EiceDRIVER™ 1ED020I12-BT Single IGBT Driver IC Final Data Sheet Rev 2.0, 2012-07-31 Industrial Power Control Edition 2012-07-31 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. EiceDRIVER™ 1ED020I12-BT Revision History Page or Item Subjects (major changes since previous revision) Rev 2.0, 2012-07-31 Trademarks of Infineon Technologies AG AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2010-10-26 Final Data Sheet 3 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 3.1 3.2 Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5 4.6 4.7 4.8 4.8.1 4.8.2 4.8.3 4.9 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . READY Status Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Shut-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non-Inverting and Inverting Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Driver Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-Level Turn-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimal On Time / Off Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 14 14 15 15 15 15 15 16 16 16 17 17 17 17 17 17 5 5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7 5.4.8 5.4.9 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-level Turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18 19 19 20 20 21 22 22 23 23 24 25 25 6 6.1 6.2 6.3 Insulation Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Certified according to DIN EN 60747-5-2 (VDE 0884 Teil 2): 2003-01. Basic Insulation . . . . . . . . . . Certified according to UL 1577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 26 26 26 7 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Final Data Sheet 4 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT 9 9.1 9.2 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Reference Layout for Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Printed Circuit Board Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Final Data Sheet 5 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Block Diagram 1ED020I12-BT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin Configuration PG-DSO-16-15 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Application Example Bipolar Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Application Example Unipolar Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Propagation Delay, Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Principle Switching Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Typical Switching Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DESAT Switch-OFF Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Short Switch ON Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Short Switch OFF Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Short Switch OFF Pulses, Ringing Surpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 VCC2 Ramp Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 VCC2 Ramp Down and VCC2 Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Typical TTLSET Time over CTLSET Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 PG-DSO-16-15 (Plastic (Green) Dual Small Outline Package) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Reference Layout for Thermal Data (Copper thickness 102 μm) . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Final Data Sheet 6 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-level Turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . According to DIN EN 60747-5-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . According to UL 1577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Final Data Sheet 7 11 18 19 19 20 21 22 22 23 23 24 25 25 26 26 Rev 2.0, 2012-07-31 EiceDRIVER™ Single IGBT Driver IC 1 1ED020I12-BT Overview Main Features • • • • • • Single channel isolated IGBT Driver For 600 V/1200 V IGBTs 2 A rail-to-rail output Vcesat-detection Active Miller Clamp Two level turn off Product Highlights • • • • Coreless transformer isolated driver Basic insulation according to DIN EN 60747-5-2 Integrated protection features Suitable for operation at high ambient temperature Typical Application • • • Inverters for motor drives UPS systems Welding Description The 1ED020I12-BT is a galvanic isolated single channel IGBT driver in PG-DSO-16-15 package that provides an output current capability of typically 2A. All logic pins are 5V CMOS compatible and could be directly connected to a microcontroller. The data transfer across galvanic isolation is realized by the integrated Coreless Transformer Technology. The 1ED020I12-BT provides several protection features like IGBT two level turn off, desaturation protection, active Miller clamping and active shut down. Product Name Gate Drive Current Package 1ED020I12-BT ±2 A PG-DSO-16-15 Final Data Sheet 8 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Overview Input Side Output Side VCC1 VCC2_H DESAT CLAMP TM EiceDRIVER IN+, IN-, /RST OUT 1ED020I12-BT /FLT, RDY TLSET GND2 GND1 VEE2_H VCC1 VCC2_L CPU DESAT CLAMP IN+, IN-, /RST EiceDRIVERTM 1ED020I12-BT /FLT, RDY OUT TLSET GND2 GND1 Figure 1 VEE2_L Typical Application Final Data Sheet 9 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Block Diagram 2 Block Diagram VCC1 15 UVLO UVLO & IN+ 10 K4 TX VCC2 7 CLAMP 6 OUT 4 TLSET 2 DESAT 3 GND2 2V delay delay 5 & RX 1 VCC1 VCC2 20MHz IN- 11 OSC VCC1 VEE2 & LOGIC RDY 12 & /RDY 1 DECODER RX TX VCC2 500µA ENCODER VCC1 7V Q VCC2 & S K3 FLT2 R 1 500µA FLT RDY2 FLTNL /FLT 13 VEE2 Q S 9V R VCC1 ≥1 /RST 14 delay RST 1 VEE2 9 GND1 Figure 2 1 16 1ED020I12-BT GND1 1 8 VEE2 VEE2 Block Diagram 1ED020I12-BT Final Data Sheet 10 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Pin Configuration and FunctionalityPin Configuration 3 Pin Configuration and Functionality 3.1 Pin Configuration Table 1 Pin Configuration Pin No. Name Function 1 VEE2 Negative power supply output side 2 DESAT Desaturation protection 3 GND2 Signal ground output side 4 TLSET Two level set 5 VCC2 Positive power supply output side 6 OUT Driver output 7 CLAMP Miller clamping 8 VEE2 Negative power supply output side 9 GND1 Ground input side 10 IN+ Non inverted driver input 11 IN- Inverted driver input 12 RDY Ready output 13 /FLT Fault output, low active 14 /RST Reset input, low active 15 VCC1 Positive power supply input side 16 GND1 Ground input side Figure 3 1 VEE2 GND1 16 2 DESAT VCC1 15 3 GND2 /RST 14 4 TLSET /FLT 13 5 VCC2 RDY 12 6 OUT IN- 11 7 CLAMP IN+ 10 8 VEE2 GND1 9 Pin Configuration PG-DSO-16-15 (top view) Final Data Sheet 11 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Pin Configuration and FunctionalityPin Functionality 3.2 Pin Functionality GND1 Ground connection of the input side. IN+ Non Inverting Driver Input IN+ control signal for the driver output if IN- is set to low. (The IGBT is on if IN+ = high and IN- = low) A minimum pulse width is defined to make the IC robust against glitches at IN+. An internal Pull-Down-Resistor ensures IGBT Off-State. IN- Inverting Driver Input IN- control signal for driver output if IN+ is set to high. (IGBT is on if IN- = low and IN+ = high) A minimum pulse width is defined to make the IC robust against glitches at IN-. An internal Pull-Up-Resistor ensures IGBT Off-State. /RST Reset Input Function 1: Enable/shutdown of the input chip. (The IGBT is off if /RST = low). A minimum pulse width is defined to make the IC robust against glitches at /RST. Function 2: Resets the DESAT-FAULT-state of the chip if /RST is low for a time TRST. An internal Pull-Up-Resistor is used to ensure /FLT status output. /FLT Fault Output Open-drain output to report a desaturation error of the IGBT (/FLT is low if desaturation occurs) RDY Ready Status Open-drain output to report the correct operation of the device (RDY = high if both chips are above the UVLO level and the internal chip transmission is faultless). VCC1 5 V power supply of the input chip VEE2 Negative power supply pins of the output chip. If no negative supply voltage is available, all VEE2 pins have to be connected to GND2. DESAT Desaturation Detection Input Monitoring of the IGBT saturation voltage (VCE) to detect desaturation caused by short circuits. If OUT is high, VCE is above a defined value and a certain blanking time has expired, the desaturation protection is activated and the IGBT is switched off. The blanking time is adjustable by an external capacitor. CLAMP Miller Clamping Ties the gate voltage to ground after the IGBT has been switched off at a defined voltage to avoid a parasitic switch-on of the IGBT.During turn-off, the gate voltage is monitored and the clamp output is activated when the gate voltage goes below 2 V above VEE2. Final Data Sheet 12 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Pin Configuration and FunctionalityPin Functionality GND2 Reference Ground Reference ground of the output chip. OUT Driver Output Output pin to drive an IGBT. The voltage is switched between VEE2 and VCC2. In normal operating mode Vout is controlled by IN+, IN- and /RST. During error mode (UVLO, internal error or DESAT) Vout is set to VEE2 independent of the input control signals. VCC2 Positive power supply pin of the output side. TLSET Two Level Turn Off Adjust Circuitry at TLSET adjust the two level turn off time with an external capacitor to GND2 and the two level voltage with an external Zener diode to GND2, for wave forms please see Figure 9. Final Data Sheet 13 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Functional DescriptionIntroduction 4 Functional Description 4.1 Introduction The 1ED020I12-BT is an advanced IGBT gate driver for motor drives typical greater 10 kW. Control and protection functions are included to make possible the design of high reliability systems. The device consists of two galvanic separated parts. The input chip can be directly connected to a standard 5 V DSP or microcontroller with CMOS in/output and the output chip is connected to the high voltage side. An effective active Miller clamp function avoids the need of negative gate driving in some applications and allows the use of a simple bootstrap supply for the high side driver. A rail-to-rail driver output enables the user to provide easy clamping of the IGBTs gate voltage during short circuit of the IGBT. So an increase of short circuit current due to the feedback via the Miller capacitance can be avoided. Further, a rail-to-rail output reduces power dissipation. The device also includes an IGBT desaturation protection with a /FLT status output. A two-level turn-off feature with adjustable delay protects against excessive overvoltage at turn-off in case of overcurrent or short circuit condition. The same delay is applied at turn-on to prevent pulse width distortion. A READY status output reports if the device is supplied and operates correctly. +5V 10k 10k VCC1 SGND +15V VCC2 100n 1µ 1k DESAT GND1 CLAMP IN+ IN+ IN- RDY RDY FLT OUT TLSET /RST Figure 4 Application Example Bipolar Supply 4.2 Supply 10V 47p 220p GND2 /FLT RST 10R 1µ VEE2 -8V The driver 1ED020I12-BT is designed to support two different supply configurations, bipolar supply and unipolar supply. In bipolar supply the driver is typically supplied with a positive voltage of 15V at VCC2 and a negative voltage of -8V at VEE2, refer to Figure 4. Negative supply prevents a dynamic turn on due to the additional charge which is generated from IGBT input capacitance times negative supply voltage. If an appropriate negative supply voltage is used, connecting CLAMP to IGBT gate is redundant and therefore typically not necessary. For unipolar supply configuration the driver is typically supplied with a positive voltage of 15V at VCC2. Erratically dynamic turn on of the IGBT could be prevented with active Miller clamp function, so CLAMP output is directly connected to IGBT gate, refer to Figure 5. Final Data Sheet 14 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Functional DescriptionInternal Protection Features +5V 10k 10k VCC1 1µ 100n SGND +15V VCC2 1k DESAT GND1 CLAMP IN+ IN+ IN- RDY RDY FLT 10R OUT TLSET 10V 47p 220p GND2 /FLT RST /RST Figure 5 Application Example Unipolar Supply 4.3 Internal Protection Features 4.3.1 Undervoltage Lockout (UVLO) VEE2 To ensure correct switching of IGBTs the device is equipped with an undervoltage lockout for both chips, refer to Figure 13 and Figure 14. If the power supply voltage VVCC1 of the input chip drops below VUVLOL1 a turn-off signal is sent to the output chip before power-down. The IGBT is switched off and the signals at IN+ and IN- are ignored as long as VVCC1 reaches the power-up voltage VUVLOH1. If the power supply voltage VVCC2 of the output chip goes down below VUVLOL2 the IGBT is switched off and signals from the input chip are ignored as long as VVCC2 reaches the power-up voltage VUVLOH2. VEE2 is not monitored, otherwise negative supply voltage range from 0 V to -12 V would not be possible. 4.3.2 READY Status Output The READY output at pin /RDY shows the status of three internal protection features. • • • UVLO of the input chip UVLO of the output chip after a short delay Internal signal transmission after a short delay It is not necessary to reset the READY signal since its state only depends on the status of the former mentioned protection signals. 4.3.3 Watchdog Timer During normal operation the internal signal transmission is monitored by a watchdog timer. If the transmission fails for a given time, the IGBT is switched off and the READY output reports an internal error. 4.3.4 Active Shut-Down The Active Shut-Down feature ensures a safe IGBT off-state if the output chip is not connected to the power supply, IGBT gate is clamped at OUT to VEE2. Final Data Sheet 15 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Functional DescriptionNon-Inverting and Inverting Inputs 4.4 Non-Inverting and Inverting Inputs There are two possible input modes to control the IGBT. At non-inverting mode IN+ controls the driver output while IN- is set to low. At inverting mode IN- controls the driver output while IN+ is set to high, refer to Figure 7. A minimum input pulse width is defined to filter occasional glitches. 4.5 Driver Output The output driver section uses only MOSFETs to provide a rail-to-rail output. This feature permits that tight control of gate voltage during on-state and short circuit can be maintained as long as the drivers supply is stable. Due to the low internal voltage drop, switching behaviour of the IGBT is predominantly governed by the gate resistor. Furthermore, it reduces the power to be dissipated by the driver. 4.6 Two-Level Turn-Off The Two-Level Turn-OFF introduces a second turn off voltage level at the driver output in between ON- and OFFlevel, refer to Figure 8. This additional level ensures lower VCE overshoots at turn off by reducing gate emitter voltage of the IGBT at short circuits or over current events. The VGE level is adjusting the current of the IGBT at the end two level turn off interval, the required timing is depending on stray inductance and over current at beginning of two level turn off interval. Reference voltage level and hold up time could be adjusted at TLSET pin. The reference voltage is set by the required Zener diode connected between pin TLSET and GND2. The holdup time is set by the capacitor connected to the same pin TLSET and GND2. The hold time can be adjusted during switch on using the whole capacitance connected at pin TLSET including capacitor, parasitic wiring capacitance and junction capacitance of Zener diode. When a switch on signal is given the IC starts to discharge CTLSET. Discharging CTLSET is stopped after 500 ns. Then Ctlset is charged with an internal charge current ITLSET. When the voltage of the capacitor CTLSET exceeds 7 V a second current source starts charging CTLSET up to VZDIODE. At the end of this discharge-charge cycle the gate driver is switched on. The time between IN initiated switch-on signal (minus an internal propagation delay of approximately 200 ns) and switch-on of the gate drive is sampled and stored digitally. It represents the two level turn off set time TTLSET during switch-off. Due to digitalization the tpdon time can vary in time steps of 50 ns. If switch off is initiated from IN+, IN- or /RST signal, the gate driver is switched off immediately after internal propagation delay of approximately 200 ns and VOUT begins to decrease to the second gate voltage level. For switch off initiated by DESAT, the gate driver switch off is delayed by desaturation sense to OUT delay, afterwards VOUT begins to decrease to the second gate voltage level. For reaching second gate voltage level the output voltage VOUT is sensed and compared with the Zener voltage VZDIODE. When VOUT falls below the reference voltage VZDIODE of the Zener diode the switch off process is interrupted and VOUT is adjusted to VZDIODE. OUT is switched to VEE2 after the holdup time has passed. The Two-Level Turn-OFF function cannot be disabled. Final Data Sheet 16 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Functional DescriptionMinimal On Time / Off Time 4.7 Minimal On Time / Off Time The 1ED020I12-BT driver requires minimal on and off time for proper operation in the application. Minimal on time must be greater than the adjustable two level plateau time TTLSET, shorter on times will be suppressed by generating of the plateau time refer to Figure 10. Due to the short on time, the voltage at TLSET pin does not reach the comparator threshold; therefore the driver does not turn on. A similar principle takes place for off time. Minimal off time must be greater than TTLSET; shorter off times will be suppressed, which means OUT stays on refer to Figure 11. A two level turn off plateau cannot be shortened by the driver. If the driver has entered the turn off sequence it cannot switch off due to the fact, that the driver has already entered the shut off mode. But if the driver input signal is turned on again, it will leave the lower level after TTLSET time by switching OUT to high, refer to Figure 12. 4.8 External Protection Features 4.8.1 Desaturation Protection A desaturation protection ensures the protection of the IGBT at short circuit. When the DESAT voltage goes up and reaches 9 V, the output is driven low, refer to Figure 9. Further, the /FLT output is activated. A programmable blanking time is used to allow enough time for IGBT saturation. Blanking time is provided by a highly precise internal current source and an external capacitor. 4.8.2 Active Miller Clamp In a half bridge configuration the switched off IGBT tends to dynamically turn on during turn on phase of the opposite IGBT. A Miller clamp allows sinking the Miller current across a low impedance path in this high dV/dt situation. Therefore in many applications, the use of a negative supply voltage can be avoided. During turn-off, the gate voltage is monitored and the clamp output is activated when the gate voltage goes below typical 2 V (related to VEE2). The clamp is designed for a Miller current up to 2 A. 4.8.3 Short Circuit Clamping During short circuit the IGBTs gate voltage tends to rise because of the feedback via the Miller capacitance. An additional protection circuit connected to OUT and CLAMP limits this voltage to a value slightly higher than the supply voltage. A current of maximum 500 mA for 10 μs may be fed back to the supply through one of this paths. If higher currents are expected or a tighter clamping is desired external Schottky diodes may be added. 4.9 RESET The reset input has two functions. Firstly, /RST is in charge of setting back the /FLT output. If /RST is low longer than a given time, /FLT will be cleared at the rising edge of /RST, refer to Figure 9; otherwise, it will remain unchanged. Moreover, it works as enable/shutdown of the input logic, refer to Figure 7. Final Data Sheet 17 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Electrical ParametersAbsolute Maximum Ratings 5 Electrical Parameters 5.1 Absolute Maximum Ratings Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the integrated circuit. Unless otherwise noted all parameters refer to GND1. Table 2 Absolute Maximum Ratings Parameter Symbol Values Min. Max. Unit Note / Test Condition Positive power supply output side VVCC2 -0.3 20 V 1) Negative power supply output side VVEE2 -12 0.3 V 1) Maximum power supply voltage output side (VVCC2 - VVEE2) Vmax2 – 28 V – Gate driver output VOUT VVEE2-0.3 Vmax2+0.3 V – Gate driver high output maximum current IOUT – 2.4 A t = 2 µs Gate & Clamp driver low output maximum current IOUT – 2.4 A t = 2 µs Maximum short circuit clamping time tCLP – 10 μs ICLAMP/OUT = 500 mA Positive power supply input side VVCC1 -0.3 6.5 V – Logic input voltages (IN+,IN-,RST) VLogicIN -0.3 6.5 V – Opendrain Logic output voltage (FLT) VFLT# -0.3 6.5 V – Opendrain Logic output voltage (RDY) VRDY -0.3 6.5 V – Opendrain Logic output current (FLT) IFLT# – 10 mA – Opendrain Logic output current (RDY) IRDY – 10 mA – Pin DESAT voltage VDESAT -0.3 VVCC2 V 1) V 3) +0.3 Pin CLAMP voltage VCLAMP -0.3 VVCC2 2) +0.3 Junction temperature TJ -40 150 °C – Storage temperature TS -55 150 °C – Power dissipation, per input part PD, IN – 100 mW 4) @TA = 25°C mW 4) @TA = 25°C K/W 4) @TA = 25°C @TA = 25°C Power dissipation, per output part Thermal resistance (Input part) PD, OUT RTHJA,IN – – 700 160 Thermal resistance (Output chip active) RTHJA,OUT – 125 K/W 4) ESD Capability VESD – 1.5 kV Human Body Model5) 1) With respect to GND2. 2) May be exceeded during short circuit clamping. 3) With respect to VEE2. Final Data Sheet 18 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Electrical ParametersOperating Parameters 4)Output IC power dissipation is derated linearly at 10 mW/°C above 62°C. Input IC power dissipation does not require derating. See Figure 17 for reference layouts for these thermal data. Thermal performance may change significantly with layout and heat dissipation of components in close proximity. 5) According to EIA/JESD22-A114-B (discharging a 100 pF capacitor through a 1.5 kΩ series resistor). 5.2 Operating Parameters Note: Within the operating range the IC operates as described in the functional description. Unless otherwise noted all parameters refer to GND1. Table 3 Operating Parameters Parameter Symbol Values Min. Max. Unit Note / Test Condition Positive power supply output side VVCC2 13 20 V 1) Negative power supply output side VVEE2 -12 0 V 1) Maximum power supply voltage output side (VVCC2 - VVEE2) Vmax2 – 28 V – Positive power supply input side VVCC1 4.5 5.5 V – Logic input voltages (IN+,IN-,RST) VLogicIN -0.3 5.5 V – Pin CLAMP voltage VCLAMP VVEE2-0.3 VVCC22) V – Pin DESAT voltage VDESAT -0.3 VVCC2 V 1) Pin TLSET voltage VTLSET -0.3 VVCC2 V 1) TA -40 105 °C – 50 kV/μs @ 500 V Ambient temperature Common mode transient immunity 3) |DVISO/dt| – 1) With respect to GND2. 2) May be exceeded during short circuit clamping. 3) The parameter is not subject to production test - verified by design/characterization 5.3 Recommended Operating Parameters Note: Unless otherwise noted all parameters refer to GND1. Table 4 Recommended Operating Parameters Parameter Symbol Value Unit Note / Test Condition Positive power supply output side VVCC2 15 V 1) Negative power supply output side VVEE2 -8 V 1) Positive power supply input side VVCC1 5 V – 1) With respect to GND2. Final Data Sheet 19 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Electrical ParametersElectrical Characteristics 5.4 Electrical Characteristics Note: The electrical characteristics include the spread of values in supply voltages, load and junction temperatures given below. Typical values represent the median values at TA = 25°C. Unless otherwise noted all voltages are given with respect to their respective GND (GND1 for pins 9 to 16, GND2 for pins 1 to 8). 5.4.1 Voltage Supply Table 5 Voltage Supply Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. VUVLOH1 – 4.1 4.3 V – VUVLOL1 3.5 3.8 – V – UVLO Hysteresis Input Chip (VUVLOH1 - VUVLOL1) VHYS1 0.15 – – V – UVLO Threshold Output Chip VUVLOH2 – 12.0 12.6 V – VUVLOL2 10.4 11.0 – V – UVLO Hysteresis Output Chip (VUVLOH1 - VUVLOL1) VHYS2 0.7 0.9 – V – Quiescent Current Input Chip IQ1 – 7 9 mA VVCC1 =5 V UVLO Threshold Input Chip IN+ = High, IN- = Low =>OUT = High, RDY = High, /FLT = High Quiescent Current Output Chip IQ2 – 4.5 6 mA VVCC2 =15 V VVEE2 =-8 V IN+ = High, IN- = Low =>OUT = High, RDY = High, /FLT = High Final Data Sheet 20 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Electrical ParametersElectrical Characteristics 5.4.2 Logic Input and Output Table 6 Logic Input and Output Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. IN+,IN-, RST Low Input Voltage VIN+L, VIN-L, – – 1.5 V – IN+,IN-, RST High Input Voltage VIN+H, VIN-H, 3.5 – – V – VRSTL# VRSTH# IN-, RST Input Current IIN-, IRST# -400 -100 – μA VIN- = GND1 VRST# = GND1 IN+ Input Current IIN+, – 100 400 μA VIN+ = VCC1 RDY,FLT Pull Up Current IPRDY, IPFLT# -400 -100 – μA VRDY = GND1 VFLT# = GND1 Input Pulse Suppression IN+, IN- TMININ+, TMININ- 30 40 – ns – Input Pulse Suppression RST for ENABLE/SHUTDOWN TMINRST 30 40 – ns – Pulse Width RST for Reseting FLT TRST 800 – – ns – FLT Low Voltage VFLTL – – 300 mV ISINK(FLT#) = 5 mA RDY Low Voltage VRDYL – – 300 mV ISINK(RDY) = 5 mA Final Data Sheet 21 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Electrical ParametersElectrical Characteristics 5.4.3 Gate Driver Table 7 Gate Driver Parameter Symbol High Level Output Voltage Note / Test Condition Typ. Max. VOUTH1 VVCC2-1.2 VVCC2-0.8 – V IOUTH = -20 mA VOUTH2 VVCC2-2.5 VVCC2-2.0 – V IOUTH = -200 mA VOUTH3 VVCC2-9 VVCC2-5 – V IOUTH = -1 A VOUTH4 – VVCC2-10 – V IOUTH = -2 A -1.5 -2.0 – A IN+ = High, IN- = Low; OUT = High VOUTL1 – VVEE2+0.04 VVEE2+0.09 V IOUTL = 20 mA VOUTL2 – VVEE2+0.3 VVEE2+0.85 V IOUTL = 200 mA VOUTL3 – VVEE2+2.1 VVEE2+5.0 V IOUTL = 1 A VOUTL4 – VVEE2+7 – V IOUTL = 2 A 1.5 2.0 – A IN+ = Low, IN- = Low; OUT = Low, VVCC2 =15 V, VVEE2 =-8 V Unit Note / Test Condition Low Level Output Peak IOUTL Current 5.4.4 Active Miller Clamp Table 8 Active Miller Clamp Parameter Unit Min. High Level Output Peak IOUTH Current Low Level Output Voltage Values Symbol Values Min. Typ. Max. VCLAMPL1 – VVEE2+0.03 VVEE2 +0.08 V IOUTL = 20 mA VCLAMPL2 – VVEE2+0.3 VVEE2 +0.8 V IOUTL = 200 mA VCLAMPL3 – VVEE2+1.9 VVEE2 +4.8 V IOUTL = 1 A Low Level Clamp Current ICLAMPL 2 – – A 1) Clamp Threshold Voltage VCLAMP 1.6 2.1 2.4 V Related to VEE2 Low Level Clamp Voltage 1) The parameter is not subject to production test - verified by design/characterization Final Data Sheet 22 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Electrical ParametersElectrical Characteristics 5.4.5 Short Circuit Clamping Table 9 Short Circuit Clamping Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Clamping voltage (OUT) (VOUT-VVCC2) VCLPout – 0.8 1.3 V IN+=High, IN- = Low, OUT = High IOUT = 500 mA (pulse test, tCLPmax = 10 μs) Clamping voltage (CLAMP) (VVCLAMP-VVCC2) VCLPclamp – 1.3 – V IN+ = High, IN- = Low, OUT = High ICLAMP = 500 mA (pulse test, tCLPmax = 10 μs) Clamping voltage (CLAMP) VCLPclamp – 0.7 1.1 V IN+ = High, IN- = Low, OUT = High ICLAMP = 20 mA 5.4.6 Dynamic Characteristics Dynamic characteristics are measured with VVCC1 = 5 V, VVCC2 = 15 V and VVEE2 = -8 V. Table 10 Dynamic Characteristics Parameter IN+, IN- input to output propagation delay ON and OFF Symbol TPDON TPDISTO IN+, IN- input to output propagation delay distortion (TPDOFF-TPDON) Values Unit Note / Test Condition Min. Typ. Max. 1.5 1.75 2.0 μs CTLSET = 0, TA = 25°C -40 -10 20 ns CTLSET = 0, TA = 25°C IN+, IN- input to output propagation delay ON variation due to temp TPDONt – – 200 ns 1) CTLSET = 0 IN+, IN- input to output propagation delay OFF variation due to temp TPDOFFt – – 230 ns 1) CTLSET = 0 TPDISTOt IN+, IN- input to output propagation delay distortion variation due to temp (TPDOFF-TPDON) – – 25 ns 1) CTLSET = 0 10 30 60 ns CLOAD = 1 nF, VL 10%, VH 90% 150 400 800 ns CLOAD = 34 nF VL 10%, VH 90% Rise Time Final Data Sheet TRISE 23 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Electrical ParametersElectrical Characteristics Table 10 Dynamic Characteristics (cont’d) Parameter Symbol TFALL Fall Time Values Unit Note / Test Condition Min. Typ. Max. 10 20 40 ns CLOAD = 1 nF VL 10%, VH 90% 100 250 500 ns CLOAD = 34 nF VL 10%, VH 90% 1) The parameter is not subject to production test - verified by design/characterization 5.4.7 Desaturation Protection Table 11 Desaturation Protection Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Blanking Capacitor Charge Current IDESATC 450 500 550 μA VVCC2 =15 V, VVEE2 =-8 V VDESAT = 2 V Blanking Capacitor Discharge Current IDESATD 11 15 – mA VVCC2 =15 V, VVEE2 =-8 V VDESAT =6 V Desaturation Reference Level VDESAT 8.5 9 9.5 V VVCC2 =15 V Desaturation Sense to OUT TLTO TDESATOUT – 250 320 ns VOUT =90% CLOAD = 1 nF Desaturation Sense to FLT Low Delay TDESATFLT – – 2.25 μs VFLT #=10%; IFLT #=5 mA Desaturation Low Voltage VDESATL 40 70 110 mV IN+=Low, IN-=Low, OUT=Low Final Data Sheet 24 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Electrical ParametersElectrical Characteristics 5.4.8 Active Shut Down Table 12 Active Shut Down Parameter Symbol Active Shut Down Voltage VACTSD 1) Values Min. Typ. Max. – – 2.0 Unit Note / Test Condition V IOUT = -200 mA, VCC2 open Unit Note / Test Condition 1) With reference to VEE2 5.4.9 Two-level Turn-off Table 13 Two-level Turn-off Parameter Symbol External reference voltage range VZDIODE (Zener-Diode) Reference Voltage for setting two-level delay time VTLSET Current for setting two-level ITLSET delay time and external reference voltage (Zener-Diode) External Capacitance Range Final Data Sheet CTLSET Values Min. Typ. Max. 7.5 – VCC2-0.5 V – 6.6 7 7.3 V – 420 500 550 μA VTLSET = 10 V 0 – 220 pF – 25 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Insulation CharacteristicsCertified according to DIN EN 60747-5-2 (VDE 0884 6 Insulation Characteristics Insulation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application. Surface mount classification is class A in accordance with CECCOO802. This coupler is suitable for “basic insulation” only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. 6.1 Certified according to DIN EN 60747-5-2 (VDE 0884 Teil 2): 2003-01. Basic Insulation Table 14 According to DIN EN 60747-5-2 Description Symbol Characteristic Unit – Installation classification per EN 60664-1, Table 1 for rated mains voltage ≤ 150 VRMS for rated mains voltage ≤ 300 VRMS for rated mains voltage ≤ 600 VRMS I-IV I-III I-II Climatic Classification 40/105/21 – Pollution Degree (EN 60664-1) 2 – Minimum External Clearance CLR 8.12 mm Minimum External Creepage CPG 8.24 mm Minimum Comparative Tracking Index CTI 175 – Maximum Repetitive Insulation Voltage VIORM 1420 VPEAK Input to output test voltage, method b VIORM * 1.875 = VPR, 100% production test with tm = 1 sec, partial discharge < 5 pC VPR 2663 VPEAK Input to output test voltage, method a1) VIORM * 1.6 = VPR, 100% production test with tm = 60 sec, partial discharge < 5 pC VPR 2272 VPEAK Highest Allowable Overvoltage VIOTM 6000 VPEAK Maximum Surge Insulation Voltage VIOSM 6000 V 9 Ω 1) Insulation Resistance at TS, VIO = 500 V RIO > 10 1) Refer to VDE 0884 for a detailed description of Method a and Method b partial discharge test profiles. 6.2 Recognized under UL 1577 Table 15 Recognized under UL 1577 Description Symbol Characteristic Unit Insulation Withstand Voltage / 1 min VISO 3750 Vrms Insulation Test Voltage / 1 s VISO 4500 Vrms 6.3 Reliability For Qualification Report please contact your local Infineon Technologies office. Final Data Sheet 26 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Timing DiagramsReliability 7 Timing Diagrams All diagrams related to the Two-level switch-off feature 50% IN+ 90% 50% OUT 10% TPDON Figure 6 TRISE TPDOFF TFALL Propagation Delay, Rise and Fall Time IN+ IN/RST OUT Figure 7 Principle Switching Behavior IN+ V ZDIODE VTLSET , typ. 7V TLSET TPD TADJ1 V ZDIODE TTLSET TPD TTLFALL OUT TPDONADJ Figure 8 TTLSET Typical Switching Behavior Final Data Sheet 27 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Timing DiagramsReliability IN+ TPDON OUT TTLSET TTLSET TDESATOUT TDESATOUT VDESAT typ. 9V DESAT /FLT TDESATFLT TDESATFLT /RST >TRSTmin Figure 9 DESAT Switch-OFF Behavior IN+ TLSET TPD TTLSET TTLSET OUT Figure 10 TTLSET TPDON TPD TPDON TPDOFF Short Switch ON Pulses Final Data Sheet 28 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Timing DiagramsReliability IN+ TLSET TTLSET TTLSET TPD Figure 11 TPD TPDOFF OUT TTLSET TPDON TPDOFF TPDON TPDOFF Short Switch OFF Pulses IN+ TLSET TPD TTLSET TPDON OUT TTLSET TPDOFF TTLSET TPDOFF TTLSET TPD TPDOFF TPDON forced turn off after three consecutive on -cycles Figure 12 Short Switch OFF Pulses, Ringing Surpression Final Data Sheet 29 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Timing DiagramsReliability VUVLOH2 VCC2 IN+ TPDON OUT TPDOFF I DESAT RDY Figure 13 VCC2 Ramp Up VCC2 VUVLOH2 VUVLOL2 TPDD TPDD IN+ TPDD TTLSET TLSET Vz TPDON OUT RDY /FLT Figure 14 VCC2 Ramp Down and VCC2 Drop Final Data Sheet 30 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Timing DiagramsReliability 5 TTLSET [usec] 4 3 2 1 0 0 50 100 150 200 C TLSET [pF] Figure 15 Typical TTLSET Time over CTLSET Capacitance Final Data Sheet 31 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Package OutlinesReliability 8 Package Outlines DOCUMENT NO. Z8B00166131 SCALE 0 1.0 DIM A A1 b c D E E1 e N L h Ĭ Figure 16 MILLIMETERS MAX MIN 2.64 0.12 0.29 0.48 0.35 0.32 0.23 10.47 10.21 10.41 10.16 7.59 7.42 1.27 BSC 16 0.61 1.02 0.25 0.41 0° 8° 0 INCHES MAX 0.104 0.011 0.019 0.013 0.412 0.410 0.299 MIN 0.005 0.014 0.009 0.402 0.400 0.292 0.050 BSC 16 0.024 0.010 0° 0.040 0.016 8° 1.0 2mm EUROPEAN PROJECTION ISSUE DATE 31.07.2012 REVISION 02 PG-DSO-16-15 (Plastic (Green) Dual Small Outline Package) Final Data Sheet 32 Rev 2.0, 2012-07-31 EiceDRIVER™ 1ED020I12-BT Application NotesReference Layout for Thermal Data 9 Application Notes 9.1 Reference Layout for Thermal Data The PCB layout shown in Figure 17 represents the reference layout used for the thermal characterisation. Pins 9 and 16 (GND1) and pins 1 and 8 (VEE2) require ground plane connections for achiving maximum power dissipation. The 1ED020I12-BT is conceived to dissipate most of the heat generated through this pins. Top Layer Bottom Layer Figure 17 Reference Layout for Thermal Data (Copper thickness 102 μm) 9.2 Printed Circuit Board Guidelines Following factors should be taken into account for an optimum PCB layout. • • • • Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits. The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained to increase the effective isolation and reduce parasitic coupling. In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept as short as possible. Lowest trace length for VEE2 to GND2 decoupling could be achieved with capacitor closed to pins 1 and 3. Final Data Sheet 33 Rev 2.0, 2012-07-31 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG