1ED020I12-BT Data Sheet (1.7 MB, EN)

EiceDRIVER™
1ED020I12-BT
Single IGBT Driver IC
Final Data Sheet
Rev 2.0, 2012-07-31
Industrial Power Control
Edition 2012-07-31
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2012 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
EiceDRIVER™
1ED020I12-BT
Revision History
Page or Item
Subjects (major changes since previous revision)
Rev 2.0, 2012-07-31
Trademarks of Infineon Technologies AG
AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™,
CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™,
MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™,
PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™,
SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™,
TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of
Diodes Zetex Limited.
Last Trademarks Update 2010-10-26
Final Data Sheet
3
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
3.1
3.2
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.5
4.6
4.7
4.8
4.8.1
4.8.2
4.8.3
4.9
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
READY Status Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Shut-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Non-Inverting and Inverting Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Driver Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Two-Level Turn-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Minimal On Time / Off Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
14
14
15
15
15
15
15
16
16
16
17
17
17
17
17
17
5
5.1
5.2
5.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recommended Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Logic Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Two-level Turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
18
19
19
20
20
21
22
22
23
23
24
25
25
6
6.1
6.2
6.3
Insulation Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Certified according to DIN EN 60747-5-2 (VDE 0884 Teil 2): 2003-01. Basic Insulation . . . . . . . . . .
Certified according to UL 1577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26
26
26
26
7
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Final Data Sheet
4
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
9
9.1
9.2
Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Reference Layout for Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Printed Circuit Board Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Final Data Sheet
5
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Block Diagram 1ED020I12-BT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pin Configuration PG-DSO-16-15 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Application Example Bipolar Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Application Example Unipolar Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Propagation Delay, Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Principle Switching Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Typical Switching Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DESAT Switch-OFF Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Short Switch ON Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Short Switch OFF Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Short Switch OFF Pulses, Ringing Surpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
VCC2 Ramp Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
VCC2 Ramp Down and VCC2 Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Typical TTLSET Time over CTLSET Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
PG-DSO-16-15 (Plastic (Green) Dual Small Outline Package) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Reference Layout for Thermal Data (Copper thickness 102 μm) . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Final Data Sheet
6
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recommended Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Logic Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Two-level Turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
According to DIN EN 60747-5-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
According to UL 1577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Final Data Sheet
7
11
18
19
19
20
21
22
22
23
23
24
25
25
26
26
Rev 2.0, 2012-07-31
EiceDRIVER™
Single IGBT Driver IC
1
1ED020I12-BT
Overview
Main Features
•
•
•
•
•
•
Single channel isolated IGBT Driver
For 600 V/1200 V IGBTs
2 A rail-to-rail output
Vcesat-detection
Active Miller Clamp
Two level turn off
Product Highlights
•
•
•
•
Coreless transformer isolated driver
Basic insulation according to DIN EN 60747-5-2
Integrated protection features
Suitable for operation at high ambient temperature
Typical Application
•
•
•
Inverters for motor drives
UPS systems
Welding
Description
The 1ED020I12-BT is a galvanic isolated single channel IGBT driver in PG-DSO-16-15 package that provides an
output current capability of typically 2A.
All logic pins are 5V CMOS compatible and could be directly connected to a microcontroller.
The data transfer across galvanic isolation is realized by the integrated Coreless Transformer Technology.
The 1ED020I12-BT provides several protection features like IGBT two level turn off, desaturation protection, active
Miller clamping and active shut down.
Product Name
Gate Drive Current
Package
1ED020I12-BT
±2 A
PG-DSO-16-15
Final Data Sheet
8
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Overview
Input Side
Output Side
VCC1
VCC2_H
DESAT
CLAMP
TM
EiceDRIVER
IN+, IN-, /RST
OUT
1ED020I12-BT
/FLT, RDY
TLSET
GND2
GND1
VEE2_H
VCC1
VCC2_L
CPU
DESAT
CLAMP
IN+, IN-, /RST
EiceDRIVERTM
1ED020I12-BT
/FLT, RDY
OUT
TLSET
GND2
GND1
Figure 1
VEE2_L
Typical Application
Final Data Sheet
9
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Block Diagram
2
Block Diagram
VCC1 15
UVLO
UVLO
&
IN+ 10
K4
TX
VCC2
7
CLAMP
6
OUT
4
TLSET
2
DESAT
3
GND2
2V
delay
delay
5
&
RX
1
VCC1
VCC2
20MHz
IN- 11
OSC
VCC1
VEE2
&
LOGIC
RDY 12
&
/RDY
1
DECODER
RX
TX
VCC2
500µA
ENCODER
VCC1
7V
Q
VCC2
&
S
K3
FLT2
R
1
500µA
FLT
RDY2
FLTNL
/FLT 13
VEE2
Q
S
9V
R
VCC1
≥1
/RST 14
delay
RST
1
VEE2
9
GND1
Figure 2
1
16
1ED020I12-BT
GND1
1
8
VEE2
VEE2
Block Diagram 1ED020I12-BT
Final Data Sheet
10
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Pin Configuration and FunctionalityPin Configuration
3
Pin Configuration and Functionality
3.1
Pin Configuration
Table 1
Pin Configuration
Pin No. Name
Function
1
VEE2
Negative power supply output side
2
DESAT
Desaturation protection
3
GND2
Signal ground output side
4
TLSET
Two level set
5
VCC2
Positive power supply output side
6
OUT
Driver output
7
CLAMP
Miller clamping
8
VEE2
Negative power supply output side
9
GND1
Ground input side
10
IN+
Non inverted driver input
11
IN-
Inverted driver input
12
RDY
Ready output
13
/FLT
Fault output, low active
14
/RST
Reset input, low active
15
VCC1
Positive power supply input side
16
GND1
Ground input side
Figure 3
1
VEE2
GND1 16
2
DESAT
VCC1 15
3
GND2
/RST 14
4
TLSET
/FLT 13
5
VCC2
RDY 12
6
OUT
IN- 11
7
CLAMP
IN+
10
8
VEE2
GND1
9
Pin Configuration PG-DSO-16-15 (top view)
Final Data Sheet
11
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Pin Configuration and FunctionalityPin Functionality
3.2
Pin Functionality
GND1
Ground connection of the input side.
