NUP4114UCW1 Transient Voltage Suppressors ESD Protection Diodes with Low Clamping Voltage http://onsemi.com The NUP4114UCW1 transient voltage suppressor is designed to protect high speed data lines from ESD. Ultra−low capacitance and high level of ESD protection makes this device well suited for use in USB 2.0 high speed applications. MARKING DIAGRAM 1 SC−88 W1 SUFFIX CASE 419B Features • Low Capacitance 1.5 pF • Low Clamping Voltage • Small Body Outline Dimensions: • • • • • • 6 X4 MG G 1 X4 = Specific Device Code M = Date Code G = Pb−Free Package (Note: Microdot may be in either location) 0.082″ x 0.078″ (2.10 mm x 1.25 mm) Low Body Height: 0.043″ (1.10 mm) Stand−off Voltage: 5.5 V Low Leakage Response Time is Typically < 1.0 ns IEC61000−4−2 Level 4 ESD Protection This is a Pb−Free Device PIN CONFIGURATION AND SCHEMATIC Mechanical Characteristics: CASE: Void-free, transfer-molded, thermosetting plastic Epoxy Meets UL 94 V−0 LEAD FINISH: 100% Matte Sn (Tin) MOUNTING POSITION: Any QUALIFIED MAX REFLOW TEMPERATURE: 260°C I/O 1 6 I/O VN 2 5 VP I/O 3 4 I/O Device Meets MSL 1 Requirements MAXIMUM RATINGS (TJ = 25°C unless otherwise noted) ORDERING INFORMATION Rating Symbol Value Unit Operating Junction Temperature Range TJ −40 to +125 °C Storage Temperature Range Tstg −55 to +150 °C Lead Solder Temperature − Maximum (10 Seconds) TL 260 °C ±8 ±15 kV IEC 61000−4−2 (ESD) Contact Air Device NUP4114UCW1T2G Package Shipping SC−88 3000/Tape & Reel (Pb−Free) †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. See Application Note AND8308/D for further description of survivability specs. © Semiconductor Components Industries, LLC, 2010 January, 2010 − Rev. 1 1 Publication Order Number: NUP4114UCW1/D NUP4114UCW1 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Symbol I Parameter IF IPP Maximum Reverse Peak Pulse Current VC Clamping Voltage @ IPP VRWM IR VBR Working Peak Reverse Voltage Test Current IF Forward Current VF Forward Voltage @ IF Ppk Peak Power Dissipation V IR VF IT Breakdown Voltage @ IT IT C VC VBR VRWM Maximum Reverse Leakage Current @ VRWM IPP Uni−Directional TVS Capacitance @ VR = 0 and f = 1.0 MHz *See Application Note AND8308/D for detailed explanations of datasheet parameters. ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise specified) Parameter Reverse Working Voltage Breakdown Voltage Symbol VRWM VBR Conditions Min Typ (Note 1) IT = 1 mA, (Note 2) Reverse Leakage Current IR VRWM = 5.5 V Clamping Voltage VC IPP = 1 A (Note 3) Clamping Voltage VC Clamping Voltage Max Unit 5.5 V 6.0 V 1.0 mA 8.0 11 V IPP = 6 A (Note 3) 8.7 15 V VC IPP = 1 A (Note 4) 9.0 12 V ESD Clamping Voltage VC Per IEC61000−4−2 (Note 5) Maximum Peak Pulse Current IPP 8 x 20 ms Waveform (Note 3) 12 A Junction Capacitance CJ VR = 0 V, f = 1 MHz between I/O Pins and GND 3.0 pF Junction Capacitance CJ VR = 0 V, f = 1 MHz between I/O Pins 1.5 pF See Figures 1 & 2 1. TVS devices are normally selected according to the working peak reverse voltage (VRWM), which should be equal or greater than the DC or continuous peak operating voltage level. 2. VBR is measured at pulse test current IT. 3. Nonrepetitive current pulse (Pin 5 to Pin 2). 4. Nonrepetitive current pulse (I/O to GND). 5. For test procedure see Figures 3 and 4 and Application Note AND8307/D. http://onsemi.com 2 NUP4114UCW1 Figure 1. ESD Clamping Voltage Screenshot Positive 8 kV Contact per IEC61000−4−2 Figure 2. ESD Clamping Voltage Screenshot Negative 8 kV Contact per IEC61000−4−2 http://onsemi.com 3 NUP4114UCW1 IEC61000−4−2 Waveform IEC 61000−4−2 Spec. Ipeak Level Test Voltage (kV) First Peak Current (A) Current at 30 ns (A) Current at 60 ns (A) 1 2 7.5 4 2 2 4 15 8 4 3 6 22.5 12 6 4 8 30 16 8 100% 90% I @ 30 ns I @ 60 ns 10% tP = 0.7 ns to 1 ns Figure 3. IEC61000−4−2 Spec ESD Gun Oscilloscope TVS 50 W Cable 50 W Figure 4. Diagram of ESD Test Setup The following is taken from Application Note AND8308/D − Interpretation of Datasheet Parameters for ESD Devices. systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D. ESD Voltage Clamping For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000−4−2 waveform. Since the IEC61000−4−2 was written as a pass/fail spec for larger % OF PEAK PULSE CURRENT 100 PEAK VALUE IRSM @ 8 ms tr 90 PULSE WIDTH (tP) IS DEFINED AS THAT POINT WHERE THE PEAK CURRENT DECAY = 8 ms 80 70 60 HALF VALUE IRSM/2 @ 20 ms 50 40 30 tP 20 10 0 0 20 40 t, TIME (ms) 60 Figure 5. 8 X 20 ms Pulse Waveform http://onsemi.com 4 80 NUP4114UCW1 PACKAGE DIMENSIONS SC−88/SC70−6/SOT−363 CASE 419B−02 ISSUE W D e 6 5 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419B−01 OBSOLETE, NEW STANDARD 419B−02. 4 HE −E− 1 2 3 b 6 PL 0.2 (0.008) M E MILLIMETERS MIN NOM MAX 0.80 0.95 1.10 0.00 0.05 0.10 0.20 REF 0.10 0.21 0.30 0.10 0.14 0.25 1.80 2.00 2.20 1.15 1.25 1.35 0.65 BSC 0.10 0.20 0.30 2.00 2.10 2.20 DIM A A1 A3 b C D E e L HE M A3 INCHES NOM MAX 0.037 0.043 0.002 0.004 0.008 REF 0.004 0.008 0.012 0.004 0.005 0.010 0.070 0.078 0.086 0.045 0.049 0.053 0.026 BSC 0.004 0.008 0.012 0.078 0.082 0.086 MIN 0.031 0.000 C A A1 L SOLDERING FOOTPRINT* 0.50 0.0197 0.65 0.025 0.65 0.025 0.40 0.0157 1.9 0.0748 SCALE 20:1 mm Ǔ ǒinches SC−88/SC70−6/SOT−363 *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 5 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NUP4114UCW1/D