Preliminary Datasheet, Version 1.2, May 2010 EICEDRIVER® 1ED020I12FTA Single IGBT Driver IC Power Management & Drives N e v e r s t o p t h i n k i n g . 1ED020I12FTA Revision History: 2010-05-21 Previous Version: 0 Page Version 1.2 Subjects (major changes since last revision) May 2010 Edition 2010-05-21 Published by Infineon Technologies AG, Campeon 1-12, 85579 Neubiberg, Germany © Infineon Technologies AG 2010. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. EICEDRIVER® 1ED020I12FTA Single IGBT Driver IC Product Highlights • • • • • • Coreless transformer isolated driver Galvanic Insulation Integrated protection features Suitable for operation at high ambient temperature Automotive Qualified (pending) Two level turn off Features • • • • • Typical Application Single channel isolated IGBT Driver For 600V/1200V IGBTs 2A rail-to-rail output Vcesat-detection Active Miller Clamp • • • • Input Side VCC1 Drive inverters for HEV and EV Auxilliary inverters for HEV and EV Inverters for electrical drives in CAV High Power DC/DC inverters Output Side VCC2,H DESAT IN+, IN-, /RST EiceDRIVERTM 1ED020I12FTA OUT /FLT, RDY CLAMP TLSET GND1 VEE2,H GND2,H CPU VCC2,L VCC1 DESAT IN+, IN-, /RST EiceDRIVERTM 1ED020I12FTA OUT /FLT, RDY CLAMP TLSET GND1 VEE2,L GND2,L Figure 1: Typical Application Type Gate drive current Package 1ED020I12FTA +/- 2A PG-DSO-20-55 Preliminary Datasheet 1 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Preliminary Datasheet 2 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA 1 Block Diagram and Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.3 2.4 2.5 2.6 2.7 2.7.1 2.7.2 2.7.3 2.8 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . READY status output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Shut-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non-Inverting and Inverting Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Driver Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-Level Turn-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimal On Time / Off Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Miller Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 3.2 Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7 4.4.8 4.4.9 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-level Turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 13 13 14 14 14 16 16 16 17 18 18 18 5 5.1 5.2 5.3 Insulation Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . According to DIN EN 60747-5-2 (VDE 0884 Teil 2): 2003-01. Basic Insulation . . . . . . . . . . . . . . . . . . . . . . . According to UL 1577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 19 19 19 6 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8 8.1 8.2 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Reference Layout for Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Printed Circuit Board Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Prelim Datasheet 3 6 6 6 6 6 6 6 7 7 7 7 8 8 8 8 8 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Prelim Datasheet 4 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Block Diagram and Application 1 Block Diagram and Application VCC1 18 IN+ 13 UVLO UVLO & K4 TX VCC2 8 CLAMP 7 OUT 5 TLSET 2V delay delay 6 & RX 1 VCC1 VCC2 VEE2 20MHz IN- 14 RDY & OSC VCC1 15 & /RDY DECODER RX TX ENCODER VCC1 & Q 7V VCC2 & & S K3 ≥1 9V R VCC1 17 delay RST 1 VEE2 Figure 1: 11 12 GND1 GND1 1 19 20 GND1 GND1 1ED020I12FTA 1 2 DESAT 4 GND2 1kΩ ≥1 /RST 3 250Ω FLT 1 VEE2 250Ω 250µA 16 RDY2 FLTNL /FLT VCC2 500µA FLT2 1 9 10 Block Diagram 1ED020I12FTA 10R 10k 10k +5V SGND VCC1 VCC2 100n +15V 1µ 1k DESAT GND1 CLAMP IN+ OUT IN+ IN- RDY RDY FLT TLSET /RST 10V 10p 100p GND2 /FLT RS 10R 1µ VEE2 -8V 1ED020I12FTA Figure 2: Application Example Preliminary Datasheet 5 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Functional Description 2 Functional Description 2.1 Introduction The 1ED020I12FTA is an advanced IGBT gate driver for motor drives typical greater 10kW. Control and protection functions are included to make possible the design of high reliability systems. The device consists of two galvanic separated parts. The input chip can be directly connected to a standard 5V DSP or microcontroller with CMOS in/output and the output chip is connected to the high voltage side. An effective active Miller clamp function avoids the need of negative gate driving in some applications and allows the use of a simple bootstrap supply for the high side driver. A rail-to-rail driver output enables the user to provide easy clamping of the IGBTs gate voltage during short circuit of the IGBT. So an increase of short circuit current due to the feedback via the Miller capacitance can be avoided. Further, a rail-to-rail output reduces power dissipation. The device also includes an IGBT desaturation protection with a FAULT status output. A two-level turn-off feature with adjustable delay protects against excessive overvoltage at turn-off in case of overcurrent or short circuit condition. The same delay is applied at turn-on to prevent pulse width distortion. A READY status output reports if the device is supplied and operates correctly. 2.2 Internal Protection Features 2.2.1 Undervoltage Lockout (UVLO) To ensure correct switching of IGBTs the device is equipped with an undervoltage lockout for both chips. If the power supply voltage VVCC1 of the input chip drops below VUVLOL1 a turn-off signal is sent to the output chip before power-down. The IGBT is switched off and the signals at IN+ and IN- are ignored as long as VVCC1 reaches the power-up voltage VUVLOH1 . If the power supply voltage VVCC2 of the output chip goes down below VUVLOL2 the IGBT is switched off and signals from the input chip are ignored as long as VVCC2 reaches the power-up voltage VUVLOH2 . 2.2.2 READY status output The READY output at pin /RDY shows the status of three internal protection features. • • • UVLO of the input chip UVLO of the output chip after a short delay Internal signal transmission It is not necessary to reset the READY signal since its state only depends on the status of the former mentioned protection signals. 2.2.3 Watchdog Timer The 1ED020I12FA incorporates two levels of protection to ensure signal integrity by two independent watchdog timers. First level ensures the short term signal integrity by resending the (turn on/off) signals with a watchdog period of typical 500ns. The second level monitors the internal signal transmission during normal operation. If the transmission fails for a given time, the IGBT is switched off and the READY output reports an internal error. 2.2.4 Active Shut-Down The Active Shut-Down feature ensures a safe IGBT off-state if the output chip is not connected to the power supply. Preliminary Datasheet 6 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Functional Description 2.3 Non-Inverting and Inverting Inputs There are two possible input modes to control the IGBT. At non-inverting mode IN+ controls the driver output while IN- is set to low. At inverting mode IN- controls the driver output while IN+ is set to high. A minimum input pulse width is defined to filter occasional glitches. 2.4 Driver Output The output driver section uses only MOSFETs to provide a rail-to-rail output. This feature permits that tight control of gate voltage during on-state and short circuit can be maintained as long as the drivers supply is stable. Due to the low internal voltage drop, switching behaviour of the IGBT is predominantly governed by the gate resistor. Furthermore, it reduces the power to be dissipated by the driver. 2.5 Two-Level Turn-Off The Two-Level Turn-OFF introduces a second turn off voltage level at the driver output in between ON- and OFFlevel. This additional level ensures lower VCE overshoots at turn off by reducing gate emitter voltage of the IGBT at short circuits or over current events. The VGE level is adjusting the current of the IGBT at the end two level turn off interval, therequired timing is depending on stray inductance and over current at beginning of two level turn off interval. Reference voltage level and hold up time could be adjusted at TLSET pin. The reference voltage is set by the required Zener diode connected between pin TLSET and GND2. The hold up time is set by the capacitor connected to the same pin TLSET and GND2. The hold time can be adjusted during switch on using the whole capacitance connected at pin TLSET including capacitor, parasitic wiring capacitance and junction capacitance of Zener diode. When a switch on signal is given the IC starts to discharge CTLSET. Discharging CTLSET is stopped after 500nsec. Then Ctlset is charged with an internal charge current Itlset. When the voltage of the capacitor Ctlset exceeds 7V a second current source starts charging Ctlset up to VZDIODE. At the end of this discharge-charge cycle the gate driver is switched on. The time between IN initiated switch-on signal (minus an internal propagation delay of approximately 200ns) and switch-on of the gate drive is sampled and stored digitally. It represents the two level turn off set time TTLSET during switch-off. Due to digitalization the tpdon time can vary in time steps of 50nsec. If switch off is initiated from IN+, IN- or /RST signal, the gate driver is switched off immediately after internal propagation delay of approximately 200ns and VOUT begins to decrease. For switch off initiated by DESAT, the gate driver switch off is delayed by desaturation sense to OUT delay. The output voltage VOUT is sensed and compared with the Zener voltage VZDIODE. When VOUT falls below the reference voltage VZDIODE of the Zener diode the switch off process is interrupted and Vout is adjusted to VZDIODE. OUT is switched to VEE2 after the hold up time has passed. The Two-Level Turn-OFF function can not be disabled. 2.6 Minimal On Time / Off Time The 1ED020I12FTA driver requires minimal on and off time for propper operation in the application. Minimal on time must be greater than the adjustable two level plateau time TTLSET, shorter on times will be surpressed by generating of the plateau time. Due to the short on time, the voltage at TLSET pin does not reach the comparator threshold, therefore the driver do not turn on. A similar principle takes place for off time. Minimal off time must be greater than TTLSET, shorter off times will be surpressed, which means OUT stays on. A two level turn off plateau can not be shortened by the driver. If the driver has entered the turn off sequence it can not switch off due to the fact, that the driver has already entered the shut off mode. But if the driver input signal is turned on again, it will leave the lower level after TTLSET time by switching OUT to high. Preliminary Datasheet 7 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Functional Description 2.7 External Protection Features 2.7.1 Desaturation Protection A desaturation protection ensures the protection of the IGBT at short circuit. When the DESAT voltage goes up and reaches 9V, the output is driven low. Further, the FAULT output is activated. A programmable blanking time is used to allow enough time for IGBT saturation. Blanking time is provided by a highly precise internal current source and an external capacitor. 2.7.2 Active Miller Clamping A Miller clamp allows sinking the Miller current during a high dV/dt situation. Therefore, the use of a negative supply voltage can be avoided in many applications. During turn-off, the gate voltage is monitored and the clamp output is activated when the gate voltage goes below 2V (related to VEE2). The clamp is designed for a Miller current up to 2A. 2.7.3 Short Circuit Clamping During short circuit the IGBTs gate voltage tends to rise because of the feedback via the Miller capacitance. An additional protection circuit connected to OUT and CLAMP limits this voltage to a value slightly higher than the supply voltage. A current of maximum 500 mA for 10us may be fed back to the supply through one of this paths. If higher currents are expected or a tighter clamping is desired external Schottky diodes may be added. 2.8 RESET The reset input has two functions. Firstly, /RST is in charge of setting back the FAULT output. If /RST is low longer than a given time , /FLT will be reseted at the rising edge of /RST; otherwise, it will remain unchanged. Moreover, it works as enable/shutdown of the input logic. Preliminary Datasheet 8 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Pin Configuration and Functionality 3 Pin Configuration and Functionality 3.1 Pin Configuration Pin Symbol Function 1 VEE2 Negative power supply output side 2 VEE2 Negative power supply output side 3 DESAT Desaturation protection 4 GND2 Signal ground output side 5 TLSET Two level set 6 VCC2 Positive power supply output side 7 OUT Driver output 8 CLAMP Miller clamping 9 VEE2 Negative power supply output side 10 VEE2 Negative power supply output side 11 GND1 Signal ground input side 12 GND1 Signal ground input side 13 IN+ Non inverted driver input 14 IN- Inverted driver input 15 RDY Ready output 16 FLT Fault output, low active 17 RST Reset input, low active 18 VCC1 Positive power supply input side 19 GND1 Signal ground input side 20 GND1 Signal ground input side Figure 3: 1 VEE2 GND1 20 2 VEE2 GND1 19 3 DESAT VCC1 18 4 GND2 /RST 17 5 TLSET /FLT 16 6 VCC2 RDY 15 7 OUT IN- 14 8 CLAMP IN+ 13 9 VEE2 GND1 12 10 VEE2 GND1 11 Pin Configuration PG-DSO-20-55 (top view) Preliminary Datasheet 9 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Pin Configuration and Functionality 3.2 Pin Functionality GND1 Ground connection of the input side. IN+ Non-inverting driver input IN+ control signal for the driver output if IN- is set to low. (The IGBT is on if IN+ = high and IN- = low) A minimum pulse width is defined to make the IC robust against glitches at IN+. An internal Pull-Down-Resistor ensures IGBT Off-State. IN- Inverting driver input IN- control signal for driver output if IN+ is set to high. (IGBT is on if IN- = low and IN+ = high) A minimum pulse width is defined to make the IC robust against glitches at IN-. An internal Pull-Up-Resistor ensures IGBT Off-State. /RST (Reset) input Function 1: Enable/shutdown of the input chip. (The IGBT is off if /RST = low). A minimum pulse width is defined to make the IC robust against glitches at IN-. Function 2: Resets the DESAT-FAULT-state of the chip if /RST is low for a time TRST. An internal Pull-Up-Resistor is used to ensure FLT status output. /FLT (Fault output) Open-drain output to report a desaturation error of the IGBT (FLT is low if desaturation occurs) RDY (Ready status) Open-drain output to report the correct operation of the device. (RDY = high if both chips are above the UVLO level and the internal chip transmission is faultless) VCC1 5V power supply of the input chip VEE2 Negative power supply pins of the output chip. If no negative supply voltage is available, all VEE2 pins have to be connected to GND2. DESAT (Desaturation) Monitoring of the IGBT saturation voltage (VCE) to detect desaturation caused by short circuits. If OUT is high, VCE is above a defined value and a certain blanking time has expired, the desaturation protection is activated and the IGBT is switched off. The blanking time is adjustable by an external capacitor. CLAMP (Clamping) Ties the gate voltage to ground after the IGBT has been switched off at a defined voltage to avoid a parasitic switch-on of the IGBT.During turn-off, the gate voltage is monitored and the clamp output is activated when the gate voltage goes below 2V (related to VEE2). GND2 Reference ground of the output chip. Preliminary Datasheet 10 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Pin Configuration and Functionality OUT (Driver output) Output pin to drive an IGBT. The voltage is switched between VEE2 and VCC2. In normal operating mode Vout is controlled by IN+, IN- and /RST. During error mode (UVLO, internal error or DESAT) Vout is set to VEE2 independent of the input control signals. VCC2 Positive power supply pin of the output side. TLSET (Two-Level turn-off) Setting up the timing (with ext. capacitor) and voltage reference (with ext. Zener diode) for the two-level turn-off, see figure 5. Preliminary Datasheet 11 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Electrical Parameters 4 Electrical Parameters 4.1 Absolute Maximum Ratings Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the integrated circuit. Unless otherwise noted all parameters refer to GND1. Parameter Symbol Limit Values min. max. Unit Remarks Positive power supply output side VVCC2 -0.3 20 V 1) Negative power supply output side VVEE2 -12 0.3 V 1) Maximum power supply voltage output side (VVCC2-VVEE2) Vmax2 28 V Gate driver output VOUT VVEE2-0.3 Vmax2+0.3 V Gate driver high output maximum current IOUT 2.4 A t = 2µs Gate driver low output maximum current IOUT 2.4 A t = 2µs Maximum short circuit clamping time tCLP 10 us ICLAMP/OUT = 500mA Positive power supply input side VVCC1 -0.3 6.5 V Logic input voltages (IN+,IN-,RST) VLogicIN -0.3 6.5 V Opendrain Logic output voltage (FLT) VFLT -0.3 6.5 V Opendrain Logic output voltage (RDY) VRDY -0.3 6.5 V Opendrain Logic output current (FAULT) IFLT 10 mA Opendrain Logic output current (RDY) IRDY 10 mA Pin DESAT voltage VDESAT -0.3 VVCC2 +0.3 1) VVEE2 = -8V Pin TLSET voltage VTLSET -0.3 VVCC2 +0.3 1) VVEE2 = -8V Pin CLAMP voltage VCLAMP VVEE2-0.3 VVCC2+0.3 Junction temperature TJ -40 150 °C Storage temperature TS -55 150 °C Power dissipation, Input chip PD, IN 100 mW 3) @TA = 25° 700 mW 2)3) 139 K/W 2) @TA = 25°C 117 K/W 2) @TA = 25°C 1.5 kV Human Body Model4) Power dissipation, Output chip PD, OUT Thermal resistance (Input chip active) RTHJA,IN Thermal resistance (Output chip active) RTHJA,OUT ESD Capability VESD 2) @TA = 25° 1) With respect to GND2. 2) may be exceeded during short circuit clamping 3) Output IC power dissipation is derated linearly at 8.5 mW/°C above 68°C. Input IC power dissipation does not require derating. See section 8.1 for reference layouts for these thermal data. Thermal performance may change significantly with layout and heat dissipation of components in close proximity. 4) According to EIA/JESD22-A114-B (discharging a 100pF capacitor through a 1.5kΩ series resistor). Preliminary Datasheet 12 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Electrical Parameters 4.2 Operating Parameters Note: Within the operating range the IC operates as described in the functional description. Unless otherwise noted all parameters refer to GND1. Parameter Symbol Limit Values min. max. Unit Remarks Positive power supply output side VVCC2 13 20 V 1) Negative power supply output side VVEE2 -12 0 V 1) Maximum power supply voltage output side (VVCC2-VVEE2) Vmax2 28 V Positive power supply input side VVCC1 4.5 5.5 V Logic input voltages (IN+,IN-,RST) VLogicIN -0.3 5.5 V Pin CLAMP voltage VCLAMP VVEE2-0.3 VVCC22) V Pin DESAT voltage VDESAT -0.3 VVCC2 V 1) Pin TLSETvoltage VTLSET -0.3 VVCC2 V 1) TA -40 125 °C |∆VISO/dt| — 50 kV/µs @ 500V Ambient temperature 3) Common mode transient immunity 1) With respect to GND2. 2) May be exceeded during short circuit clamping 3) The parameter is not subject to production test - verified by design/characterization 4.3 Recommended Operating Parameters Note: Unless otherwise noted all parameters refer to GND1. Parameter Symbol Positive power supply output side VVCC2 Negative power supply output side Positive power supply input side Values Unit Remarks 15 V 1) VVEE2 -8 V 1) VVCC1 5 V 1) With respect to GND2. Preliminary Datasheet 13 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Electrical Parameters 4.4 Electrical Characteristics Note: The electrical characteristics include the spread of values in supply voltages, load and junction temperatures given below. Typical values represent the median values at TA = 25°C. Unless otherwise noted all voltages are given with respect to their respective GND (GND1 for pins 11 to 20, GND2 for pins 1 to 10). 4.4.1 Voltage Supply. Parameter Symbol Limit Values min. UVLO Threshold Input Chip VUVLOH1 VUVLOL1 3.5 UVLO Hysteresis Input Chip (VUVLOH1 - VUVLOL1) VHYS1 0.15 UVLO Threshold Output Chip VUVLOH2 Unit Test Conditions typ. max. 4.1 4.3 3.8 12.0 V 12.6 V V V VUVLOL2 10.4 11.0 UVLO Hysteresis Output Chip (VUVLOH1 - VUVLOL1) VHYS2 0.7 0.9 Quiescent Current Input Chip IQ1 7 9 mA VVCC1 =5V IN+ = High, IN- = Low =>OUT = High, RDY = High, /FLT = High Quiescent Current Output Chip IQ2 4.5 6 mA VVCC2 =15V VVEE2 =-8V IN+ = High, IN- = Low =>OUT = High, RDY = High, /FLT = High 4.4.2 V V Logic Input and Output Parameter Symbol Limit Values min. IN+,IN-, RST Low Input Voltage IN+,IN-, RST High Input Voltage typ. VIN+L,VIN- L,VRSTL max. 1.5 VIN+H,VIN- 3.5 HVRSTH Unit Test Conditions V V IN-, RST Input Current IIN-,IRST 100 400 uA IN+ Input Current IIN+, 100 400 uA VIN+=VCC1 RDY,FLT Pull Up Current IPRDY, IPFLT VIN-=GND1 VRST =GND1 100 400 uA Input Pulse Suppression IN+, IN- TMININ+, TMININ- 30 40 VRDY=GND1 VFLT=GND1 ns Input Pulse Suppression RST for ENABLE/SHUTDOWN TMINRST 30 40 ns Pulse Width RST for Reseting FLT TRST 800 ns FLT Low Voltage VFLTL RDY Low Voltage VRDYL Preliminary Datasheet 14 300 mV ISINK(FLT) = 5mA 300 mV ISINK(RDY) = 5mA Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Electrical Parameters 4.4.3 Gate Driver Parameter Symbol Limit Values High Level Output Voltage VOUTH1 VVCC2-1.2 VVCC2-0.8 VOUTH2 VVCC2-2.5 VVCC2-2.0 VOUTH3 VVCC2-9 VVCC2-5 min. typ. Unit Test Conditions max. High Level Output Peak Current IOUTH -1.5 -2.0 Low Level Output Voltage VOUTL1 VVEE2+0.04 VVEE2+0.09 V IOUTL = 20mA VVEE2+0.3 VVEE2+0.85 V IOUTL = 200mA VVEE2+2.1 VVEE2+5.0 V IOUTL = 1A VOUTL4 VVEE2+7 — V IOUTL = 2A IOUTL 1.5 2.0 — A IN+ = Low, IN- = Low; OUT = Low, VVCC2 =15V, VVEE2 =-8V VOUTH4 VOUTL2 VOUTL3 Low Level Output Peak Current 4.4.4 VVCC2-10 V IOUTH = -20mA V IOUTH = -200mA V IOUTH = -1A V IOUTH = -2A A IN+ = High, IN- = Low; OUT = High Active Miller Clamp Parameter Symbol Limit Values min. Low Level Clamp Voltage typ. Unit Test Conditions max. VCLAMPL1 VVEE2+0.03 VVEE2 +0.08 V IOUTL = 20mA VCLAMPL2 VVEE2+0.3 VVEE2 +0.8 V IOUTL = 200mA VCLAMPL3 VVEE2+1.9 VVEE2 +4.8 V IOUTL = 1A Low Level Clamp Current ICLAMPL 2 A 1) Clamp Threshold Voltage VCLAMP 1.6 2.1 2.4 V Related to VEE2 1) The parameter is not subject to production test - verified by design/characterization 4.4.5 Short Circuit Clamping Parameter Symbol Limit Values Clamping voltage (OUT) (VOUT-VVCC2) VCLPout 0.8 1.3 V Clamping voltage (CLAMP) (VVCLAMP-VVCC2) VCLPclamp IN+=High, IN-=Low, OUT=High IOUT = 500mA (pulse test,tCLPmax=10us) 1.3 V Clamping voltage (CLAMP) VCLPclamp IN+=High, IN-=Low, OUT=High ICLAMP = 500mA (pulse test,tCLPmax=10us) 0.7 1.1 V IN+=High, IN-=Low, OUT=High ICLAMP = 20mA min. Preliminary Datasheet typ. 15 Unit Test Conditions max. Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Electrical Parameters 4.4.6 Dynamic Characteristics Parameter Symbol Limit Values IN+ Input to output propagation delay ON/OFF and IN- OFF TPDON 1.6 1.8 2.1 us CTLSET=0, TA=25°C IN+ Input to output propagation delay distortion (TPDOFF-TPDON) TPDISTO 0 30 60 ns CTLSET=0, TA=25°C 1.6 1.8 tbd 2.81) us CTLSET=0, TA=25°C min. IN- Input to output propagation delay ON TPDON- Unit Test Conditions typ. max. IN- Input to output propagation delay distortion (TPDOFF-TPDON) TPDISTO- tbd -5451) 30 60 ns CTLSET=0, TA=25°C IN+ Input to output propagation delay ON/OFF and IN- OFF TPDONt 1.5 1.9 2.3 us CTLSET=0, TA=125°C IN+ Input to output propagation delay distortion (TPDOFF-TPDON) TPDISTOt 0 40 70 ns CTLSET=0, TA=125°C 1.5 1.9 tbd 3.01) us CTLSET=0, TA=125°C tbd -7001) 40 70 ns CTLSET=0, TA=125°C IN- Input to output propagation delay ON TPDON-t IN- Input to output propagation delay distortion (TPDOFF-TPDON) TPDISTO-t IN+ Input to output propagation delay ON/OFF and IN- OFF TPDONt 1.5 1.8 2.3 us CTLSET=0, @TA=-40°C IN+ Input to output propagation delay distortion (TPDOFF-TPDON) TPDISTOt 0 20 50 ns CTLSET=0, @TA=-40°C 1.5 1.8 tbd 3.01) us CTLSET=0, @TA=-40°C tbd -7001) 20 50 ns CTLSET=0, @TA=-40°C 10 30 60 ns VVCC2 =15V,VVEE2 =-8V CLOAD= 1nF, VL 10% ,VH 90% 150 400 800 ns VVCC2 =15V,VVEE2 =-8V CLOAD= 34nF VL 10% ,VH 90% 10 20 40 ns VVCC2 =15V,VVEE2 =-8V CLOAD= 1nF VL 10% ,VH 90% 100 250 500 ns VVCC2 =15V,VVEE2 =-8V CLOAD= 34nF VL 10% ,VH 90% IN- Input to output propagation delay ON TPDON-t IN- Input to output propagation delay distortion (TPDOFF-TPDON) TPDISTO-t Rise Time TRISE Fall Time TFALL 1) The maximum value of input to output propagation delay ON at IN- occures only in case of electromagnetic interferences, typically the input to output delay is 2.1µs at TA =25°C, one worst case watchdog clock cycle shorter (see chapter 2.2.3). The turn OFF-signal is prioritized/dominant and will not show up this behavior. Preliminary Datasheet 16 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Electrical Parameters 4.4.7 Desaturation protection Parameter Symbol Limit Values Blanking Capacitor Charge Current IDESATC 450 500 550 uA Blanking Capacitor Discharge Current IDESATD 11 15 mA VVCC2 =15V,VVEE2 =-8V VDESAT=6V Desaturation Reference Level VDESAT 8.5 9 9.5 V VVCC2 =15V,VVEE2 =-8V Desaturation Reference Level VDESAT 8.5 9 9.5 V VVCC2 =15V,VVEE2 =0V Desaturation Sense to OUT TLTO TDESATOUT 270 320 ns VOUT =90% CLOAD= 1nF Desaturation Sense to FLT Low Delay TDESATFLT 2.25 us VFLT =10%; IFLT =5mA Desaturation Low Voltage VDESATL 40 min. 4.4.8 Unit Test Conditions typ. max. 70 110 VVCC2 =15V,VVEE2 =-8V VDESAT=2V mV IN+=Low, IN-=Low, OUT=Low Active Shut Down Parameter Symbol Limit Values min. Active Shut Down Voltage VACTSD 1) Unit Test Conditions typ. max. 2.0 V IOUT=-200mA, VCC2 open 1) With reference to VEE2 4.4.9 Two-level Turn-off Parameter Symbol Limit Values min. Unit Test Conditions typ. max. External reference voltage range (Zener- VZDIODE Diode) 7.5 Reference Voltage for setting two-level delay time VTLSET 6.6 7 7.3 V Current for setting two-level delay time and external reference voltage (ZenerDiode) ITLSET 420 500 550 uA External Capacitance Range CTLSET 0 220 pF Preliminary Datasheet 17 VCC2-0.5 V VTLSET=10V Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Insulation Characteristics 5 Insulation Characteristics 5.1 Complies with DIN EN 60747-5-2 (VDE 0884 Teil 2): 2003-01. Basic Insulation Description Symbol Characteristic Installation classification per EN 60664-1, Table 1 for rated mains voltage ≤ 150 VRMS for rated mains voltage ≤ 300 VRMS for rated mains voltage ≤ 600 VRMS I-IV I-III I-II Climatic Classification 40/125/21 Pollution Degree (EN 60664-1) Unit 2 Minimum External Clearance CLR 8 mm Minimum External Creepage CPG 8 mm Minimum Comparative Tracking Index CTI 175 Maximum Repetitive Insulation Voltage VIORM 1420 VPEAK VIOTM 6000 VPEAK VIOSM 6000 V Highest Allowable Overvoltage 1) Maximum Surge Insulation Voltage 5.2 According to UL 1577 Description Symbol Characteristic Unit Insulation Withstand Voltage / 1min VISO 3750 Vrms Insulation Test Voltage / 1sec VISO 4500 Vrms 5.3 Reliability For Qualification Report please contact your local Infineon Technologies office. Preliminary Datasheet 18 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Timing Diagrams 6 Timing Diagrams All diagrams related to the Two-level switch-off feature IN+ V ZDIODE VTLSET , typ. 7V TLSET TPD TADJ 1 V ZDIODE TTLSET TPD TTLFALL OUT TPDONADJ Figure 4: TTLSET Typical Switching Behavior IN+ TPDON OUT TTLSET TTLSET TDESATOUT TDESATOUT VDESAT typ. 9V DESAT /FLT TDESATFLT TDESATFLT /RST >TRSTmin Figure 5: DESAT Switch-OFF Behavior Preliminary Datasheet 19 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Timing Diagrams IN+ TLSET TPD TTLSET TTLSET OUT Figure 6: TPDON TTLSET TPD TPDON TPDOFF Short Switch ON Pulses IN+ TLSET TTLSET TTLSET TPD OUT Figure 7: TTLSET TPD TPDOFF TPDON TPDOFF TPDON TPDOFF Short Switch OFF Pulses IN+ TLSET TPD OUT TTLSET TTLSET TTLSET TPD TTLSET TPDON TPDOFF TPDOFF TPDOFF TPDON forced turn off after three consecutive on -cycles Figure 8: Short Switch OFF Pulses, Ringing Surpression Preliminary Datasheet 20 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Timing Diagrams VUVLOH2 VCC2 IN+ TPDON OUT TPDOFF I DESAT RDY Figure 9: VCC2 Ramp Up VCC2 VUVLOH2 VUVLOL2 TPDD TPDD IN+ TPDD TTLSET TLSET Vz OUT TPDON RDY /FLT Figure 10: VCC2 Ramp Down and VCC2 Drop Preliminary Datasheet 21 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Timing Diagrams 5 TTLSET [usec] 4 3 2 1 0 0 50 100 150 200 C TLSET [pF] Figure 11: Typical TTLSET Time over CTLSET Capacitance Preliminary Datasheet 22 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Package Outlines 7 Package Outlines PG-DSO-20-55 (Plastic Dual Small Outline Package) Figure 12: PG-DSO-20-55 Preliminary Datasheet 23 Version 1.2, 2010-05-21 EICEDRIVER® 1ED020I12FTA Application Notes 8 Application Notes 8.1 Reference Layout for Thermal Data The PCB layout shown in figure 12 represents the reference layout used for the thermal characterisation. Pins 11, 12, 19 and 20 (GND1) and pins 1, 2, 9 and 10 (VEE2) require ground plane connections for achiving maximum power dissipation. The 1ED020I12FTA is conceived to dissipate most of the heat generated through this pins. PCB + Top-Layer PCB + Bottom-Layer Figure 13: Reference layout for thermal data (Copper thickness 102mm) 8.2 Printed Circuit Board Guidelines Following factors should be taken into account for an optimum PCB layout. - Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits. - The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained to increase the effective isolation and reduce parasitic coupling. - In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept as short as possible. Preliminary Datasheet 24 Version 1.2, 2010-05-21 www.infineon.com/gatedriver Published by Infineon Technologies AG