a multi - stage structure. Its wideband on - chip
design makes it usable from 1805 to 1990 MHz. The linearity performances
1805 - 1990 MHz, 15 W, 26 V
cover all modulation formats for cellular applications: GSM, GSM EDGE, PHS,
GSM/GSM EDGE, CDMA
TDMA, CDMA, W - CDMA and TD - SCDMA.
RF LDMOS WIDEBAND
Final Application
INTEGRATED POWER AMPLIFIERS
• Typical Two - Tone Performance: VDD = 26 Volts, IDQ1 = 100 mA, IDQ2 =
170 mA, Pout = 15 Watts PEP, f = 1930 MHz
Power Gain — 26 dB
Power Added Efficiency — 28%
IMD — - 30 dBc
CASE 1329 - 09
Driver Application
TO - 272 WB - 16
• Typical GSM EDGE Performance: VDD = 26 Volts, IDQ1 = 130 mA, IDQ2 =
PLASTIC
170 mA, Pout = 3 Watts Avg., Full Frequency Band (1805 - 1880 MHz or
MW6IC2015NBR1
1930 - 1990 MHz)
Power Gain — 27 dB
Power Added Efficiency — 19%
Spectral Regrowth @ 400 kHz Offset = - 69 dBc
Spectral Regrowth @ 600 kHz Offset = - 78 dBc
EVM — 0.8% rms
CASE 1329A - 04
• Capable of Handling 3:1 VSWR, @ 26 Vdc, 1990 MHz, 15 Watts CW
TO - 272 WB - 16 GULL
Output Power
PLASTIC
• Stable into a 3:1 VSWR. All Spurs Below - 60 dBc @ 100 mW to 8 W CW
MW6IC2015GNBR1
Pout.
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
and Common Source Scattering Parameters
• On - Chip Matching (50 Ohm Input, DC Blocked, >5 Ohm Output)
• Integrated Quiescent Current Temperature Compensation with
Enable/Disable Function (1)
• Integrated ESD Protection
• Designed for Lower Memory Effects and Wide Instantaneous Bandwidth Applications
• 225°C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel
VDS1
RFin
RFout/VDS2
VGS1
Quiescent Current
Temperature Compensation (1)
VGS2
Figure 1. Functional Block Diagram
GND
VDS1
NC
NC
NC
1
2
3
4
5
16
15
GND
NC
RFin
6
14
NC
VGS1
VGS2
NC
GND
7
8
9
10
11
RFout /
VDS2
13
12
NC
GND
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.
© Freescale Semiconductor, Inc., 2006-2008. All rights reserved.
RF Device Data
Freescale Semiconductor
MW6IC2015NBR1 MW6IC2015GNBR1
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain - Source Voltage
Rating
VDSS
- 0.5, +68
Vdc
Gate - Source Voltage
VGS
- 0.5, +6
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
TC
150
°C
Case Operating Temperature
Operating Junction Temperature
(1,2)
Input Power
TJ
225
°C
Pin
20
dBm
Symbol
Value (2,3)
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Unit
RθJC
°C/W
Final Application
(Pout = 15 W CW)
Stage 1, 26 Vdc, IDQ1 = 100 mA
Stage 2, 26 Vdc, IDQ2 = 170 mA
4.3
1.2
Driver Application
(Pout = 3 W CW)
Stage 1, 26 Vdc, IDQ1 = 130 mA
Stage 2, 26 Vdc, IDQ2 = 170 mA
4.3
1.3
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
1A (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
III (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (In Freescale 1930 - 1990 MHz Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ1 = 100 mA, IDQ2 = 170 mA, Pout = 15 W
PEP, f1 = 1930 MHz, f2 = 1930.1 MHz, Two - Tone CW
Power Gain
Gps
24
26
—
dB
Power Added Efficiency
PAE
26
28
—
%
Intermodulation Distortion
IMD
—
- 30
- 27
dBc
Input Return Loss
IRL
—
—
- 10
dB
Typical Two - Tone Performances (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ1 = 100 mA, IDQ2 = 170 mA, Pout =
15 W PEP, 1805 - 1880 MHz, Two - Tone CW, 100 kHz Tone Spacing
Power Gain
Gps
—
26
—
dB
Power Added Efficiency
PAE
—
28
—
%
Intermodulation Distortion
IMD
—
- 30
—
dBc
Input Return Loss
IRL
—
- 10
—
dB
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access
MTTF calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
(continued)
MW6IC2015NBR1 MW6IC2015GNBR1
2
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ1 = 100 mA, IDQ2 = 170 mA, 1805 - 1880 MHz and
1930 - 1990 MHz
Saturated Pulsed Output Power, CW
(8 μsec(on), 1 msec(off))
Psat
—
35
—
W
Quiescent Current Accuracy over Temperature
with 1.8 kΩ Gate Feed Resistors ( - 10 to 85°C) (1)
ΔIQT
—
±3
—
%
Gain Flatness in 30 MHz Bandwidth @ Pout = 3 W CW
GF
—
0.3
—
dB
Average Deviation from Linear Phase in 30 MHz Bandwidth
@ Pout = 3 W CW
Φ
—
±1
—
°
Delay
—
2.7
—
ns
ΔΦ
—
±15
—
°
Average Group Delay @ Pout = 3 W CW Including Output Matching
Part - to - Part Insertion Phase Variation @ Pout = 3 W CW,
Six Sigma Window
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ1 = 130 mA, IDQ2 = 170 mA,
Pout = 3 W Avg., 1805 - 1990 MHz and 1930 - 1990 MHz EDGE Modulation
Power Gain
Gps
—
27
—
dB
Power Added Efficiency
PAE
—
19
—
%
Error Vector Magnitude
EVM
—
0.8
—
%
Spectral Regrowth at 400 kHz Offset
SR1
—
- 69
—
dBc
Spectral Regrowth at 600 kHz Offset
SR2
—
- 78
—
dBc
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or
AN1987.
MW6IC2015NBR1 MW6IC2015GNBR1
RF Device Data
Freescale Semiconductor
3
VDD2
VDD1
C1
RF
INPUT
Z1
Z2
1
2
3 NC
4 NC
5 NC
DUT
16
C2
NC 15
Z3
14
C3
Z8
Z4
Z5
C7
C9
C8
C10
Z6
Z7
RF
OUTPUT
6
C11
C6
VGG1
7 NC
8
Quiescent Current
Temperature Compensation
9
NC 13
10 NC
R1
C14
VGG2
11
C12
C13
Z9
12
R2
C4
C5
C15
Z1*
Z2
Z3
Z4
Z5
1.68″
0.50″
0.15″
0.13″
0.10″
x 0.08″ Microstrip
x 0.08″ Microstrip
x 0.04″ Microstrip
x 0.35″ Microstrip
x 0.35″ Microstrip
Z6*
Z7
Z8, Z9
PCB
0.61″ x 0.04″ Microstrip
1.30″ x 0.04″ Microstrip
1.18″ x 0.08″ Microstrip
Taconic TLX8 - 0300, 0.030″, εr = 2.55
* Variable for tuning.
Figure 3. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — 1930 - 1990 MHz
Table 6. MW6IC2015NBR1(GNBR1) Test Circuit Component Designations and Values — 1930 - 1990 MHz
Part
Description
Part Number
Manufacturer
C1, C14, C15
2.2 μF Chip Capacitors
C3225X5R1H225MT
TDK
C2, C4, C11
5.6 pF Chip Capacitors
ATC100B5R6CT500XT
ATC
C3, C5
10 μF Chip Capacitors
C5750X5R1H106MT
TDK
C6
1 pF Chip Capacitor
ATC100B1R0BT500XT
ATC
C7, C8
2.2 pF Chip Capacitors
ATC100B2R2BT500XT
ATC
C9, C10
0.5 pF Chip Capacitors
ATC100B0R5BT500XT
ATC
C12
0.2 pF Chip Capacitor
ATC100B0R2BT500XT
ATC
C13
0.1 pF Chip Capacitor
ATC100B0R1BT500XT
ATC
R1
10 kΩ, 1/4 W Chip Resistor
CRCW12061002FKEA
Vishay
R2
18 Ω, 1/4 W Chip Resistor
CRCW120618R0FKEA
Vishay
MW6IC2015NBR1 MW6IC2015GNBR1
4
RF Device Data
Freescale Semiconductor
VDD1
C2
C3
VDD2
C1
C6
CUT OUT AREA
MW6IC2015, Rev. 0
C7
C9
C11
C8
C12 C13
C10
C14
VGG1
R1
C15
R2
C4
VGG2
C5
Figure 4. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout — 1930 - 1990 MHz
MW6IC2015NBR1 MW6IC2015GNBR1
RF Device Data
Freescale Semiconductor
5
PAE, POWER ADDED EFFICIENCY (%)
Gps, POWER GAIN (dB)
40
0
35
−10
PAE
−20
30
Gps
25
−30
IRL
−40
20
IMD
15
10
1900
VDD = 26 Vdc, Pout = 7.5 W (Avg.)
IDQ1 = 100 mA, IDQ2 = 170 mA
100 kHz Tone Spacing
1920
1940
−50
1960
1980
−60
2000
IMD, INTERMODULATION DISTORTION (dBc)
IRL, INPUT RETURN LOSS (dB)
TYPICAL CHARACTERISTICS — 1930 - 1990 MHz
f, FREQUENCY (MHz)
30
0
PAE, POWER ADDED EFFICIENCY (%)
Gps, POWER GAIN (dB)
Gps
−10
25
20
IRL
−20
−30
15
IMD
10
5
PAE
0
1900
−40
VDD = 26 Vdc, Pout = 1.5 W (Avg.)
IDQ1 = 100 mA, IDQ2 = 170 mA
100 kHz Tone Spacing
1920
1940
−50
1960
1980
−60
2000
IMD, INTERMODULATION DISTORTION (dBc)
IRL, INPUT RETURN LOSS (dB)
Figure 5. Two - Tone Wideband Performance
@ Pout = 7.5 Watts Avg.
f, FREQUENCY (MHz)
31
Gps, POWER GAIN (dB)
30
29
28
27
IDQ1 = 130 mA
IDQ2 = 170 mA
IDQ1 = 100 mA
IDQ2 = 210 mA
IDQ1 = 100 mA
IDQ2 = 170 mA
IDQ1 = 100 mA
IDQ2 = 130 mA
IDQ1 = 70 mA
IDQ2 = 170 mA
26
25
24
23
0.1
IMD, INTERMODULATION DISTORTION (dBc)
Figure 6. Two - Tone Wideband Performance
@ Pout = 1.5 Watts Avg.
VDD = 26 Vdc
Center Frequency = 1960 MHz
100 kHz Tone Spacing
1
10
30
−10
VDD = 26 Vdc
IDQ1 = 100 mA, IDQ2 = 170 mA
f = 1960 MHz, 100 kHz Tone Spacing
−20
3rd Order
−30
5th Order
−40
−50
7th Order
−60
−70
−80
0.1
1
10
Pout, OUTPUT POWER (WATTS) AVG.
Pout, OUTPUT POWER (WATTS) PEP
Figure 7. Two - Tone Power Gain versus
Output Power
Figure 8. Intermodulation Distortion Products
versus Output Power
30
MW6IC2015NBR1 MW6IC2015GNBR1
6
RF Device Data
Freescale Semiconductor
48
3rd Order
5th Order
−50
−60
7th Order
VDD = 26 Vdc, Pout = 75 W (PEP)
IDQ1 = 100 mA, IDQ2 = 170 mA
Two−Tone Measurements
(f1 + f2)/2 = Center Frequency of 1960 MHz
−70
−80
0.1
Ideal
P3dB = 44.8 dBm (30 W)
46
P1dB = 44 dBm (25 W)
42
VDD = 26 Vdc
IDQ1 = 100 mA, IDQ2 = 170 mA
Pulsed CW, 8 μsec(on), 1 msec(off)
f = 1960 MHz
40
38
1
100
10
10
15
TWO−TONE SPACING (MHz)
15
10
−45
−55
5
ACPR
PAE
0
−60
10
1
0.1
30
Pout, OUTPUT POWER (WATTS) AVG.
Figure 11. 2 - Carrier W - CDMA ACPR, IM3, Power
Gain and Power Added Efficiency
versus Output Power
50
−30_C
PAE
20
10
0
10
Pout, OUTPUT POWER (WATTS) CW
Figure 12. Power Gain and Power Added
Efficiency versus CW Output Power
30
26 V
25_C
Gps
1
−40
−50
85_C
22
0.1
−35
IM3
85_C 30
VDD = 26 Vdc
IDQ1 = 100 mA
IDQ2 = 170 mA
f = 1960 MHz
Gps
30
28
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
20
30
−30
2−Carrier W−CDMA
10 MHz Carrier Spacing
3.84 MHz Channel Bandwidth
PAR = 8.5 dB @ 0.01%
Probability (CCDF)
40
25_C
24
25
TC = −30_C
30
26
30
25
−25
VDD = 26 Vdc
IDQ1 = 100 mA, IDQ2 = 170 mA
f1 = 1955 MHz, f2 = 1965 MHz
PAE, POWER ADDED EFFICIENCY (%)
PAE, POWER ADDED EFFICIENCY (%), Gps, POWER GAIN (dB)
32
35
20
Pin, INPUT POWER (dBm)
Figure 10. Pulsed CW Output Power versus
Input Power
Figure 9. Intermodulation Distortion Products
versus Tone Spacing
28
Actual
44
IM3 (dBc), ACPR (dBc)
−40
Pout, OUTPUT POWER (dBm)
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS — 1930 - 1990 MHz
−30
30 V
26
28 V
24
VDD = 20 V
22
IDQ1 = 100 mA
IDQ2 = 170 mA
f = 1840 MHz
20
18
0
5
10
15
20
25
30
Pout, OUTPUT POWER (WATTS) CW
Figure 13. Power Gain versus Output Power
MW6IC2015NBR1 MW6IC2015GNBR1
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS — 1930 - 1990 MHz
28
−10
32
S21
TC = −30_C
26
−20
VDD = 26 Vdc
Pout = 35 dBm CW
IDQ1 = 100 mA
IDQ2 = 170 mA
25
24
1850
1900
−25
Gps, POWER GAIN (dB)
−15
S11 (dB)
S21 (dB)
27
30
25_C
28
26
85_C
24
VDD = 26 Vdc, Pout = 7.5 W (Avg.)
IDQ1 = 100 mA, IDQ2 = 170 mA
Two−Tone Measurements, Center Frequency = 1960 MHz
S11
1950
2000
22
1880
−30
2100
2050
1900
1920
f, FREQUENCY (MHz)
50
25_C
40
85_C
30
6
EVM
PAE
4
20
10
2
0
0
1
10
30
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
TC = −30_C
PAE, POWER ADDED EFFICIENCY (%)
EVM, ERROR VECTOR MAGNITUDE (% ms)
10
8
1960
1980
2000
2020
Figure 15. Power Gain versus Frequency
Figure 14. Broadband Frequency Response
VDD = 26 Vdc
IDQ1 = 100 mA
IDQ2 = 170 mA
f = 1960 MHz
EDGE Modulation
1940
f, FREQUENCY (MHz)
−50
25_C
VDD = 26 Vdc, IDQ1 = 100 mA
IDQ2 = 170 mA, f = 1960 MHz
EDGE Modulation
−55
TC = −30_C
−60
SR @ 400 kHz
−65
85_C
−70
−75
−30_C
SR @ 600 kHz
−80
25_C
85_C
−85
0.1
1
10
30
Pout, OUTPUT POWER (WATTS) AVG.
Pout, OUTPUT POWER (WATTS) AVG.
Figure 16. EVM and Power Added Efficiency
versus Output Power
Figure 17. Spectral Regrowth at 400 and 600 kHz
versus Output Power
MW6IC2015NBR1 MW6IC2015GNBR1
8
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
109
MTTF (HOURS)
108
1st Stage
107
2nd Stage
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 26 Vdc, Pout = 15 W PEP, and PAE = 28%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 18. MTTF versus Junction Temperature
GSM TEST SIGNAL
−10
−20
Reference Power
VBW = 30 kHz
Sweep Time = 70 ms
RBW = 30 kHz
−30
−40
(dB)
−50
−60
−70
−80
400 kHz
400 kHz
600 kHz
600 kHz
−90
−100
−110
Center 1.96 GHz
200 kHz
Span 2 MHz
Figure 19. EDGE Spectrum
MW6IC2015NBR1 MW6IC2015GNBR1
RF Device Data
Freescale Semiconductor
9
f = 1930 MHz
Zload
f = 1990 MHz
Zo = 25 Ω
f = 1930 MHz
f = 1990 MHz
Zsource
VDD = 26 Vdc, IDQ1 = 100 mA, IDQ2 = 170 mA, Pout = 15 W CW
f
MHz
Zsource
W
Zload
W
1930
23.37 - j21.93
1.62 + j0.26
1950
22.77 - j22.53
1.59 + j0.04
1970
22.19 - j22.20
1.57 - j0.16
1990
22.64 - j21.84
1.54 - j0.36
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 20. Series Equivalent Source and Load Impedance — 1930 - 1990 MHz
MW6IC2015NBR1 MW6IC2015GNBR1
10
RF Device Data
Freescale Semiconductor
VDD2
VDD1
C1
RF
INPUT
Z1
Z2
1
2
3 NC
4 NC
5 NC
DUT
16
C2
NC 15
Z3
14
C3
Z9
Z4
Z5
C7
C9
C8
C11
C10
Z6
Z7
Z8
RF
OUTPUT
6
C6
VGG1
7 NC
8
Quiescent Current
Temperature Compensation
9
NC 13
10 NC
R1
C14
VGG2
11
C16
C12
C13
Z10
12
R2
C4
C5
C15
Z1*
Z2
Z3
Z4
Z5
Z6*
1.64″
0.54″
0.15″
0.13″
0.10″
0.26″
x 0.08″ Microstrip
x 0.08″ Microstrip
x 0.04″ Microstrip
x 0.35″ Microstrip
x 0.35″ Microstrip
x 0.04″ Microstrip
Z7*
Z8
Z9, Z10
PCB
0.41″ x 0.04″ Microstrip
1.18″ x 0.04″ Microstrip
1.18″ x 0.08″ Microstrip
Taconic TLX8 - 0300, 0.030″, εr = 2.55
* Variable for tuning.
Figure 21. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — 1805 - 1880 MHz
Table 7. MW6IC2015NBR1(GNBR1) Test Circuit Component Designations and Values — 1805 - 1880 MHz
Part
Description
Part Number
Manufacturer
C1, C14, C15
2.2 μF Chip Capacitors
C3225X5R1H225MT
TDK
C2, C4, C11
5.6 pF Chip Capacitors
ATC100B5R6CT500XT
ATC
C3, C5
10 μF Chip Capacitors
C5750X5R1H106MT
TDK
C6
1.5 pF Chip Capacitor
ATC100A1R5BT500XT
ATC
C7, C8
2.7 pF Chip Capacitors
ATC100B2R7BT500XT
ATC
C9, C10, C12
0.8 pF Chip Capacitors
ATC100B0R8BT500XT
ATC
C13
0.1 pF Chip Capacitor
ATC100B0R1BT500XT
ATC
C16
1 pF Chip Capacitor
ATC100B1R0BT500XT
ATC
R1
10 kΩ, 1/4 W Chip Resistor
CRCW12061002FKEA
Vishay
R2
18 Ω, 1/4 W Chip Resistor
CRCW120618R0FKEA
Vishay
MW6IC2015NBR1 MW6IC2015GNBR1
RF Device Data
Freescale Semiconductor
11
VDD1
C2
C3
VDD2
C1
C6
CUT OUT AREA
MW6IC2015, Rev. 0
C7
C9
C11
C16
C8
C12 C13
C10
C14
R1
VGG1
C15
R2
C4
VGG2
C5
Figure 22. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout — 1805 - 1880 MHz
MW6IC2015NBR1 MW6IC2015GNBR1
12
RF Device Data
Freescale Semiconductor
PAE, POWER ADDED EFFICIENCY (%)
Gps, POWER GAIN (dB)
32
0
IRL
31
30
−10
−20
PAE
29
−30
IMD
−40
28
27
26
1800
Gps
VDD = 26 Vdc, Pout = 7.5 W (Avg.)
IDQ1 = 100 mA, IDQ2 = 170 mA
100 kHz Tone Spacing
1820
1860
1840
1880
−50
−60
1900
IMD, INTERMODULATION DISTORTION (dBc)
IRL, INPUT RETURN LOSS (dB)
TYPICAL CHARACTERISTICS — 1805 - 1880 MHz
f, FREQUENCY (MHz)
PAE, POWER ADDED EFFICIENCY (%)
Gps, POWER GAIN (dB)
30
26
0
Gps
−12
IRL
22
18
−24
VDD = 26 Vdc, Pout = 1.5 W (Avg.)
IDQ1 = 100 mA, IDQ2 = 170 mA
100 kHz Tone Spacing
IMD
−36
14
−48
PAE
10
1800
1840
1820
1860
−60
1880
IMD, INTERMODULATION DISTORTION (dBc)
IRL, INPUT RETURN LOSS (dB)
Figure 23. Two - Tone Wideband Performance
@ Pout = 7.5 Watts Avg.
f, FREQUENCY (MHz)
Figure 24. Two - Tone Wideband Performance
@ Pout = 1.5 Watts Avg.
Gps, POWER GAIN (dB)
31
30
29
28
IDQ1 = 130 mA
IDQ2 = 170 mA
IDQ1 = 100 mA
IDQ2 = 210 mA
IDQ1 = 100 mA
IDQ2 = 170 mA
IDQ1 = 100 mA
IDQ2 = 130 mA
IDQ1 = 70 mA
IDQ2 = 170 mA
27
26
25
IMD, INTERMODULATION DISTORTION (dBc)
32
VDD = 26 Vdc
Center Frequency = 1840 MHz
100 kHz Tone Spacing
24
0.1
1
10
30
−10
VDD = 26 Vdc
IDQ1 = 100 mA, IDQ2 = 170 mA
f = 1840 MHz, 100 kHz Tone Spacing
−20
3rd Order
−30
5th Order
−40
−50
7th Order
−60
−70
−80
0.1
1
10
Pout, OUTPUT POWER (WATTS) PEP
Pout, OUTPUT POWER (WATTS) PEP
Figure 25. Two - Tone Power Gain versus
Output Power
Figure 26. Intermodulation Distortion
Products versus Output Power
30
MW6IC2015NBR1 MW6IC2015GNBR1
RF Device Data
Freescale Semiconductor
13
−30
48
Pout, OUTPUT POWER (dBm)
3rd Order
−40
5th Order
−50
VDD = 26 Vdc, Pout = 7.5 W (Avg.), IDQ1 = 100 mA
IDQ2 = 170 mA, Two−Tone Measurements
(f1 + f2)/2 = Center Frequency of 1840 MHz
−60
7th Order
−70
0.1
10
100
Actual
44
42
VDD = 26 Vdc
IDQ1 = 100 mA, IDQ2 = 170 mA
Pulsed CW, 8 μsec(on), 1 msec(off)
f = 1840 MHz
40
15
20
25
30
Pin, INPUT POWER (dBm)
Figure 27. Intermodulation Distortion Products
versus Tone Spacing
Figure 28. Pulsed CW Output Power versus
Input Power
40
−20
VDD = 26 Vdc
IDQ1 = 100 mA, IDQ2 = 170 mA
f1 = 1835 MHz, f2 = 1845 MHz
30
−25
−30
Gps
2−Carrier W−CDMA
10 MHz Carrier Spacing
3.84 MHz Channel Bandwidth
PAR = 8.5 dB @ 0.01%
Probability (CCDF)
25
20
15
−35
−40
−45
10
−50
IM3 (dBc), ACPR (dBc)
35
IM3
5
−55
ACPR
PAE
0
0.1
−60
1
10
30
Pout, OUTPUT POWER (WATTS) AVG.
Figure 29. 2 - Carrier W - CDMA ACPR, IM3, Power
Gain and Power Added Efficiency
versus Output Power
50
30
40
25_C
85_C
25_C
30
PAE
20
26
Gps
85_C
24
10
VDD = 26 Vdc, IDQ1 = 100 mA
IDQ2 = 170 mA, f = 1840 MHz
1
10
Pout, OUTPUT POWER (WATTS) CW
Figure 30. Power Gain and Power Added
Efficiency versus CW Output Power
0
30
30 V 28 V
28
Gps, POWER GAIN (dB)
30
PAE, POWER ADDED EFFICIENCY (%)
TC = −30_C
Gps, POWER GAIN (dB)
P1dB = 44 dBm (25 W)
10
−30_C
22
0.1
P3dB = 44.7 dBm (30 W)
46
TWO−TONE SPACING (MHz)
32
28
Ideal
38
1
PAE, POWER ADDED EFFICIENCY (%), Gps, POWER GAIN (dB)
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS — 1805 - 1880 MHz
26
24 V
26 V
24
VDD = 20 V
22
IDQ1 = 100 mA
IDQ2 = 170 mA
f = 1840 MHz
20
18
0
5
10
15
20
25
Pout, OUTPUT POWER (WATTS) CW
Figure 31. Power Gain versus Output Power
MW6IC2015NBR1 MW6IC2015GNBR1
14
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — 1805 - 1880 MHz
34
26
−10
32
25
−15
24
−20
S21 (dB)
S11
S21
23
−25
−30
22
VDD = 26 Vdc, Pout = 35 dBm CW
21
Gps, POWER GAIN (dB)
−5
S11 (dB)
27
30
26
IDQ1 = 100 mA, IDQ2 = 170 mA
20
1600
1700
1800
1900
2000
85_C
VDD = 26 Vdc, Pout = 7.5 W (Avg.)
IDQ1 = 100 mA, IDQ2 = 170 mA
Two−Tone Measurements, Center Frequency = 1840 MHz
22
1780
−40
2200
2100
25_C
28
24
−35
TC = −30_C
1800
1820
f, FREQUENCY (MHz)
50
−30_C
40
25_C
30
PAE
20
4
EVM
10
2
0
0
1
10
30
Pout, OUTPUT POWER (WATTS) AVG.
Figure 34. EVM and Power Added Efficiency
versus Output Power
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
TC = 85_C
PAE, POWER ADDED EFFICIENCY (%)
EVM, ERROR VECTOR MAGNITUDE (% ms)
6
1880
1900
1920
f, FREQUENCY (MHz)
10
8
1860
Figure 33. Power Gain versus Frequency
Figure 32. Broadband Frequency Response
VDD = 26 Vdc
IDQ1 = 100 mA
IDQ2 = 170 mA
f = 1840 MHz
EDGE Modulation
1840
−50
VDD = 26 Vdc
IDQ1 = 100 mA, IDQ2 = 170 mA
f = 1840 MHz, EDGE Modulation
−55
−60
TC = 25_C
−30_C
−30_C
−65
SR @ 400 kHz
85_C
−70
−75
25_C
SR @ 600 kHz
−80
85_C
−85
0.1
1
10
30
Pout, OUTPUT POWER (WATTS) AVG.
Figure 35. Spectral Regrowth at 400 and 600 kHz
versus Output Power
MW6IC2015NBR1 MW6IC2015GNBR1
RF Device Data
Freescale Semiconductor
15
Zo = 50 Ω
f = 1800 MHz
f = 1880 MHz
Zload
f = 1880 MHz
Zsource
f = 1800 MHz
VDD = 26 Vdc, IDQ1 = 130 mA, IDQ2 = 170 mA, Pout = 3 W Avg.
f
MHz
Zsource
W
Zload
W
1800
24.32 - j26.99
1.94 - j1.29
1820
23.96 - j25.93
1.88 - j1.42
1840
23.86 - j25.63
1.83 - j1.54
1860
23.01 - j24.23
1.79 - j1.64
1880
23.55 - j23.33
1.74 - j1.75
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 36. Series Equivalent Source and Load Impedance — 1805 - 1880 MHz
MW6IC2015NBR1 MW6IC2015GNBR1
16
RF Device Data
Freescale Semiconductor
TD - SCDMA CHARACTERIZATION
VDD2
1
2
3
4
5
VDD1
C1
RF
INPUT
Z1
NC
DUT
NC 16
C2
NC 15
Z2
14
6
C3
Z9
NC
NC
NC
Z3
C7
Z4
Z5
C9
Z6
Z7
Z8
RF
OUTPUT
C10
C6
7 NC
8
9
R1
VGG
C12
10
11 NC
C8
Quiescent Current
Temperature
Compensation
NC 13
C11
Z10
NC 12
C14
R2
C4
C5
C13
Z1
Z2
Z3
Z4
Z5
0.772″
0.409″
0.138″
0.148″
0.064″
x 0.056″ Microstrip
x 0.056″ Microstrip
x 0.237″ Microstrip
x 0.237″ Microstrip
x 0.237″ Microstrip
Z6
Z7
Z8
Z9, Z10
PCB
0.060″ x 0.237″ Microstrip
0.539″ x 0.056″ Microstrip
0.190″ x 0.056″ Microstrip
1.066″ x 0.078″ Microstrip
Taconic TLX8, 0.020″, εr = 2.55
Figure 37. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — TD - SCDMA
Table 8. MW6IC2015NBR1(GNBR1) Test Circuit Component Designations and Values — TD - SCDMA
Part
Description
Part Number
Manufacturer
C1, C3, C5, C14
2.2 μF Chip Capacitors
C3225X5R1H225MT
TDK
C2, C4, C10
5.6 pF Chip Capacitors
08051J5R6CBS
AVX
C6
1 pF Chip Capacitor
08051J1R0BBS
AVX
C7, C8
2.7 pF Chip Capacitors
08051J2R7CBS
AVX
C9, C11
0.5 pF Chip Capacitors
08051J0R5BBS
AVX
C12, C13
100 nF Chip Capacitors
C1206CK104K5RC
Kemet
R1, R2
5 kΩ Potentiometer CMS Cermet Multi - turn
3224W
Bourns
MW6IC2015NBR1 MW6IC2015GNBR1
RF Device Data
Freescale Semiconductor
17
VDD1
VDD2
C3
C2
MW6IC2015NB, Rev. 1 C1
C7 C9
C11
C10
C6
C8
C12
C13
C4
C14
C5
R1
R2
VGG
Figure 38. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout — TD - SCDMA
MW6IC2015NBR1 MW6IC2015GNBR1
18
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
−20
−25
ALT/ACPR (dBc)
−30
3.5
3
PAE
−35
2.5
−40
2
Adj−U
−45
1.5
Adj−L
−50
1
Alt−L
−55
0.5
Alt−U
−60
15
19
17
21
23
25
PAE, POWER ADDED EFFICIENCY (%)
4
3−Carrier TD−SCDMA
VDD1 = VDD2 = 28 V
IDQ1 = 150 mA, IDQ2 = 160 mA
f = 2017.5 MHz
0
27
Pout, OUTPUT POWER (dBm) AVG.
Figure 39. 3 - Carrier TD - SCDMA ACPR, ALT and
Power Added Efficiency versus Output Power
−20
−25
ALT/ACPR (dBc)
−30
3.5
3
PAE
−35
2.5
−40
2
−45
Alt−L
Adj−L
1.5
−50
1
Adj−U
−55
0.5
Alt−U
−60
15
17
19
21
23
PAE, POWER ADDED EFFICIENCY (%)
4
6−Carrier TD−SCDMA
VDD1 = VDD2 = 28 V
IDQ1 = 150 mA, IDQ2 = 160 mA
f = 2017.5 MHz
0
27
25
Pout, OUTPUT POWER (dBm) AVG.
Figure 40. 6 - Carrier TD - SCDMA ACPR, ALT and
Power Added Efficiency versus Output Power
TD - SCDMA TEST SIGNAL
−30
−30
1.28 MHz
Channel BW
−40
−50
−50
−60
−70
+ALT2 in
1.28 MHz BW
+3.2 MHz Offset
−ALT2 in
1.28 MHz BW
−3.2 MHz Offset
−80
−90
−100
−ALT2 in
1.28 MHz BW
−3.2 MHz Offset
+ALT2 in
1.28 MHz BW
+3.2 MHz Offset
−100
−110
−120
(dBm)
(dBm)
−90
VBW = 300 kHz
Sweep Time = 200 ms
RBW = 30 kHz
−60
−70
−80
1.28 MHz
Channel BW
−40
VBW = 300 kHz
Sweep Time = 200 ms
RBW = 30 kHz
−110
+ALT1 in
1.28 MHz BW
+1.6 MHz Offset
−ALT1 in
1.28 MHz BW
−1.6 MHz Offset
−130
Center 2.0175 GHz
1.5 MHz
Span 15 MHz
f, FREQUENCY (MHz)
Figure 41. 3 - Carrier TD - SCDMA Spectrum
−120
−ALT1 in
1.28 MHz BW
−1.6 MHz Offset
−130
Center 2.0175 GHz
+ALT1 in
1.28 MHz BW
+1.6 MHz Offset
2.5 MHz
Span 25 MHz
f, FREQUENCY (MHz)
Figure 42. 6 - Carrier TD - SCDMA Spectrum
MW6IC2015NBR1 MW6IC2015GNBR1
RF Device Data
Freescale Semiconductor
19
Zo = 50 Ω
Zload
Zsource
f = 2070 MHz
f = 2070 MHz
f = 1950 MHz
f = 1950 MHz
VDD = 28 Vdc, IDQ1 = 150 mA, IDQ2 = 160 mA
f
MHz
Zsource
W
Zload
W
1950
25.25 + j0.19
1.78 + j0.33
1960
25.16 + j0.34
1.75 + j0.43
1970
25.07 + j0.49
1.72 + j0.54
1980
24.98 + j0.64
1.68 + j0.67
1990
24.89 + j0.79
1.65 + j0.78
2000
24.80 + j0.94
1.63 + j0.89
2010
24.71 + j1.09
1.62 + j1.00
2020
24.63 + j1.25
1.61 + j1.09
2030
24.54 + j1.40
1.58 + j1.19
2040
24.45 + j1.56
1.55 + j1.31
2050
24.37 + j1.71
1.50 + j1.43
2060
24.28 + j1.87
1.48 + j1.62
2070
24.20 + j2.03
1.46 + j1.65
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 43. Series Equivalent Input and Load Impedance — TD - SCDMA
MW6IC2015NBR1 MW6IC2015GNBR1
20
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
MW6IC2015NBR1 MW6IC2015GNBR1
RF Device Data
Freescale Semiconductor
21
MW6IC2015NBR1 MW6IC2015GNBR1
22
RF Device Data
Freescale Semiconductor
MW6IC2015NBR1 MW6IC2015GNBR1
RF Device Data
Freescale Semiconductor
23
MW6IC2015NBR1 MW6IC2015GNBR1
24
RF Device Data
Freescale Semiconductor
MW6IC2015NBR1 MW6IC2015GNBR1
RF Device Data
Freescale Semiconductor
25
MW6IC2015NBR1 MW6IC2015GNBR1
26
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
• AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
• AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
2
Feb. 2007
Description
• Added “and TD - SCDMA” to data sheet description paragraph, p. 1.
• Updated verbiage on Typical Performances table, p. 2
• Corrected VBIAS and VSUPPLY callouts, Figs. 3 and 21, Test Circuit Schematic, p. 4, 11, Figs. 4 and 22, Test
Circuit Component Layout, p. 5, 12
• Updated Part Numbers in Tables 6 and 7, Component Designations and Values, to RoHS compliant part
numbers, p. 4, 11
• Adjusted scale for Figs. 7 and 25, Two - Tone Power Gain versus Output Power, Figs. 8 and 26,
Intermodulation Distortion Products versus Output Power, Figs. 11 and 29, 2 - Carrier W - CDMA ACPR, IM3,
Power Gain and Power Added Efficiency versus Output Power, Figs. 12 and 30, Power Gain and Power
Added Efficiency versus CW Output Power, Figs. 16 and 34, EVM and Power Added Efficiency versus
Output Power, Figs. 17 and 35, Spectral Regrowth at 400 and 600 kHz versus Output Power, to better
match the device’s capabilities, p. 6 - 8, 13 - 15
• Replaced Figure 18, MTTF versus Junction Temperature with updated graph. Removed Amps2 and listed
operating characteristics and location of MTTF calculator for device, p. 9
• Corrected Series Impedance data table test conditions, Figs. 20 and 36, p. 10, 16
• Added TD - SCDMA test circuit schematic, component designations and values, component layout, typical
characteristic curves, test signal and series impedance, p. 17 - 20.
• Added Product Documentation and Revision History, p. 27
3
Dec. 2008
• Modified data sheet to reflect RF Test Reduction described in Product and Process Change Notification
number, PCN13232, p. 1, 2
• Changed 220°C to 225°C in Capable Plastic Package bullet, p. 1
• Added Footnote 1 to Quiescent Current Temperature bullet under Features section and to callout in Fig. 1,
Functional Block Diagram, p. 1
• Changed Storage Temperature Range in Max Ratings table from - 65 to +200 to - 65 to +150 for
standardization across products, p. 2
• Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2
• Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 2
• Updated Part Numbers in Tables 6, 7, and 8 Component Designations and Values, to latest RoHS compliant
part numbers, p. 4, 11, 17
• Removed lower voltage tests from Figs. 13 and 31, Power Gain versus Output Power, due to fixed tuned
fixture limitations, p. 7, 14
• Adjust scale for Fig. 27, Intermodulation Distortion Products versus Tone Spacing, to show wider dynamic
range, p. 14
• Replaced Case Outline 1329A - 03 with 1329A - 04, Issue F, p. 1, 24 - 26. Added pin numbers 1 through 17.
Corrected mm dimension L for gull - wing foot from 4.90 - 5.06 Min - Max to 0.46 - 0.61 Min - Max. Corrected L1
mm dimension from .025 BSC to 0.25 BSC. Added JEDEC Standard Package Number.
• Replaced Case Outline 1329 - 09, Issue L, with 1329 - 09, Issue M, p. 21 - 23. Added pin numbers 1 through
17.
MW6IC2015NBR1 MW6IC2015GNBR1
RF Device Data
Freescale Semiconductor
27
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140
Fax: +1 - 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2006-2008. All rights reserved.
MW6IC2015NBR1 MW6IC2015GNBR1
Document Number: MW6IC2015N
Rev. 3, 12/2008
28
RF Device Data
Freescale Semiconductor