IN+ Non Inverting Driver Input
IN+ control signal for the driver output if IN- is set to low. (The IGBT is on if IN+ = high and IN- = low)
A minimum pulse width is defined to make the IC robust against glitches at IN+. An internal Pull-Down-Resistor
ensures IGBT Off-State.
IN- Inverting Driver Input
IN- control signal for driver output if IN+ is set to high. (IGBT is on if IN- = low and IN+ = high)
A minimum pulse width is defined to make the IC robust against glitches at IN-. An internal Pull-Up-Resistor
ensures IGBT Off-State.
/RST Reset Input
Function 1: Enable/shutdown of the input chip. (The IGBT is off if /RST = low). A minimum pulse width is defined
to make the IC robust against glitches at /RST.
Function 2: Resets the DESAT-FAULT-state of the chip if /RST is low for a time TRST. An internal Pull-Up-Resistor
is used to ensure /FLT status output.
/FLT Fault Output
Open-drain output to report a desaturation error of the IGBT (/FLT is low if desaturation occurs)
RDY Ready Status
Open-drain output to report the correct operation of the device (RDY = high if both chips are above the UVLO level
and the internal chip transmission is faultless).
VCC1
5 V power supply of the input chip
VEE2
Negative power supply pins of the output chip. If no negative supply voltage is available, all VEE2 pins have to be
connected to GND2.
DESAT Desaturation Detection Input
Monitoring of the IGBT saturation voltage (VCE) to detect desaturation caused by short circuits. If OUT is high, VCE
is above a defined value and a certain blanking time has expired, the desaturation protection is activated and the
IGBT is switched off. The blanking time is adjustable by an external capacitor.
CLAMP Miller Clamping
Ties the gate voltage to ground after the IGBT has been switched off at a defined voltage to avoid a parasitic
switch-on of the IGBT.During turn-off, the gate voltage is monitored and the clamp output is activated when the
gate voltage goes below 2 V above VEE2.
Final Data Sheet
12
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Pin Configuration and FunctionalityPin Functionality
GND2 Reference Ground
Reference ground of the output chip.
OUT Driver Output
Output pin to drive an IGBT. The voltage is switched between VEE2 and VCC2. In normal operating mode Vout
is controlled by IN+, IN- and /RST. During error mode (UVLO, internal error or DESAT) Vout is set to VEE2
independent of the input control signals.
VCC2
Positive power supply pin of the output side.
TLSET Two Level Turn Off Adjust
Circuitry at TLSET adjust the two level turn off time with an external capacitor to GND2 and the two level voltage
with an external Zener diode to GND2, for wave forms please see Figure 9.
Final Data Sheet
13
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Functional DescriptionIntroduction
4
Functional Description
4.1
Introduction
The 1ED020I12-BT is an advanced IGBT gate driver for motor drives typical greater 10 kW. Control and protection
functions are included to make possible the design of high reliability systems.
The device consists of two galvanic separated parts. The input chip can be directly connected to a standard 5 V
DSP or microcontroller with CMOS in/output and the output chip is connected to the high voltage side.
An effective active Miller clamp function avoids the need of negative gate driving in some applications and allows
the use of a simple bootstrap supply for the high side driver.
A rail-to-rail driver output enables the user to provide easy clamping of the IGBTs gate voltage during short circuit
of the IGBT. So an increase of short circuit current due to the feedback via the Miller capacitance can be avoided.
Further, a rail-to-rail output reduces power dissipation.
The device also includes an IGBT desaturation protection with a /FLT status output.
A two-level turn-off feature with adjustable delay protects against excessive overvoltage at turn-off in case of
overcurrent or short circuit condition. The same delay is applied at turn-on to prevent pulse width distortion.
A READY status output reports if the device is supplied and operates correctly.
+5V
10k
10k
VCC1
SGND
+15V
VCC2
100n
1µ
1k
DESAT
GND1
CLAMP
IN+
IN+
IN-
RDY
RDY
FLT
OUT
TLSET
/RST
Figure 4
Application Example Bipolar Supply
4.2
Supply
10V
47p
220p
GND2
/FLT
RST
10R
1µ
VEE2
-8V
The driver 1ED020I12-BT is designed to support two different supply configurations, bipolar supply and unipolar
supply.
In bipolar supply the driver is typically supplied with a positive voltage of 15V at VCC2 and a negative voltage of
-8V at VEE2, refer to Figure 4. Negative supply prevents a dynamic turn on due to the additional charge which
is generated from IGBT input capacitance times negative supply voltage. If an appropriate negative supply voltage
is used, connecting CLAMP to IGBT gate is redundant and therefore typically not necessary.
For unipolar supply configuration the driver is typically supplied with a positive voltage of 15V at VCC2. Erratically
dynamic turn on of the IGBT could be prevented with active Miller clamp function, so CLAMP output is directly
connected to IGBT gate, refer to Figure 5.
Final Data Sheet
14
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Functional DescriptionInternal Protection Features
+5V
10k
10k
VCC1
1µ
100n
SGND
+15V
VCC2
1k
DESAT
GND1
CLAMP
IN+
IN+
IN-
RDY
RDY
FLT
10R
OUT
TLSET
10V
47p
220p
GND2
/FLT
RST
/RST
Figure 5
Application Example Unipolar Supply
4.3
Internal Protection Features
4.3.1
Undervoltage Lockout (UVLO)
VEE2
To ensure correct switching of IGBTs the device is equipped with an undervoltage lockout for both chips, refer to
Figure 13 and Figure 14.
If the power supply voltage VVCC1 of the input chip drops below VUVLOL1 a turn-off signal is sent to the output chip
before power-down. The IGBT is switched off and the signals at IN+ and IN- are ignored as long as VVCC1 reaches
the power-up voltage VUVLOH1.
If the power supply voltage VVCC2 of the output chip goes down below VUVLOL2 the IGBT is switched off and signals
from the input chip are ignored as long as VVCC2 reaches the power-up voltage VUVLOH2. VEE2 is not monitored,
otherwise negative supply voltage range from 0 V to -12 V would not be possible.
4.3.2
READY Status Output
The READY output at pin /RDY shows the status of three internal protection features.
•
•
•
UVLO of the input chip
UVLO of the output chip after a short delay
Internal signal transmission after a short delay
It is not necessary to reset the READY signal since its state only depends on the status of the former mentioned
protection signals.
4.3.3
Watchdog Timer
During normal operation the internal signal transmission is monitored by a watchdog timer. If the transmission fails
for a given time, the IGBT is switched off and the READY output reports an internal error.
4.3.4
Active Shut-Down
The Active Shut-Down feature ensures a safe IGBT off-state if the output chip is not connected to the power
supply, IGBT gate is clamped at OUT to VEE2.
Final Data Sheet
15
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Functional DescriptionNon-Inverting and Inverting Inputs
4.4
Non-Inverting and Inverting Inputs
There are two possible input modes to control the IGBT. At non-inverting mode IN+ controls the driver output while
IN- is set to low. At inverting mode IN- controls the driver output while IN+ is set to high, refer to Figure 7. A
minimum input pulse width is defined to filter occasional glitches.
4.5
Driver Output
The output driver section uses only MOSFETs to provide a rail-to-rail output. This feature permits that tight control
of gate voltage during on-state and short circuit can be maintained as long as the drivers supply is stable. Due to
the low internal voltage drop, switching behaviour of the IGBT is predominantly governed by the gate resistor.
Furthermore, it reduces the power to be dissipated by the driver.
4.6
Two-Level Turn-Off
The Two-Level Turn-OFF introduces a second turn off voltage level at the driver output in between ON- and OFFlevel, refer to Figure 8. This additional level ensures lower VCE overshoots at turn off by reducing gate emitter
voltage of the IGBT at short circuits or over current events. The VGE level is adjusting the current of the IGBT at
the end two level turn off interval, the required timing is depending on stray inductance and over current at
beginning of two level turn off interval.
Reference voltage level and hold up time could be adjusted at TLSET pin. The reference voltage is set by the
required Zener diode connected between pin TLSET and GND2. The holdup time is set by the capacitor connected
to the same pin TLSET and GND2.
The hold time can be adjusted during switch on using the whole capacitance connected at pin TLSET including
capacitor, parasitic wiring capacitance and junction capacitance of Zener diode. When a switch on signal is given
the IC starts to discharge CTLSET. Discharging CTLSET is stopped after 500 ns. Then Ctlset is charged with an
internal charge current ITLSET. When the voltage of the capacitor CTLSET exceeds 7 V a second current source starts
charging CTLSET up to VZDIODE. At the end of this discharge-charge cycle the gate driver is switched on.
The time between IN initiated switch-on signal (minus an internal propagation delay of approximately 200 ns) and
switch-on of the gate drive is sampled and stored digitally. It represents the two level turn off set time TTLSET during
switch-off. Due to digitalization the tpdon time can vary in time steps of 50 ns.
If switch off is initiated from IN+, IN- or /RST signal, the gate driver is switched off immediately after internal
propagation delay of approximately 200 ns and VOUT begins to decrease to the second gate voltage level.
For switch off initiated by DESAT, the gate driver switch off is delayed by desaturation sense to OUT delay,
afterwards VOUT begins to decrease to the second gate voltage level.
For reaching second gate voltage level the output voltage VOUT is sensed and compared with the Zener voltage
VZDIODE. When VOUT falls below the reference voltage VZDIODE of the Zener diode the switch off process is
interrupted and VOUT is adjusted to VZDIODE. OUT is switched to VEE2 after the holdup time has passed.
The Two-Level Turn-OFF function cannot be disabled.
Final Data Sheet
16
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Functional DescriptionMinimal On Time / Off Time
4.7
Minimal On Time / Off Time
The 1ED020I12-BT driver requires minimal on and off time for proper operation in the application. Minimal on time
must be greater than the adjustable two level plateau time TTLSET, shorter on times will be suppressed by
generating of the plateau time refer to Figure 10. Due to the short on time, the voltage at TLSET pin does not
reach the comparator threshold; therefore the driver does not turn on. A similar principle takes place for off time.
Minimal off time must be greater than TTLSET; shorter off times will be suppressed, which means OUT stays on
refer to Figure 11. A two level turn off plateau cannot be shortened by the driver. If the driver has entered the turn
off sequence it cannot switch off due to the fact, that the driver has already entered the shut off mode. But if the
driver input signal is turned on again, it will leave the lower level after TTLSET time by switching OUT to high, refer
to Figure 12.
4.8
External Protection Features
4.8.1
Desaturation Protection
A desaturation protection ensures the protection of the IGBT at short circuit. When the DESAT voltage goes up
and reaches 9 V, the output is driven low, refer to Figure 9. Further, the /FLT output is activated. A programmable
blanking time is used to allow enough time for IGBT saturation. Blanking time is provided by a highly precise
internal current source and an external capacitor.
4.8.2
Active Miller Clamp
In a half bridge configuration the switched off IGBT tends to dynamically turn on during turn on phase of the
opposite IGBT. A Miller clamp allows sinking the Miller current across a low impedance path in this high dV/dt
situation. Therefore in many applications, the use of a negative supply voltage can be avoided.
During turn-off, the gate voltage is monitored and the clamp output is activated when the gate voltage goes below
typical 2 V (related to VEE2). The clamp is designed for a Miller current up to 2 A.
4.8.3
Short Circuit Clamping
During short circuit the IGBTs gate voltage tends to rise because of the feedback via the Miller capacitance. An
additional protection circuit connected to OUT and CLAMP limits this voltage to a value slightly higher than the
supply voltage. A current of maximum 500 mA for 10 μs may be fed back to the supply through one of this paths.
If higher currents are expected or a tighter clamping is desired external Schottky diodes may be added.
4.9
RESET
The reset input has two functions.
Firstly, /RST is in charge of setting back the /FLT output. If /RST is low longer than a given time, /FLT will be
cleared at the rising edge of /RST, refer to Figure 9; otherwise, it will remain unchanged. Moreover, it works as
enable/shutdown of the input logic, refer to Figure 7.
Final Data Sheet
17
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Electrical ParametersAbsolute Maximum Ratings
5
Electrical Parameters
5.1
Absolute Maximum Ratings
Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of
the integrated circuit. Unless otherwise noted all parameters refer to GND1.
Table 2
Absolute Maximum Ratings
Parameter
Symbol
Values
Min.
Max.
Unit
Note /
Test Condition
Positive power supply output side
VVCC2
-0.3
20
V
1)
Negative power supply output side
VVEE2
-12
0.3
V
1)
Maximum power supply voltage output side
(VVCC2 - VVEE2)
Vmax2
–
28
V
–
Gate driver output
VOUT
VVEE2-0.3 Vmax2+0.3 V
–
Gate driver high output maximum current
IOUT
–
2.4
A
t = 2 µs
Gate & Clamp driver low output maximum
current
IOUT
–
2.4
A
t = 2 µs
Maximum short circuit clamping time
tCLP
–
10
μs
ICLAMP/OUT =
500 mA
Positive power supply input side
VVCC1
-0.3
6.5
V
–
Logic input voltages
(IN+,IN-,RST)
VLogicIN
-0.3
6.5
V
–
Opendrain Logic output voltage (FLT)
VFLT#
-0.3
6.5
V
–
Opendrain Logic output voltage (RDY)
VRDY
-0.3
6.5
V
–
Opendrain Logic output current (FLT)
IFLT#
–
10
mA
–
Opendrain Logic output current (RDY)
IRDY
–
10
mA
–
Pin DESAT voltage
VDESAT
-0.3
VVCC2
V
1)
V
3)
+0.3
Pin CLAMP voltage
VCLAMP
-0.3
VVCC2
2)
+0.3
Junction temperature
TJ
-40
150
°C
–
Storage temperature
TS
-55
150
°C
–
Power dissipation, per input part
PD, IN
–
100
mW
4)
@TA = 25°C
mW
4)
@TA = 25°C
K/W
4)
@TA = 25°C
@TA = 25°C
Power dissipation, per output part
Thermal resistance (Input part)
PD, OUT
RTHJA,IN
–
–
700
160
Thermal resistance (Output chip active)
RTHJA,OUT
–
125
K/W
4)
ESD Capability
VESD
–
1.5
kV
Human Body
Model5)
1) With respect to GND2.
2) May be exceeded during short circuit clamping.
3) With respect to VEE2.
Final Data Sheet
18
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Electrical ParametersOperating Parameters
4)Output IC power dissipation is derated linearly at 10 mW/°C above 62°C. Input IC power dissipation does not
require derating. See Figure 17 for reference layouts for these thermal data. Thermal performance may change
significantly with layout and heat dissipation of components in close proximity.
5) According to EIA/JESD22-A114-B (discharging a 100 pF capacitor through a 1.5 kΩ series resistor).
5.2
Operating Parameters
Note: Within the operating range the IC operates as described in the functional description. Unless otherwise
noted all parameters refer to GND1.
Table 3
Operating Parameters
Parameter
Symbol
Values
Min.
Max.
Unit
Note /
Test Condition
Positive power supply output side
VVCC2
13
20
V
1)
Negative power supply output side
VVEE2
-12
0
V
1)
Maximum power supply voltage output side
(VVCC2 - VVEE2)
Vmax2
–
28
V
–
Positive power supply input side
VVCC1
4.5
5.5
V
–
Logic input voltages
(IN+,IN-,RST)
VLogicIN
-0.3
5.5
V
–
Pin CLAMP voltage
VCLAMP
VVEE2-0.3
VVCC22)
V
–
Pin DESAT voltage
VDESAT
-0.3
VVCC2
V
1)
Pin TLSET voltage
VTLSET
-0.3
VVCC2
V
1)
TA
-40
105
°C
–
50
kV/μs
@ 500 V
Ambient temperature
Common mode transient immunity
3)
|DVISO/dt| –
1) With respect to GND2.
2) May be exceeded during short circuit clamping.
3) The parameter is not subject to production test - verified by design/characterization
5.3
Recommended Operating Parameters
Note: Unless otherwise noted all parameters refer to GND1.
Table 4
Recommended Operating Parameters
Parameter
Symbol
Value
Unit
Note / Test Condition
Positive power supply output side
VVCC2
15
V
1)
Negative power supply output side
VVEE2
-8
V
1)
Positive power supply input side
VVCC1
5
V
–
1) With respect to GND2.
Final Data Sheet
19
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Electrical ParametersElectrical Characteristics
5.4
Electrical Characteristics
Note: The electrical characteristics include the spread of values in supply voltages, load and junction temperatures
given below. Typical values represent the median values at TA = 25°C. Unless otherwise noted all voltages
are given with respect to their respective GND (GND1 for pins 9 to 16, GND2 for pins 1 to 8).
5.4.1
Voltage Supply
Table 5
Voltage Supply
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
VUVLOH1
–
4.1
4.3
V
–
VUVLOL1
3.5
3.8
–
V
–
UVLO Hysteresis Input Chip
(VUVLOH1 - VUVLOL1)
VHYS1
0.15
–
–
V
–
UVLO Threshold Output Chip
VUVLOH2
–
12.0
12.6
V
–
VUVLOL2
10.4
11.0
–
V
–
UVLO Hysteresis Output Chip
(VUVLOH1 - VUVLOL1)
VHYS2
0.7
0.9
–
V
–
Quiescent Current Input Chip
IQ1
–
7
9
mA
VVCC1 =5 V
UVLO Threshold Input Chip
IN+ = High,
IN- = Low
=>OUT = High,
RDY = High,
/FLT = High
Quiescent Current Output Chip IQ2
–
4.5
6
mA
VVCC2 =15 V
VVEE2 =-8 V
IN+ = High,
IN- = Low
=>OUT = High,
RDY = High,
/FLT = High
Final Data Sheet
20
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Electrical ParametersElectrical Characteristics
5.4.2
Logic Input and Output
Table 6
Logic Input and Output
Parameter
Symbol
Values
Unit
Note /
Test Condition
Min.
Typ.
Max.
IN+,IN-, RST Low Input Voltage VIN+L,
VIN-L,
–
–
1.5
V
–
IN+,IN-, RST High Input Voltage VIN+H,
VIN-H,
3.5
–
–
V
–
VRSTL#
VRSTH#
IN-, RST Input Current
IIN-, IRST#
-400
-100
–
μA
VIN- = GND1
VRST# = GND1
IN+ Input Current
IIN+,
–
100
400
μA
VIN+ = VCC1
RDY,FLT Pull Up Current
IPRDY, IPFLT# -400
-100
–
μA
VRDY = GND1
VFLT# = GND1
Input Pulse Suppression IN+,
IN-
TMININ+,
TMININ-
30
40
–
ns
–
Input Pulse Suppression RST
for ENABLE/SHUTDOWN
TMINRST
30
40
–
ns
–
Pulse Width RST
for Reseting FLT
TRST
800
–
–
ns
–
FLT Low Voltage
VFLTL
–
–
300
mV
ISINK(FLT#) = 5 mA
RDY Low Voltage
VRDYL
–
–
300
mV
ISINK(RDY) = 5 mA
Final Data Sheet
21
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Electrical ParametersElectrical Characteristics
5.4.3
Gate Driver
Table 7
Gate Driver
Parameter
Symbol
High Level Output
Voltage
Note / Test Condition
Typ.
Max.
VOUTH1
VVCC2-1.2
VVCC2-0.8
–
V
IOUTH = -20 mA
VOUTH2
VVCC2-2.5
VVCC2-2.0
–
V
IOUTH = -200 mA
VOUTH3
VVCC2-9
VVCC2-5
–
V
IOUTH = -1 A
VOUTH4
–
VVCC2-10
–
V
IOUTH = -2 A
-1.5
-2.0
–
A
IN+ = High, IN- = Low;
OUT = High
VOUTL1
–
VVEE2+0.04
VVEE2+0.09
V
IOUTL = 20 mA
VOUTL2
–
VVEE2+0.3
VVEE2+0.85
V
IOUTL = 200 mA
VOUTL3
–
VVEE2+2.1
VVEE2+5.0
V
IOUTL = 1 A
VOUTL4
–
VVEE2+7
–
V
IOUTL = 2 A
1.5
2.0
–
A
IN+ = Low, IN- = Low;
OUT = Low,
VVCC2 =15 V,
VVEE2 =-8 V
Unit
Note / Test Condition
Low Level Output Peak IOUTL
Current
5.4.4
Active Miller Clamp
Table 8
Active Miller Clamp
Parameter
Unit
Min.
High Level Output Peak IOUTH
Current
Low Level Output
Voltage
Values
Symbol
Values
Min.
Typ.
Max.
VCLAMPL1
–
VVEE2+0.03
VVEE2 +0.08 V
IOUTL = 20 mA
VCLAMPL2
–
VVEE2+0.3
VVEE2 +0.8
V
IOUTL = 200 mA
VCLAMPL3
–
VVEE2+1.9
VVEE2 +4.8
V
IOUTL = 1 A
Low Level Clamp
Current
ICLAMPL
2
–
–
A
1)
Clamp Threshold
Voltage
VCLAMP
1.6
2.1
2.4
V
Related to VEE2
Low Level Clamp
Voltage
1) The parameter is not subject to production test - verified by design/characterization
Final Data Sheet
22
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Electrical ParametersElectrical Characteristics
5.4.5
Short Circuit Clamping
Table 9
Short Circuit Clamping
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Clamping voltage (OUT)
(VOUT-VVCC2)
VCLPout
–
0.8
1.3
V
IN+=High, IN- = Low,
OUT = High
IOUT = 500 mA
(pulse test,
tCLPmax = 10 μs)
Clamping voltage
(CLAMP) (VVCLAMP-VVCC2)
VCLPclamp
–
1.3
–
V
IN+ = High, IN- = Low,
OUT = High
ICLAMP = 500 mA
(pulse test,
tCLPmax = 10 μs)
Clamping voltage (CLAMP)
VCLPclamp
–
0.7
1.1
V
IN+ = High, IN- = Low,
OUT = High
ICLAMP = 20 mA
5.4.6
Dynamic Characteristics
Dynamic characteristics are measured with VVCC1 = 5 V, VVCC2 = 15 V and VVEE2 = -8 V.
Table 10
Dynamic Characteristics
Parameter
IN+, IN- input to output
propagation delay ON and
OFF
Symbol
TPDON
TPDISTO
IN+, IN- input to output
propagation delay distortion
(TPDOFF-TPDON)
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
1.5
1.75
2.0
μs
CTLSET = 0, TA = 25°C
-40
-10
20
ns
CTLSET = 0, TA = 25°C
IN+, IN- input to output
propagation delay ON
variation due to temp
TPDONt
–
–
200
ns
1)
CTLSET = 0
IN+, IN- input to output
propagation delay OFF
variation due to temp
TPDOFFt
–
–
230
ns
1)
CTLSET = 0
TPDISTOt
IN+, IN- input to output
propagation delay distortion
variation due to temp
(TPDOFF-TPDON)
–
–
25
ns
1)
CTLSET = 0
10
30
60
ns
CLOAD = 1 nF,
VL 10%, VH 90%
150
400
800
ns
CLOAD = 34 nF
VL 10%, VH 90%
Rise Time
Final Data Sheet
TRISE
23
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Electrical ParametersElectrical Characteristics
Table 10
Dynamic Characteristics (cont’d)
Parameter
Symbol
TFALL
Fall Time
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
10
20
40
ns
CLOAD = 1 nF
VL 10%, VH 90%
100
250
500
ns
CLOAD = 34 nF
VL 10%, VH 90%
1) The parameter is not subject to production test - verified by design/characterization
5.4.7
Desaturation Protection
Table 11
Desaturation Protection
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Blanking Capacitor Charge
Current
IDESATC
450
500
550
μA
VVCC2 =15 V,
VVEE2 =-8 V
VDESAT = 2 V
Blanking Capacitor
Discharge Current
IDESATD
11
15
–
mA
VVCC2 =15 V,
VVEE2 =-8 V
VDESAT =6 V
Desaturation Reference
Level
VDESAT
8.5
9
9.5
V
VVCC2 =15 V
Desaturation Sense to OUT
TLTO
TDESATOUT –
250
320
ns
VOUT =90%
CLOAD = 1 nF
Desaturation Sense to FLT
Low Delay
TDESATFLT
–
–
2.25
μs
VFLT #=10%;
IFLT #=5 mA
Desaturation Low Voltage
VDESATL
40
70
110
mV
IN+=Low, IN-=Low,
OUT=Low
Final Data Sheet
24
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Electrical ParametersElectrical Characteristics
5.4.8
Active Shut Down
Table 12
Active Shut Down
Parameter
Symbol
Active Shut Down Voltage
VACTSD
1)
Values
Min.
Typ.
Max.
–
–
2.0
Unit
Note /
Test Condition
V
IOUT = -200 mA,
VCC2 open
Unit
Note /
Test Condition
1) With reference to VEE2
5.4.9
Two-level Turn-off
Table 13
Two-level Turn-off
Parameter
Symbol
External reference voltage range VZDIODE
(Zener-Diode)
Reference Voltage for setting
two-level delay time
VTLSET
Current for setting two-level
ITLSET
delay time and external
reference voltage (Zener-Diode)
External Capacitance Range
Final Data Sheet
CTLSET
Values
Min.
Typ.
Max.
7.5
–
VCC2-0.5
V
–
6.6
7
7.3
V
–
420
500
550
μA
VTLSET = 10 V
0
–
220
pF
–
25
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Insulation CharacteristicsCertified according to DIN EN 60747-5-2 (VDE 0884
6
Insulation Characteristics
Insulation characteristics are guaranteed only within the safety maximum ratings which must be ensured by
protective circuits in application. Surface mount classification is class A in accordance with CECCOO802.
This coupler is suitable for “basic insulation” only within the safety ratings. Compliance with the safety ratings shall
be ensured by means of suitable protective circuits.
6.1
Certified according to DIN EN 60747-5-2 (VDE 0884 Teil 2): 2003-01. Basic
Insulation
Table 14
According to DIN EN 60747-5-2
Description
Symbol
Characteristic
Unit
–
Installation classification per EN 60664-1, Table 1
for rated mains voltage ≤ 150 VRMS
for rated mains voltage ≤ 300 VRMS
for rated mains voltage ≤ 600 VRMS
I-IV
I-III
I-II
Climatic Classification
40/105/21
–
Pollution Degree (EN 60664-1)
2
–
Minimum External Clearance
CLR
8.12
mm
Minimum External Creepage
CPG
8.24
mm
Minimum Comparative Tracking Index
CTI
175
–
Maximum Repetitive Insulation Voltage
VIORM
1420
VPEAK
Input to output test voltage, method b
VIORM * 1.875 = VPR, 100% production test with tm = 1 sec,
partial discharge < 5 pC
VPR
2663
VPEAK
Input to output test voltage, method a1)
VIORM * 1.6 = VPR, 100% production test with tm = 60 sec,
partial discharge < 5 pC
VPR
2272
VPEAK
Highest Allowable Overvoltage
VIOTM
6000
VPEAK
Maximum Surge Insulation Voltage
VIOSM
6000
V
9
Ω
1)
Insulation Resistance at TS, VIO = 500 V
RIO
> 10
1) Refer to VDE 0884 for a detailed description of Method a and Method b partial discharge test profiles.
6.2
Recognized under UL 1577
Table 15
Recognized under UL 1577
Description
Symbol
Characteristic
Unit
Insulation Withstand Voltage / 1 min
VISO
3750
Vrms
Insulation Test Voltage / 1 s
VISO
4500
Vrms
6.3
Reliability
For Qualification Report please contact your local Infineon Technologies office.
Final Data Sheet
26
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Timing DiagramsReliability
7
Timing Diagrams
All diagrams related to the Two-level switch-off feature
50%
IN+
90%
50%
OUT
10%
TPDON
Figure 6
TRISE
TPDOFF
TFALL
Propagation Delay, Rise and Fall Time
IN+
IN/RST
OUT
Figure 7
Principle Switching Behavior
IN+
V ZDIODE
VTLSET , typ. 7V
TLSET
TPD
TADJ1
V ZDIODE
TTLSET
TPD
TTLFALL
OUT
TPDONADJ
Figure 8
TTLSET
Typical Switching Behavior
Final Data Sheet
27
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Timing DiagramsReliability
IN+
TPDON
OUT
TTLSET
TTLSET
TDESATOUT
TDESATOUT
VDESAT typ. 9V
DESAT
/FLT
TDESATFLT
TDESATFLT
/RST
>TRSTmin
Figure 9
DESAT Switch-OFF Behavior
IN+
TLSET
TPD
TTLSET
TTLSET
OUT
Figure 10
TTLSET
TPDON
TPD
TPDON
TPDOFF
Short Switch ON Pulses
Final Data Sheet
28
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Timing DiagramsReliability
IN+
TLSET
TTLSET
TTLSET
TPD
Figure 11
TPD
TPDOFF
OUT
TTLSET
TPDON
TPDOFF
TPDON
TPDOFF
Short Switch OFF Pulses
IN+
TLSET
TPD
TTLSET
TPDON
OUT
TTLSET
TPDOFF
TTLSET
TPDOFF
TTLSET
TPD
TPDOFF
TPDON
forced turn off after three
consecutive on -cycles
Figure 12
Short Switch OFF Pulses, Ringing Surpression
Final Data Sheet
29
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Timing DiagramsReliability
VUVLOH2
VCC2
IN+
TPDON
OUT
TPDOFF
I DESAT
RDY
Figure 13
VCC2 Ramp Up
VCC2
VUVLOH2
VUVLOL2
TPDD
TPDD
IN+
TPDD
TTLSET
TLSET
Vz
TPDON
OUT
RDY
/FLT
Figure 14
VCC2 Ramp Down and VCC2 Drop
Final Data Sheet
30
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Timing DiagramsReliability
5
TTLSET [usec]
4
3
2
1
0
0
50
100
150
200
C TLSET [pF]
Figure 15
Typical TTLSET Time over CTLSET Capacitance
Final Data Sheet
31
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Package OutlinesReliability
8
Package Outlines
DOCUMENT NO.
Z8B00166131
SCALE
0
1.0
DIM
A
A1
b
c
D
E
E1
e
N
L
h
Ĭ
Figure 16
MILLIMETERS
MAX
MIN
2.64
0.12
0.29
0.48
0.35
0.32
0.23
10.47
10.21
10.41
10.16
7.59
7.42
1.27 BSC
16
0.61
1.02
0.25
0.41
0°
8°
0
INCHES
MAX
0.104
0.011
0.019
0.013
0.412
0.410
0.299
MIN
0.005
0.014
0.009
0.402
0.400
0.292
0.050 BSC
16
0.024
0.010
0°
0.040
0.016
8°
1.0
2mm
EUROPEAN PROJECTION
ISSUE DATE
31.07.2012
REVISION
02
PG-DSO-16-15 (Plastic (Green) Dual Small Outline Package)
Final Data Sheet
32
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-BT
Application NotesReference Layout for Thermal Data
9
Application Notes
9.1
Reference Layout for Thermal Data
The PCB layout shown in Figure 17 represents the reference layout used for the thermal characterisation. Pins 9
and 16 (GND1) and pins 1 and 8 (VEE2) require ground plane connections for achiving maximum power
dissipation. The 1ED020I12-BT is conceived to dissipate most of the heat generated through this pins.
Top Layer
Bottom Layer
Figure 17
Reference Layout for Thermal Data (Copper thickness 102 μm)
9.2
Printed Circuit Board Guidelines
Following factors should be taken into account for an optimum PCB layout.
•
•
•
•
Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits.
The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained
to increase the effective isolation and reduce parasitic coupling.
In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept
as short as possible.
Lowest trace length for VEE2 to GND2 decoupling could be achieved with capacitor closed to pins 1 and 3.
Final Data Sheet
33
Rev 2.0, 2012-07-31
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG