Rev. 1.01, Nov. 2010 K4B2G0446D K4B2G0846D 2Gb D-die DDR3L SDRAM 78FBGA with Lead-Free & Halogen-Free (RoHS compliant) datasheet SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. ⓒ 2010 Samsung Electronics Co., Ltd. All rights reserved. -1- 1.35V Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM Revision History Revision No. History Draft Date Remark Editor 1.0 - First Spec. Release Aug. 2010 - S.H.Kim 1.01 - Corrected typo. Nov. 2010 - S.H.Kim -2- K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM Table Of Contents 2Gb D-die DDR3L SDRAM 1. Ordering Information ..................................................................................................................................................... 5 2. Key Features................................................................................................................................................................. 5 3. Package pinout/Mechanical Dimension & Addressing.................................................................................................. 6 3.1 x4 Package Pinout (Top view) : 78ball FBGA Package .......................................................................................... 6 3.2 x8 Package Pinout (Top view) : 78ball FBGA Package .......................................................................................... 7 3.3 FBGA Package Dimension (x4/x8) .......................................................................................................................... 8 4. Input/Output Functional Description.............................................................................................................................. 9 5. DDR3 SDRAM Addressing ........................................................................................................................................... 10 6. Absolute Maximum Ratings .......................................................................................................................................... 11 6.1 Absolute Maximum DC Ratings............................................................................................................................... 11 6.2 DRAM Component Operating Temperature Range ................................................................................................ 11 7. AC & DC Operating Conditions..................................................................................................................................... 11 7.1 Recommended DC operating Conditions (SSTL_1.5)............................................................................................. 11 8. AC & DC Input Measurement Levels ............................................................................................................................ 12 8.1 AC & DC Logic input levels for single-ended signals .............................................................................................. 12 8.2 VREF Tolerances...................................................................................................................................................... 14 8.3 AC & DC Logic Input Levels for Differential Signals ................................................................................................ 15 8.3.1. Differential signals definition ............................................................................................................................ 15 8.3.2. Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS) .................................................. 15 8.3.3. Single-ended requirements for differential signals ........................................................................................... 17 8.4 Differential Input Cross Point Voltage...................................................................................................................... 18 8.5 Slew rate definition for Differential Input Signals ..................................................................................................... 19 8.6 Slew rate definitions for Differential Input Signals ................................................................................................... 19 9. AC & DC Output Measurement Levels ......................................................................................................................... 19 9.1 Single-ended AC & DC Output Levels..................................................................................................................... 19 9.2 Differential AC & DC Output Levels......................................................................................................................... 19 9.3 Single-ended Output Slew Rate .............................................................................................................................. 20 9.4 Differential Output Slew Rate .................................................................................................................................. 21 9.5 Reference Load for AC Timing and Output Slew Rate ............................................................................................ 21 9.6 Overshoot/Undershoot Specification ....................................................................................................................... 22 9.6.1. Address and Control Overshoot and Undershoot specifications...................................................................... 22 9.6.2. Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications ...................................................... 23 9.7 34ohm Output Driver DC Electrical Characteristics................................................................................................. 23 9.7.1. Output Drive Temperature and Voltage Sensitivity .......................................................................................... 25 9.8 On-Die Termination (ODT) Levels and I-V Characteristics ..................................................................................... 25 9.8.1. ODT DC Electrical Characteristics ................................................................................................................... 26 9.8.2. ODT Temperature and Voltage sensitivity ...................................................................................................... 28 9.9 ODT Timing Definitions ........................................................................................................................................... 29 9.9.1. Test Load for ODT Timings .............................................................................................................................. 29 9.9.2. ODT Timing Definitions .................................................................................................................................... 29 10. IDD Current Measure Method..................................................................................................................................... 32 10.1 IDD Measurement Conditions ............................................................................................................................... 32 11. 2Gb DDR3 SDRAM D-die IDD Specification Table .................................................................................................... 41 12. Input/Output Capacitance ........................................................................................................................................... 42 13. Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 ...................................................................... 43 13.1 Clock Specification ................................................................................................................................................ 43 13.1.1. Definition for tCK(avg).................................................................................................................................... 43 13.1.2. Definition for tCK(abs).................................................................................................................................... 43 13.1.3. Definition for tCH(avg) and tCL(avg) .............................................................................................................. 43 13.1.4. Definition for note for tJIT(per), tJIT(per, Ick) ................................................................................................. 43 13.1.5. Definition for tJIT(cc), tJIT(cc, Ick) ................................................................................................................. 43 13.1.6. Definition for tERR(nper) ................................................................................................................................ 43 13.2 Refresh Parameters by Device Density................................................................................................................. 44 13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ................................................................. 44 13.3.1. Speed Bin Table Notes .................................................................................................................................. 47 -3- K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 14. Timing Parameters by Speed Grade .......................................................................................................................... 48 14.1 Jitter Notes ............................................................................................................................................................ 51 14.2 Timing Parameter Notes........................................................................................................................................ 52 14.3 Address/Command Setup, Hold and Derating : .................................................................................................... 53 14.4 Data Setup, Hold and Slew Rate Derating : .......................................................................................................... 59 -4- Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 1. Ordering Information [ Table 1 ] Samsung 2Gb DDR3L D-die ordering information table Organization DDR3L-1066 (7-7-7) DDR3L-1333 (9-9-9)3 DDR3L-1600 (11-11-11)2 Package 512Mx4 K4B2G0446D-HYF8 K4B2G0446D-HYH9 K4B2G0446D-HYK0 78 FBGA 256Mx8 K4B2G0846D-HYF8 K4B2G0846D-HYH9 K4B2G0846D-HYK0 78 FBGA NOTE : 1. Speed bin is in order of CL-tRCD-tRP. 2. Backward compatible to DDR3L-1333(9-9-9), DDR3L-1066(7-7-7) 3. Backward compatible to DDR3L-1066(7-7-7) 2. Key Features [ Table 2 ] 2Gb DDR3 D-die Speed bins Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 6-6-6 7-7-7 9-9-9 11-11-11 Unit tCK(min) 2.5 1.875 1.5 1.25 ns CAS Latency 6 7 9 11 nCK tRCD(min) 15 13.125 13.5 13.75 ns tRP(min) 15 13.125 13.5 13.75 ns tRAS(min) 37.5 37.5 36 35 ns tRC(min) 52.5 50.625 49.5 48.75 ns • JEDEC standard 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V) The 2Gb DDR3 SDRAM D-die is organized as a 64Mbit x 4 I/Os x 8banks, • VDDQ = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V) 32Mbit x 8 I/Os x 8banks device. This synchronous device achieves high • 400 MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin speed double-data-rate transfer rates of up to 1600Mb/sec/pin (DDR3- • 8 Banks • Programmable CAS Latency(posted CAS): 5,6,7,8,9,10,11 • Programmable Additive Latency: 0, CL-2 or CL-1 clock • Programmable CAS Write Latency (CWL) = 5(DDR3-800), 6(DDR3-1066), 7(DDR3-1333) and 8(DDR3-1600) • 8-bit pre-fetch • Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS] 1600) for general applications. The chip is designed to comply with the following key DDR3 SDRAM features such as posted CAS, Programmable CWL, Internal (Self) Calibration, On Die Termination using ODT pin and Asynchronous Reset . All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the crosspoint of differential clocks (CK rising and CK falling). All I/Os are synchronized with a pair of bidirectional strobes (DQS and DQS) in a source synchronous fashion. The address bus is used to convey row, column, and bank address information in a RAS/CAS multiplexing style. The DDR3 device operates • Bi-directional Differential Data-Strobe with a single 1.35V(1.28V~1.45V) or 1.5V(1.425V~1.575V) power supply • Internal(self) calibration : Internal self calibration through ZQ pin (RZQ : 240 ohm ± 1%) and 1.35V(1.28V~1.45V) or 1.5V(1.425V~1.575V). The 2Gb DDR3 D-die device is available in 78ball FBGAs(x4/x8) • On Die Termination using ODT pin • Average Refresh Period 7.8us at lower than TCASE 85°C, 3.9us at 85°C < TCASE < 95 °C • Asynchronous Reset • Package : 78 balls FBGA - x4/x8 • All of Lead-Free products are compliant for RoHS • All of products are Halogen-free NOTE : 1. This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in “DDR3 SDRAM Device Operation & Timing Diagram”. 2. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. -5- Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 3. Package pinout/Mechanical Dimension & Addressing 3.1 x4 Package Pinout (Top view) : 78ball FBGA Package 1 2 3 A VSS VDD B VSS C VDDQ D VSSQ E VREFDQ F NC VSS G ODT VDD H NC CS J VSS K 4 5 6 7 8 9 NC NC VSS VDD A VSSQ DQ0 DM VSSQ VDDQ B DQ2 DQS DQ1 DQ3 VSSQ C NC DQS VDD VSS VSSQ D VDDQ NC NC NC VDDQ E RAS CK VSS NC F CAS CK VDD CKE G WE A10/AP ZQ NC H BA0 BA2 NC VREFCA VSS J VDD A3 A0 A12/BC BA1 VDD K L VSS A5 A2 A1 A4 VSS L M VDD A7 A9 A11 A6 VDD M N VSS RESET A13 A14 A8 VSS N 1 Ball Locations (x4) A B C Populated ball Ball not populated D E F G H Top view (See the balls through the package) J K L M N -6- 2 3 4 5 6 7 8 9 Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 3.2 x8 Package Pinout (Top view) : 78ball FBGA Package 1 2 3 NC A VSS VDD B VSS VSSQ C VDDQ DQ2 DQS 4 5 6 7 8 9 NU/TDQS VSS VDD A DQ0 DM/TDQS VSSQ VDDQ B DQS DQ1 DQ3 VSSQ C VDD VSS VSSQ D E D VSSQ DQ6 E VREFDQ VDDQ DQ4 DQ7 DQ5 VDDQ F NC VSS RAS CK VSS NC F G ODT VDD CAS CK VDD CKE G H NC CS WE A10/AP ZQ NC H J VSS BA0 BA2 NC VREFCA VSS J K VDD A3 A0 A12/BC BA1 VDD K L VSS A5 A2 A1 A4 VSS L M VDD A7 A9 A11 A6 VDD M N VSS RESET A13 A14 A8 VSS N 1 Ball Locations (x8) A B C Populated ball Ball not populated D E F G H Top view (See the balls through the package) J K L M N -7- 2 3 4 5 6 7 8 9 Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 3.3 FBGA Package Dimension (x4/x8) Units : Millimeters 7.50 ± 0.10 #A1 INDEX MARK 3.20 1.60 B 0.80 0.80 (Datum B) 4.80 A B C D E F G H J K L M N (0.95) 78 - ∅0.45 Solder ball (Post Reflow ∅0.50 ± 0.05) 0.2 M A B 0.80 x 12 = 9.60 9 8 7 6 5 4 3 2 1 11.00 ± 0.10 0.80 (Datum A) A MOLDING AREA (1.90) 0.10MAX BOTTOM VIEW 7.50 ± 0.10 11.00 ± 0.10 #A1 0.35 ± 0.05 1.10 ± 0.10 TOP VIEW -8- datasheet K4B2G0446D K4B2G0846D Rev. 1.01 DDR3L SDRAM 4. Input/Output Functional Description [ Table 3 ] Input/Output function description Symbol Type Function CK, CK Input Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After VREFCA has become CKE Input CS Input Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on systems with multiple Ranks. CS is considered part of the command code. ODT Input On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is programmed to disable ODT. RAS, CAS, WE Input Command Inputs: RAS, CAS and WE (along with CS) define the command being entered. DM (DMU), (DML) Input Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1. BA0 - BA2 Input Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines if the mode register or extended mode register is to be accessed during a MRS cycle. Input Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions, see below) The address inputs also provide the op-code during Mode Register Set commands. A10 / AP Input Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge) A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses. A12 / BC Input Burst Chop:A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be performed. (HIGH : no burst chop, LOW : burst chopped). See command truth table for details RESET Input Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH. RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD, i.e. DQ Input/Output Data Input/ Output: Bi-directional data bus. Input/Output Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, DQSL: corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS, DQSL and DQSU are paired with differential signals DQS, DQSL and DQSU, respectively, to provide differential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and does not support single-ended. Output Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4/ x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1. A0 - A14 DQS, (DQS) TDQS, (TDQS) NC stable during the power on and initialization sequence, it must be maintained during all operations (including SelfRefresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self -Refresh. No Connect: No internal electrical connection is present. VDDQ Supply DQ Power Supply: 1.35V(1.28V~1.45V) or & 1.5V(1.425V~1.575V) VSSQ Supply DQ Ground VDD Supply Power Supply: 1.35V(1.28V~1.45V) or & 1.5V(1.425V~1.575V) VSS Supply Ground VREFDQ Supply Reference voltage for DQ VREFCA Supply Reference voltage for CA ZQ Supply Reference Pin for ZQ calibration NOTE : Input only pins (BA0-BA2, A0-A14, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination. -9- Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 5. DDR3 SDRAM Addressing 1Gb Configuration 256Mb x 4 128Mb x 8 64Mb x 16 # of Bank 8 8 8 Bank Address BA0 - BA2 BA0 - BA2 BA0 - BA2 Auto precharge A10/AP A10/AP A10/AP Row Address A0 - A13 A0 - A13 A0 - A12 Column Address A0 - A9,A11 A0 - A 9 A 0 - A9 BC switch on the fly A12/BC A12/BC A12/BC Page size *1 1 KB 1 KB 2 KB Configuration 512Mb x 4 256Mb x 8 128Mb x 16 2Gb # of Bank 8 8 8 Bank Address BA0 - BA2 BA0 - BA2 BA0 - BA2 Auto precharge A10/AP A10/AP A10/AP Row Address A0 - A14 A0 - A14 A0 - A13 Column Address A0 - A9,A11 A0 - A 9 A 0 - A9 BC switch on the fly A12/BC A12/BC A12/BC Page size *1 1 KB 1 KB 2 KB Configuration 1Gb x 4 512Mb x 8 256Mb x 16 # of Bank 8 8 8 Bank Address BA0 - BA2 BA0 - BA2 BA0 - BA2 Auto precharge A10/AP A10/AP A10/AP 4Gb Row Address A0 - A15 A0 - A15 A0 - A14 Column Address A0 - A9,A11 A0 - A 9 A 0 - A9 BC switch on the fly A12/BC A12/BC A12/BC 1 KB 1 KB 2 KB Configuration 2Gb x 4 1Gb x 8 512Mb x 16 # of Bank 8 8 8 Bank Address BA0 - BA2 BA0 - BA2 BA0 - BA2 Auto precharge A10/AP A10/AP A10/AP Page size *1 8Gb Row Address A0 - A15 A0 - A15 A0 - A15 Column Address A0 - A9,A11,A13 A0 - A9,A11 A 0 - A9 BC switch on the fly A12/BC A12/BC A12/BC 2 KB 2 KB 2 KB Page size *1 NOTE 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered. Page size is per bank, calculated as follows: page size = 2 COLBITS * ORG÷8 where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits - 10 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 6. Absolute Maximum Ratings 6.1 Absolute Maximum DC Ratings [ Table 4 ] Absolute Maximum DC Ratings Symbol Parameter Rating Units NOTE VDD Voltage on VDD pin relative to Vss -0.4 V ~ 1.975 V V 1,3 VDDQ Voltage on VDDQ pin relative to Vss -0.4 V ~ 1.975 V V 1,3 VIN, VOUT Voltage on any pin relative to Vss -0.4 V ~ 1.975 V V 1 TSTG Storage Temperature -55 to +100 °C 1, 2 NOTE : 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. 6.2 DRAM Component Operating Temperature Range [ Table 5 ] Temperature Range Symbol Parameter rating Unit NOTE TOPER Operating Temperature Range 0 to 95 °C 1, 2, 3 NOTE : 1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions 3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range. 7. AC & DC Operating Conditions 7.1 Recommended DC operating Conditions (SSTL_1.5) [ Table 6 ] Recommended DC Operating Conditions Symbol VDD VDDQ Parameter Supply Voltage Supply Voltage for Output Operation Voltage Rating Min. Typ. 1.35V 1.283 1.35 1.5V 1.425 1.5 1.35V 1.283 1.35 1.5V 1.425 1.5 NOTE : 1. Under all conditions VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. 3. VDD & VDDQ rating are determined by operation voltage. - 11 - Units Notes 1.45 V 1, 2, 3 1.575 V 1, 2, 3 1.45 V 1, 2, 3 1.575 V 1, 2, 3 Max. Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 8. AC & DC Input Measurement Levels 8.1 AC & DC Logic input levels for single-ended signals [ Table 7 ] Single-ended AC & DC input levels for Command and Address Symbol Parameter DDR3-800/1066/1333/1600 Min. Max. Unit NOTE 1.35V VIH.CA(DC90) DC input logic high VREF + 90 VDD mV 1,5a) VIL.CA(DC90) DC input logic low VSS VREF - 90 mV 1,6a) VREF + 160 Note 2 mV 1,2 VIL.CA(AC160) AC input logic low Note 2 VREF - 160 mV 1,2 VIH.CA(AC135) AC input logic high VREF+135 Note 2 mV 1,2 Note 2 VREF-135 mV 1,2 0.49*VDD 0.51*VDD V 3,4 VIH.CA(AC160) AC input logic high VIL.CA(AC135) AC input logic lowM VREFCA(DC) Reference Voltage for ADD, CMD inputs 1.5V VIH.CA(DC100) DC input logic high VREF + 100 VDD mV 1,5b) VIL.CA(DC100) DC input logic low VSS VREF - 100 mV 1,6b) VIH.CA(AC175) AC input logic high VREF + 175 Note 2 mV 1,2,7 VIL.CA(AC175) AC input logic low Note 2 VREF - 175 mV 1,2,8 VIH.CA(AC150) AC input logic high VREF+150 Note 2 mV 1,2,7 VIL.CA(AC150) AC input logic low Note 2 VREF-150 mV 1,2,8 0.49*VDD 0.51*VDD V 3,4 VREFCA(DC) Reference Voltage for ADD, CMD inputs NOTE : 1. For input only pins except RESET, VREF = VREFCA(DC) 2. See "Overshoot and Undershoot specifications" section. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV 5. VIH(dc) is used as a simplified symbol for VIH.CA(a) 1.35V : DC90, b) 1.5V : DC100) 6. VIL(dc) is used as a simplified symbol for VIL.CA(a) 1.35V : DC90, b) 1.5V : DC100) 7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175) and VIH.CA(AC150); VIH.CA(AC175) value is used when VREF + 175mV is referenced and VIH.CA(AC150) value is used when VREF + 150mV is referenced. 8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175) and VIL.CA(AC150); VIL.CA(AC175) value is used when VREF - 175mV is referenced and VIL.CA(AC150) value is used when VREF - 150mV is referenced. - 12 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM [ Table 8 ] Single-ended AC & DC input levels for DQ and DM Symbol Parameter DDR3-800/1066 Min. DDR3-1333/1600 Max. Min. Max. Unit NOTE 1.35V VIH.DQ(DC90) DC input logic high VREF + 90 VDD VREF + 90 VDD mV 1,5a) VSS VREF - 90 VSS VREF - 90 mV 1,6a) VIH.DQ(AC160) AC input logic high VREF + 160 Note 2 - - mV 1,2 VIL.DQ(AC160) AC input logic low Note 2 VREF - 160 - - mV 1,2 VIH.DQ(AC135) AC input logic high VREF + 135 Note 2 VREF + 135 Note 2 mV 1,2 VIL.DQ(AC135) AC input logic low Note 2 VREF - 135 Note 2 VREF - 135 mV 1,2 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 3,4 VIL.DQ(DC90) VREFDQ(DC) DC input logic low Reference Voltage for DQ, DM inputs 1.5V VIH.DQ(DC100) DC input logic high VREF + 100 VDD VREF + 100 VDD mV 1,5b) VIL.DQ(DC100) DC input logic low VSS VREF - 100 VSS VREF - 100 mV 1,6b) VIH.DQ(AC175) AC input logic high VREF + 175 NOTE 2 - - mV 1,2,7 VIL.DQ(AC175) AC input logic low NOTE 2 VREF - 175 - - mV 1,2,8 VIH.DQ(AC150) AC input logic high VREF + 150 NOTE 2 VREF + 150 NOTE 2 mV 1,2,7 VIL.DQ(AC150) AC input logic low NOTE 2 VREF - 150 NOTE 2 VREF - 150 mV 1,2,8 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 3,4 VREFDQ(DC) Reference Voltage for DQ, DM inputs NOTE : 1. For input only pins except RESET, VREF = VREFDQ(DC) 2. See ’Overshoot/Undershoot Specification’ on page 22. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV 5. VIH(dc) is used as a simplified symbol for VIH.CA(a) 1.35V : DC90, b) 1.5V : DC100) 6. VIL(dc) is used as a simplified symbol for VIL.CA(a) 1.35V : DC90, b) 1.5V : DC100) 7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150) ; VIH.DQ(AC175) value is used when VREF + 175mV is referenced, VIH.DQ(AC150) value is used when VREF + 150mV is referenced. 8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150) ; VIL.DQ(AC175) value is used when VREF - 175mV is referenced, VIL.DQ(AC150) value is used when VREF - 150mV is referenced. - 13 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 8.2 VREF Tolerances The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 1. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise). VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7 on page 12. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD. voltage VDD VSS time Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF. "VREF" shall be understood as VREF(DC), as defined in Figure 1 . This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings. - 14 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 8.3 AC & DC Logic Input Levels for Differential Signals 8.3.1 Differential signals definition tDVAC Differential Input Voltage (i.e. DQS-DQS, CK-CK) VIH.DIFF.AC.MIN VIH.DIFF.MIN 0.0 half cycle VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC time Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC 8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS) [ Table 9 ] Differential AC & DC Input Levels DDR3-800/1066/1333/1600 Symbol Parameter 1.35V 1.5V min max min max unit NOTE VIHdiff differential input high +0.18 NOTE 3 +0.20 NOTE 3 V 1 VILdiff differential input low NOTE 3 -0.18 NOTE 3 -0.20 V 1 VIHdiff(AC) differential input high ac 2 x (VIH(AC) - VREF) NOTE 3 2 x (VIH(AC) - VREF) NOTE 3 V 2 NOTE 3 2 x (VIL(AC) - VREF) NOTE 3 2 x (VIL(AC) - VREF) V 2 VILdiff(AC) differential input low ac NOTE : 1. Used to define a differential signal slew-rate. 2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification" - 15 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM [ Table 10 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.35V) Slew Rate [V/ns] tDVAC [ps] @ |VIH/Ldiff(AC)| = 320mV tDVAC [ps] @ |VIH/Ldiff(AC)| = 270mV min max min max > 4.0 TBD - TBD - 4.0 TBD - TBD - 3.0 TBD - TBD - 2.0 TBD - TBD - 1.8 TBD - TBD - 1.6 TBD - TBD - 1.4 TBD - TBD - 1.2 TBD - TBD - 1.0 TBD - TBD - < 1.0 TBD - TBD - [ Table 11 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.5V) Slew Rate [V/ns] tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV min max min max > 4.0 75 - 175 - 4.0 57 - 170 - 3.0 50 - 167 - 2.0 38 - 163 - 1.8 34 - 162 - 1.6 29 - 161 - 1.4 22 - 159 - 1.2 13 - 155 - 1.0 0 - 150 - < 1.0 0 - 150 - - 16 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 8.3.3 Single-ended requirements for differential signals Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for single-ended signals. CK and CK have to approximately reach VSEHmin / VSELmax [approximately equal to the ac-levels { VIH(AC) / VIL(AC)} for ADD/CMD signals] in every half-cycle. DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax [approximately the ac-levels { VIH(AC) / VIL(AC)} for DQ signals] in every half-cycle proceeding and following a valid transition. Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and CK . VDD or VDDQ VSEH min VSEH VDD/2 or VDDQ/2 CK or DQS VSEL max VSEL VSS or VSSQ time Figure 3. Single-ended requirement for differential signals Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. [ Table 12 ] Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU Symbol VSEH VSEL Parameter DDR3-800/1066/1333/1600 Min Max Unit NOTE Single-ended high-level for strobes (VDD/2)+0.175 NOTE3 V 1, 2 Single-ended high-level for CK, CK (VDD/2)+0.175 NOTE3 V 1, 2 Single-ended low-level for strobes NOTE3 (VDD/2)-0.175 V 1, 2 Single-ended low-level for CK, CK NOTE3 (VDD/2)-0.175 V 1, 2 NOTE : 1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL(AC) of DQs. 2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here 3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification" - 17 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 8.4 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to the mid level between of VDD and VSS. VDD CK, DQS VIX VDD/2 VIX VIX CK, DQS VSS Figure 4. VIX Definition [ Table 13 ] Cross point voltage for differential input signals (CK, DQS) : 1.35V Symbol DDR3L-800/1066/1333/1600 Parameter Min Max Unit NOTE 1 VIX Differential Input Cross Point Voltage relative to VDD/2 for CK,CK -150 150 mV VIX Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS -150 150 mV NOTE : 1. The relationbetween Vix Min/Max and VSEL/VSEH should satisfy following. (VDD/2) + Vix(Min) - VSEL ≥ 25mV VSEH - ((VDD/2) + Vix(Max)) ≥ 25mV [ Table 14 ] Cross point voltage for differential input signals (CK, DQS) : 1.5V Symbol DDR3-800/1066/1333/1600 Parameter VIX Differential Input Cross Point Voltage relative to VDD/2 for CK,CK VIX Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS Unit Min Max -150 150 mV -175 175 mV -150 150 mV NOTE 1 NOTE : 1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2 ±250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. - 18 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 8.5 Slew rate definition for Differential Input Signals See 14.3 “Address/Command Setup, Hold and Derating :” on page 50 for single-ended slew rate definitions for address and command signals. See 14.4 “Data Setup, Hold and Slew Rate Derating :” on page 56 for single-ended slew rate definitions for data signals. 8.6 Slew rate definitions for Differential Input Signals Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in Table 15 and Figure 5. [ Table 15 ] Differential input slew rate definition Measured Description Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) Defined by From To VILdiffmax VIHdiffmin VIHdiffmin VIHdiffmin - VILdiffmax Delta TRdiff VIHdiffmin - VILdiffmax VILdiffmax Delta TFdiff NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds. VIHdiffmin 0 VILdiffmax delta TRdiff delta TFdiff Figure 5. Differential Input Slew Rate definition for DQS, DQS, and CK, CK 9. AC & DC Output Measurement Levels 9.1 Single-ended AC & DC Output Levels [ Table 16 ] Single-ended AC & DC output levels Symbol Parameter DDR3-800/1066/1333/1600 Units NOTE VOH(DC) DC output high measurement level (for IV curve linearity) 0.8 x VDDQ V VOM(DC) DC output mid measurement level (for IV curve linearity) 0.5 x VDDQ V VOL(DC) DC output low measurement level (for IV curve linearity) 0.2 x VDDQ V VOH(AC) AC output high measurement level (for output SR) VTT + 0.1 x VDDQ V 1 VOL(AC) AC output low measurement level (for output SR) VTT - 0.1 x VDDQ V 1 NOTE : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2. 9.2 Differential AC & DC Output Levels [ Table 17 ] Differential AC & DC output levels Symbol Parameter DDR3-800/1066/1333/1600 Units NOTE VOHdiff(AC) AC differential output high measurement level (for output SR) +0.2 x VDDQ V 1 VOLdiff(AC) AC differential output low measurement level (for output SR) -0.2 x VDDQ V 1 NOTE : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2 at each of the differential outputs. - 19 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 9.3 Single-ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in Table 18 and Figure 6. [ Table 18 ] Single-ended output slew rate definition Measured Description Single ended output slew rate for rising edge From To VOL(AC) VOH(AC) VOH(AC) Single ended output slew rate for falling edge Defined by VOH(AC)-VOL(AC) Delta TRse VOH(AC)-VOL(AC) VOL(AC) Delta TFse NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test. [ Table 19 ] Single-ended output slew rate Parameter Single ended output slew rate Symbol SRQse DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Operation Voltage Min Max Min Max Min Max Min Max 1.35V 1.75 51) 1.75 51) 1.75 51) 1.75 51) V/ns 1.5V 2.5 5 2.5 5 2.5 5 2.5 5 V/ns Units Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output) se : Single-ended Signals For Ron = RZQ/7 setting NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane. - Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ signals in the same byte lane are static (i.e they stay at either high or low). - Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies. VOH(AC) VTT VOL(AC) delta TFse delta TRse Figure 6. Single-ended Output Slew Rate Definition - 20 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 9.4 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table 20 and Figure 7. [ Table 20 ] Differential output slew rate definition Measured Description From To Differential output slew rate for rising edge VOLdiff(AC) VOHdiff(AC) Differential output slew rate for falling edge VOHdiff(AC) VOLdiff(AC) Defined by VOHdiff(AC)-VOLdiff(AC) Delta TRdiff VOHdiff(AC)-VOLdiff(AC) Delta TFdiff NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test. [ Table 21 ] Differential output slew rate Parameter Single ended output slew rate Symbol SRQdiff DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Operation Voltage Min Max Min Max Min Max Min Max 1.35V 3.5 12 3.5 12 3.5 12 3.5 12 V/ns 1.5V 5 10 5 10 5 10 5 10 V/ns Units Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output) diff : Differential Signals For Ron = RZQ/7 setting VOHdiff(AC) VTT VOLdiff(AC) delta TFdiff delta TRdiff Figure 7. Differential Output Slew Rate Definition 9.5 Reference Load for AC Timing and Output Slew Rate Figure 8 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements. It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. VDDQ CK/CK DUT DQ DQS DQS VTT = VDDQ/2 25Ω Reference Point Figure 8. Reference Load for AC Timing and Output Slew Rate - 21 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 9.6 Overshoot/Undershoot Specification 9.6.1 Address and Control Overshoot and Undershoot specifications [ Table 22 ] AC overshoot/undershoot specification for Address and Control pins (A0-A12, BA0-BA2. CS. RAS. CAS. WE. CKE, ODT) Specification Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Unit 1.35V Maximum peak amplitude allowed for overshoot area (See Figure 9) TBD TBD TBD TBD V Maximum peak amplitude allowed for undershoot area (See Figure 9) TBD TBD TBD TBD V Maximum overshoot area above VDD (See Figure 9) TBD TBD TBD TBD V-ns Maximum undershoot area below VSS (See Figure 9) TBD TBD TBD TBD V-ns 0.4V 0.4V 0.4V V 1.5V Maximum peak amplitude allowed for overshoot area (See Figure 9) Maximum peak amplitude allowed for undershoot area (See Figure 9) 0.4V 0.4V 0.4V 0.4V 0.4V V Maximum overshoot area above VDD (See Figure 9) 0.67V-ns 0.5V-ns 0.4V-ns 0.33V-ns V-ns Maximum undershoot area below VSS (See Figure 9) 0.67V-ns 0.5V-ns 0.4V-ns 0.33V-ns V-ns Maximum Amplitude Volts (V) Overshoot Area VDD VSS Maximum Amplitude Undershoot Area Time (ns) Figure 9. Address and Control Overshoot and Undershoot Definition - 22 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications [ Table 23 ] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask (DQ, DQS, DQS, DM, CK, CK) Specification Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 TBD TBD TBD Unit 1.35V Maximum peak amplitude allowed for overshoot area (See Figure 10) TBD V Maximum peak amplitude allowed for undershoot area (See Figure 10) TBD TBD TBD TBD V Maximum overshoot area above VDDQ (See Figure 10) TBD TBD TBD TBD V-ns Maximum undershoot area below VSSQ (See Figure 10) TBD TBD TBD TBD V-ns 1.5V Maximum peak amplitude allowed for overshoot area (See Figure 10) 0.4V 0.4V 0.4V 0.4V V Maximum peak amplitude allowed for undershoot area (See Figure 10) 0.4V 0.4V 0.4V 0.4V V Maximum overshoot area above VDDQ (See Figure 10) 0.25V-ns 0.19V-ns 0.15V-ns 0.13V-ns V-ns Maximum undershoot area below VSSQ (See Figure 10) 0.25V-ns 0.19V-ns 0.15V-ns 0.13V-ns V-ns Maximum Amplitude Volts (V) Overshoot Area VDDQ VSSQ Undershoot Area Maximum Amplitude Time (ns) Figure 10. Clock, Data, Strobe and Mask Overshoot and Undershoot Definition 9.7 34ohm Output Driver DC Electrical Characteristics A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ as follows: RON34 = RZQ/7 (Nominal 34.3ohms +/- 10% with nominal RZQ=240ohm) The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows RONpu = RONpd = VDDQ-VOUT under the condition that RONpd is turned off l Iout l VOUT under the condition that RONpu is turned off l Iout l Output Driver VDDQ Ipu To other circuity RON Pu DQ Iout RON Pd Vout Ipd VSSQ Figure 11. Output Driver : Definition of Voltages and Currents - 23 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM [ Table 24 ] Output Driver DC Electrical Characteristics, assuming RZQ=240ohms ; entire operating temperature range ; after proper ZQ calibration RONnom Resistor Vout Min Nom Max Units Notes 1.35V RON34pd 34Ohms RON34pu RON40pd 40Ohms RON40pu Mismatch between Pull-up and Pull-down, MMpupd VOLdc = 0.2 x VDDQ 0.6 1.0 1.15 1,2,3 VOMdc = 0.5 x VDDQ 0.9 1.0 1.15 1,2,3 VOHdc = 0.8 x VDDQ 0.9 1.0 1.45 VOLdc = 0.2 x VDDQ 0.9 1.0 1.45 VOMdc = 0.5 x VDDQ 0.9 1.0 1.15 1,2,3 VOHdc = 0.8 x VDDQ 0.6 1.0 1.15 1,2,3 VOLdc = 0.2 x VDDQ 0.6 1.0 1.15 1,2,3 VOMdc = 0.5 x VDDQ 0.9 1.0 1.15 1,2,3 VOHdc = 0.8 x VDDQ 0.9 1.0 1.45 RZQ/7 RZQ/6 1,2,3 1,2,3 1,2,3 VOLdc = 0.2 x VDDQ 0.9 1.0 1.45 VOMdc = 0.5 x VDDQ 0.9 1.0 1.15 1,2,3 VOHdc = 0.8 x VDDQ 0.6 1.0 1.15 1,2,3 VOMdc = 0.5 x VDDQ -10 10 % 1,2,3 1,2,4 1.5V RON34pd 34Ohms RON34pu RON40pd 40Ohms RON40pu Mismatch between Pull-up and Pull-down, MMpupd VOLdc = 0.2 x VDDQ 0.6 1.0 1.1 1,2,3 VOMdc = 0.5 x VDDQ 0.9 1.0 1.1 1,2,3 VOHdc = 0.8 x VDDQ 0.9 1.0 1.4 RZQ/7 1,2,3 VOLdc = 0.2 x VDDQ 0.9 1.0 1.4 VOMdc = 0.5 x VDDQ 0.9 1.0 1.1 1,2,3 VOHdc = 0.8 x VDDQ 0.6 1.0 1.1 1,2,3 VOLdc = 0.2 x VDDQ 0.6 1.0 1.1 1,2,3 VOMdc = 0.5 x VDDQ 0.9 1.0 1.1 1,2,3 VOHdc = 0.8 x VDDQ 0.9 1.0 1.4 VOLdc = 0.2 x VDDQ 0.9 1.0 1.4 VOMdc = 0.5 x VDDQ 0.9 1.0 1.1 1,2,3 VOHdc = 0.8 x VDDQ 0.6 1.0 1.1 1,2,3 VOMdc = 0.5 x VDDQ -10 10 RZQ/6 % 1,2,3 1,2,3 1,2,3 1,2,4 NOTE : 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity 2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS 3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X VDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 X VDDQ and 0.8 X VDDQ 4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X VDDQ: MMpupd = RONpu - RONpd RONnom x 100 - 24 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 9.7.1 Output Drive Temperature and Voltage Sensitivity If temperature and/or voltage change after calibration, the tolerance limits widen according to Table 25 and Table 26. ∆T = T - T(@calibration); ∆V = VDDQ - VDDQ (@calibration); VDD = VDDQ *dRONdT and dRONdV are not subject to production test but are verified by design and characterization [ Table 25 ] Output Driver Sensitivity Definition Min Max Units RONPU@VOHDC 0.6 - dRONdTH * |∆T| - dRONdVH * |∆V| 1.1 + dRONdTH * |∆T| + dRONdVH * |∆V| RZQ/7 RON@VOMDC 0.9 - dRONdTM * |∆T| - dRONdVM * |∆V| 1.1 + dRONdTM * |∆T| + dRONdVM * |∆V| RZQ/7 RONPD@VOLDC 0.6 - dRONdTL * |∆T| - dRONdVL * |∆V| 1.1 + dRONdTL * |∆T| + dRONdVL * |∆V| RZQ/7 [ Table 26 ] Output Driver Voltage and Temperature Sensitivity Speed Bin 800/1066/1333 1600 Units Min Max Min Max dRONdTM 0 1.5 0 1.5 %/°C dRONdVM 0 0.15 0 0.13 %/mV dRONdTL 0 1.5 0 1.5 %/°C dRONdVL 0 0.15 0 0.13 %/mV dRONdTH 0 1.5 0 1.5 %/°C dRONdVH 0 0.15 0 0.13 %/mV 9.8 On-Die Termination (ODT) Levels and I-V Characteristics On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register. ODT is applied to the DQ,DM, DQS/DQS and TDQS,TDQS (x8 devices only) pins. A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd) are defined as follows : RTTpu = RTTpd = VDDQ-VOUT under the condition that RTTpd is turned off l Iout l VOUT under the condition that RTTpu is turned off l Iout l Chip in Termination Mode ODT VDDQ Ipu To other circuitry like RCV, ... RTT Iout=Ipd-Ipu Pu DQ RTT Iout Pd VOUT Ipd VSSQ Figure 12. On-Die Termination : Definition of Voltages and Currents - 25 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 9.8.1 ODT DC Electrical Characteristics Table 27 provides and overview of the ODT DC electrical characteristics. They values for RTT60pd120, RTT60pu120, RTT120pd240, RTT120pu240, RTT40pd80, RTT40pu80, RTT30pd60, RTT30pu60, RTT20pd40, RTT20pu40 are not specification requirements, but can be used as design guide lines: [ Table 27 ] ODT DC Electrical Characteristics, assuming RZQ=240ohm +/- 1% entire operating temperature range; after proper ZQ calibration 1.35V MR1 (A9,A6,A2) RTT RESISTOR RTT120pd240 (0,1,0) 120 ohm RTT120pu240 RTT120 RTT60pd120 (0,0,1) 60 ohm RTT60pu120 RTT60 RTT40pd80 (0,1,1) 40 ohm RTT40pu80 RTT40 RTT30pd60 (1,0,1) 30 ohm RTT30pu60 RTT30 Vout Min Nom Max Unit Notes VOL(DC) 0.2XVDDQ 0.6 1.0 1.15 RZQ 1,2,3,4 0.5XVDDQ 0.9 1.0 1.15 RZQ 1,2,3,4 VOH(DC) 0.8XVDDQ 0.9 1.0 1.45 RZQ 1,2,3,4 VOL(DC) 0.2XVDDQ 0.9 1.0 1.45 RZQ 1,2,3,4 0.5XVDDQ 0.9 1.0 1.15 RZQ 1,2,3,4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.15 RZQ 1,2,3,4 1,2,5 VIL(AC) to VIH(AC) 0.9 1.0 1.65 RZQ/2 VOL(DC) 0.2XVDDQ 0.6 1.0 1.15 RZQ/2 1,2,3,4 0.5XVDDQ 0.9 1.0 1.15 RZQ/2 1,2,3,4 VOH(DC) 0.8XVDDQ 0.9 1.0 1.45 RZQ/2 1,2,3,4 VOL(DC) 0.2XVDDQ 0.9 1.0 1.45 RZQ/2 1,2,3,4 0.5XVDDQ 0.9 1.0 1.15 RZQ/2 1,2,3,4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.15 RZQ/2 1,2,3,4 1.65 RZQ/4 1,2,5 1,2,3,4 VIL(AC) to VIH(AC) (1,0,0) 20 ohm RTT20pu40 RTT20 1.0 0.6 1.0 1.15 RZQ/3 0.5XVDDQ 0.9 1.0 1.15 RZQ/3 1,2,3,4 VOH(DC) 0.8XVDDQ 0.9 1.0 1.45 RZQ/3 1,2,3,4 VOL(DC) 0.2XVDDQ 0.9 1.0 1.45 RZQ/3 1,2,3,4 0.5XVDDQ 0.9 1.0 1.15 RZQ/3 1,2,3,4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.15 RZQ/3 1,2,3,4 VIL(AC) to VIH(AC) 0.9 1.0 1.65 RZQ/6 1,2,5 1,2,3,4 VOL(DC) 0.2XVDDQ 0.6 1.0 1.15 RZQ/4 0.5XVDDQ 0.9 1.0 1.15 RZQ/4 1,2,3,4 VOH(DC) 0.8XVDDQ 0.9 1.0 1.45 RZQ/4 1,2,3,4 VOL(DC) 0.2XVDDQ 0.9 1.0 1.45 RZQ/4 1,2,3,4 0.5XVDDQ 0.9 1.0 1.15 RZQ/4 1,2,3,4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.15 RZQ/4 1,2,3,4 VIL(AC) to VIH(AC) 0.9 1.0 1.65 RZQ/8 1,2,5 1.15 RZQ/6 1,2,3,4 1,2,3,4 VOL(DC) 0.2XVDDQ RTT20pd40 0.9 VOL(DC) 0.2XVDDQ 0.6 1.0 0.5XVDDQ 0.9 1.0 1.15 RZQ/6 VOH(DC) 0.8XVDDQ 0.9 1.0 1.45 RZQ/6 1,2,3,4 VOL(DC) 0.2XVDDQ 0.9 1.0 1.45 RZQ/6 1,2,3,4 0.5XVDDQ 0.9 1.0 1.15 RZQ/6 1,2,3,4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.15 RZQ/6 1,2,3,4 VIL(AC) to VIH(AC) 0.9 1.0 1.65 RZQ/12 1,2,5 5 % 1,2,5,6 Deviation of VM w.r.t VDDQ/2, ∆VM -5 - 26 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 1.5V MR1 (A9,A6,A2) RTT RESISTOR RTT120pd240 (0,1,0) 120 ohm RTT120pu240 RTT120 RTT60pd240 Vout Min Nom Max Unit Notes VOL(DC) 0.2XVDDQ 0.6 1.0 1.1 RZQ 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ 1,2,3,4 1,2,3,4 VOH(DC) 0.8XVDDQ 0.9 1.0 1.4 RZQ VOL(DC) 0.2XVDDQ 0.9 1.0 1.4 RZQ 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ 1,2,3,4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.1 RZQ 1,2,3,4 VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/2 1,2,5 VOL(DC) 0.2XVDDQ 0.6 1.0 1.1 RZQ/2 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ/2 1,2,3,4 1.4 RZQ/2 1,2,3,4 1,2,3,4 VOH(DC) 0.8XVDDQ (0,0,1) 60 ohm RTT60pu240 RTT60 RTT40pd240 (0,1,1) 40 ohm RTT40pu240 RTT40 RTT60pd240 (1,0,1) RTT60pu240 RTT60 RTT60pd240 (1,0,0) 20 ohm RTT60pu240 RTT60 1.0 0.9 1.0 1.4 RZQ/2 0.5XVDDQ 0.9 1.0 1.1 RZQ/2 1,2,3,4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.1 RZQ/2 1,2,3,4 VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/4 1,2,5 VOL(DC) 0.2XVDDQ 0.6 1.0 1.1 RZQ/3 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ/3 1,2,3,4 VOH(DC) 0.8XVDDQ 0.9 1.0 1.4 RZQ/3 1,2,3,4 1,2,3,4 VOL(DC) 0.2XVDDQ 0.9 1.0 1.4 RZQ/3 0.5XVDDQ 0.9 1.0 1.1 RZQ/3 1,2,3,4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.1 RZQ/3 1,2,3,4 VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/6 1,2,5 VOL(DC) 0.2XVDDQ 0.6 1.0 1.1 RZQ/4 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ/4 1,2,3,4 VOH(DC) 0.8XVDDQ 0.9 1.0 1.4 RZQ/4 1,2,3,4 1.4 RZQ/4 1,2,3,4 1,2,3,4 VOL(DC) 0.2XVDDQ 30 ohm 0.9 VOL(DC) 0.2XVDDQ 0.9 1.0 0.5XVDDQ 0.9 1.0 1.1 RZQ/4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.1 RZQ/4 1,2,3,4 VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/8 1,2,5 VOL(DC) 0.2XVDDQ 0.6 1.0 1.1 RZQ/6 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ/6 1,2,3,4 VOH(DC) 0.8XVDDQ 0.9 1.0 1.4 RZQ/6 1,2,3,4 VOL(DC) 0.2XVDDQ 0.9 1.0 1.4 RZQ/6 1,2,3,4 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ/6 VOH(DC) 0.8XVDDQ 0.6 1.0 1.1 RZQ/6 1,2,3,4 VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/12 1,2,5 5 % 1,2,5,6 Deviation of VM w.r.t VDDQ/2, ∆VM -5 - 27 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM NOTE : 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity 2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS 3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5XVDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2XVDDQ and 0.8XVDDQ. 4. Not a specification requirement, but a design guide line 5. Measurement definition for RTT: Apply VIH(AC) to pin under test and measure current I(VIH(AC)), then apply VIL(AC) to pin under test and measure current I(VIL(AC)) respectively RTT = VIH(AC) - VIL(AC) I(VIH(AC)) - I(VIL(AC)) 6. Measurement definition for VM and ∆VM : Measure voltage (VM) at test pin (midpoint) with no load ∆ VM = 2 x VM VDDQ -1 x 100 9.8.2 ODT Temperature and Voltage sensitivity If temperature and/or voltage change after calibration, the tolerance limits widen according to table below ∆T = T - T(@calibration); ∆V = VDDQ - VDDQ (@calibration); VDD = VDDQ [ Table 28 ] ODT Sensitivity Definition RTT Min Max Units 0.9 - dRTTdT * |∆T| - dRTTdV * |∆V| 1.6 + dRTTdT * |∆T| + dRTTdV * |∆V| RZQ/2,4,6,8,12 [ Table 29 ] ODT Voltage and Temperature Sensitivity Min Max Units dRTTdT 0 1.5 %/°C dRTTdV 0 0.15 %/mV NOTE : These parameters may not be subject to production test. They are verified by design and characterization. - 28 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 9.9 ODT Timing Definitions 9.9.1 Test Load for ODT Timings Different than for timing measurements, the reference load for ODT timings is defined in Figure 13. VDDQ CK,CK DUT DQ, DM VTT= VSSQ RTT =25 ohm DQS , DQS TDQS , TDQS VSSQ Timing Reference Points Figure 13. ODT Timing Reference Load 9.9.2 ODT Timing Definitions Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 30 and subsequent figures. Measurement reference settings are provided in Table 31 . [ Table 30 ] ODT Timing Definitions Symbol Begin Point Definition End Point Definition Figure tAON Rising edge of CK - CK defined by the end point of ODTLon Extrapolated point at VSSQ Figure 14 tAONPD Rising edge of CK - CK with ODT being first registered high Extrapolated point at VSSQ Figure 15 tAOF Rising edge of CK - CK defined by the end point of ODTLoff End point: Extrapolated point at VRTT_Nom Figure 16 tAOFPD Rising edge of CK - CK with ODT being first registered low End point: Extrapolated point at VRTT_Nom Figure 17 tADC Rising edge of CK - CK defined by the end point of ODTLcnw, ODTLcwn4 of ODTLcwn8 End point: Extrapolated point at VRTT_Wr and VRTT_Nom respectively Figure 18 [ Table 31 ] Reference Settings for ODT Timing Measurements Measured Parameter tAON tAONPD tAOF tAOFPD tADC RTT_Nom Setting RTT_Wr Setting VSW1[V] VSW2[V] RZQ/4 NA 0.05 0.10 RZQ/12 NA 0.10 0.20 RZQ/4 NA 0.05 0.10 RZQ/12 NA 0.10 0.20 RZQ/4 NA 0.05 0.10 RZQ/12 NA 0.10 0.20 RZQ/4 NA 0.05 0.10 RZQ/12 NA 0.10 0.20 RZQ/12 RZQ/2 0.20 0.25 - 29 - NOTE Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM Begin point : Rising edge of CK - CK defined by the end point of ODTLon CK VTT CK tAON TSW2 DQ, DM DQS , DQS TDQS , TDQS TSW1 VSW2 VSW1 VSSQ VSSQ End point Extrapolated point at VSSQ Figure 14. Definition of tAON Begin point : Rising edge of CK - CK with ODT being first registered high CK VTT CK tAONPD TSW2 DQ, DM DQS , DQS TDQS , TDQS TSW1 VSW2 VSW1 VSSQ VSSQ End point Extrapolated point at VSSQ Figure 15. Definition of tAONPD Begin point : Rising edge of CK - CK defined by the end point of ODTLoff CK VTT CK tAOF End point Extrapolated point at VRTT_Nom VRTT_Nom DQ, DM DQS , DQS TDQS , TDQS TSW2 TSW1 VSW2 VSW1 VSSQ TD_TAON_DEF Figure 16. Definition of tAOF - 30 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM Begin point : Rising edge of CK - CK with ODT being first registered low CK VTT CK tAOFPD End point Extrapolated point at VRTT_Nom VRTT_Nom DQ, DM DQS , DQS TDQS , TDQS TSW2 TSW1 VSW2 VSW1 VSSQ Figure 17. Definition of tAOFPD Begin point : Rising edge of CK - CK defined by the end point of ODTLcnw Begin point : Rising edge of CK - CK defined by the end point of ODTLcwn4 or ODTLcwn8 CK VTT CK tADC VRTT_Nom DQ, DM DQS , DQS TDQS , TDQS tADC End point Extrapolated point at VRTT_Nom TSW21 End point Extrapolated point TSW11 at VRTT_Nom TSW22 VSW2 VRTT_Nom TSW12 VSW1 VRTT_Wr End point Extrapolated point at VRTT_Wr VSSQ Figure 18. Definition of tADC - 31 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 10. IDD Current Measure Method 10.1 IDD Measurement Conditions In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 19 shows the setup and test load for IDD and IDDQ measurements. - IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents. - IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents. Attention : IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 20. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB. For IDD and IDDQ measurements, the following definitions apply : - "0" and "LOW" is defined as VIN <= VILAC(max). - "1" and "HIGH" is defined as VIN >= VIHAC(min). - "FLOATING" is defined as inputs are VREF = VDD / 2. - "Timing used for IDD and IDDQ Measured - Loop Patterns" are provided in Table 32 - "Basic IDD and IDDQ Measurement Conditions" are described in Table 33 - Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 32 on page 31 through Table 39. - IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting RON = RZQ/7 (34 Ohm in MR1); Qoff = 0B (Output Buffer enabled in MR1); RTT_Nom = RZQ/6 (40 Ohm in MR1); RTT_Wr = RZQ/2 (120 Ohm in MR2); TDQS Feature disabled in MR1 - Attention : The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started. - Define D = {CS, RAS, CAS, WE} := {HIGH, LOW, LOW, LOW} - Define D = {CS, RAS, CAS, WE} := {HIGH, HIGH, HIGH, HIGH} - RESET Stable time is : During a Cold Bood RESET (Initialization), current reading is valid once power is stable and RESET has been LOW for 1ms; During Warm Boot RESET(while operating), current reading is valid after RESET has been LOW for 200ns + tRFC [ Table 32 ] Timing used for IDD and IDDQ Measured - Loop Patterns Parameter Bin tCKmin(IDD) CL(IDD) DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 6-6-6 7-7-7 9-9-9 11-11-11 2.5 1.875 1.5 1.25 ns 6 7 9 11 nCK Unit tRCDmin(IDD) 6 7 9 11 nCK tRCmin(IDD) 21 27 33 39 nCK tRASmin(IDD) 15 20 24 28 nCK tRPmin(IDD) 6 7 9 11 nCK tFAW(IDD) tRRD(IDD) x4/x8 16 20 20 24 nCK x16 20 27 30 32 nCK x4/x8 4 4 4 5 nCK x16 4 6 5 6 nCK tRFC(IDD) - 512Mb 36 48 60 72 nCK tRFC(IDD) - 1Gb 44 59 74 88 nCK tRFC(IDD) - 2Gb 64 86 107 128 nCK tRFC(IDD) - 4Gb 120 160 200 240 nCK tRFC(IDD) - 8Gb 140 187 234 280 nCK - 32 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D IDD VDD DDR3L SDRAM IDDQ VDDQ RESET CK/CK CKE DQS, DQS CS DQ, DM, RAS, CAS, WE TDQS, TDQS RTT = 25 Ohm VDDQ/2 A, BA ODT ZQ VSS VSSQ [NOTE : DIMM level Output test load condition may be different from above] Figure 19. Measurement Setup and Test Load for IDD and IDDQ Measurements Application specific memory channel environment IDDQ Test Load Channel IO Power Simulation IDDQ Simulation IDDQ Measurement Correlation Correction Channel IO Power Number Figure 20. Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement. - 33 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM [ Table 33 ] Basic IDD and IDDQ Measurement Conditions Symbol Description Operating One Bank Active-Precharge Current IDD0 CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 32 on page 31 ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 32); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 32 Operating One Bank Active-Read-Precharge Current IDD1 CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between ACT, RD and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling according to Table 33 on page 32 ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 33); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 33 Precharge Standby Current IDD2N CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 34 on page 32 ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 34 Precharge Standby ODT Current IDD2NT CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 35 on page 33 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: toggling according to Table 35 ; Pattern Details: see Table 35 IDDQ2NT Precharge Standby ODT IDDQ Current Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current Precharge Power-Down Current Slow Exit IDD2P0 CKE: Low; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exi3) Precharge Power-Down Current Fast Exit IDD2P1 CKE: Low; External clock: On; tCK, CL: see Table 32 on page 32; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit3) Precharge Quiet Standby Current IDD2Q CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0 Active Standby Current IDD3N CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 34 on page 32 ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 34 Active Power-Down Current IDD3P CKE: Low; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0 Operating Burst Read Current IDD4R CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling according to Table 36 on page 33 ; Data IO: seamless read data burst with different data between one burst and the next one according to Table 36 ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 12); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 36 IDDQ4R Operating Burst Read IDDQ Current Same definition like for IDD4R, however measuring IDDQ current instead of IDD current Operating Burst Write Current IDD4W CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling according to Table 37 on page 34 ; Data IO: seamless write data burst with different data between one burst and the next one according to Table 37; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 37); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at HIGH; Pattern Details: see Table 37 Burst Refresh Current IDD5B CKE: High; External clock: On; tCK, CL, nRFC: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially toggling according to Table 38 on page 34 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 38 Self Refresh Current: Normal Temperature Range IDD6 TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: SelfRefresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING - 34 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM [ Table 33 ] Basic IDD and IDDQ Measurement Conditions Symbol Description Operating Bank Interleave Read Current IDD7 CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 32 on page 32 ; BL: 81); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table 39 on page 35 ; Data IO: read data bursts with different data between one burst and the next one according to Table 39 ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 39 ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 39 IDD8 RESET Low Current RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal : FLOATING NOTE : 1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B 2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B 3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit 4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature 5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range 6) Read Burst type : Nibble Sequential, set MR0 A[3]=0B - 35 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Data2) 0 Cycle Number Sub-Loop CKE CK/CK [ Table 34 ] IDD0 Measurement - Loop Pattern1) 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 0 0 - 00 0 0 0 0 - 3,4 ... nRAS Static High toggling ... repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC + 0 ACT 0 0 1 1 0 0 00 0 0 F 0 - 1*nRC + 1, 2 D, D 1 0 0 0 0 0 00 0 0 F 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - 0 0 F 0 1*nRC + 3, 4 ... 1*nRC + nRAS ... repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 repeat 1...4 until 2*nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead NOTE : 1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. 2. DQ signals are MID-LEVEL. - 36 - 0 00 Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Data2) 0 Cycle Number Sub-Loop CKE CK/CK [ Table 35 ] IDD1 Measurement - Loop Pattern1) 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 0 0 - 00 0 0 0 0 00000000 00 0 0 0 0 - 3,4 ... nRCD ... nRAS Static High toggling ... repeat pattern 1...4 until nRCD- 1, truncate if necessary RD 0 1 0 1 0 0 repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 - 1*nRC + 1, 2 D, D 1 0 0 0 0 0 00 0 0 F 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - 0 F 0 00110011 0 F 0 - 1*nRC + 3, 4 ... 1*nRC + nRCD ... 1*nRC + nRAS ... repeat pattern nRC + 1,..., 4 until nRC + nRCD - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 repeat pattern nRC + 1,..., 4 until nRC +nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 repeat pattern nRC + 1,..., 4 until 2 * nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead NOTE : 1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. 2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL. RAS CAS WE ODT BA[2:0] A[15:11] A[10] 1 0 0 0 0 0 00 0 1 D 1 0 0 0 0 0 00 0 2 D 1 1 1 1 0 0 00 0 D 1 1 1 1 0 0 00 0 0 Static High toggling 3 1 4-7 repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 8-11 repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 12-15 repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 16-19 repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 20-23 repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 24-27 repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 28-31 repeat Sub-Loop 0, use BA[2:0] = 7 instead NOTE : 1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL. 2. DQ signals are MID-LEVEL. - 37 - Data2) CS D A[2:0] Command 0 A[6:3] Cycle Number 0 A[9:7] Sub-Loop CKE CK/CK [ Table 36 ] IDD2 and IDD3N Measurement - Loop Pattern1) 0 0 0 - 0 0 0 - 0 F 0 - F 0 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM Sub-Loop Cycle Number Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Data2) CKE Static High toggling CK/CK [ Table 37 ] IDD2NT and IDDQ2NT Measurement - Loop Pattern1) 0 0 D 1 0 0 0 0 0 00 0 0 0 0 - 1 D 1 0 0 0 0 0 00 0 0 0 0 2 D 1 1 1 1 0 0 00 0 0 F 0 3 D 1 1 1 1 0 0 00 0 0 F 0 1 4-7 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1 2 8-11 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2 3 12-15 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3 4 16-19 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4 5 20-23 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5 6 24-27 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6 7 28-31 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7 NOTE : 1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL. 2. DQ signals are MID-LEVEL. Sub-Loop Cycle Number Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Data2) CKE Static High toggling CK/CK [ Table 38 ] IDD4R and IDDQ4R Measurement - Loop Pattern1) 0 0 RD 0 1 0 1 0 0 00 0 0 0 0 00000000 1 D 1 0 0 0 0 0 00 0 0 0 0 - 2,3 D,D 1 1 1 1 0 0 00 0 0 0 0 - 4 RD 0 1 0 1 0 0 00 0 0 F 0 00110011 5 D 1 0 0 0 0 0 00 0 0 F 0 - D,D 1 1 1 1 0 0 00 0 0 F 0 - 6,7 1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7 NOTE : 1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL. 2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL. - 38 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM Sub-Loop Cycle Number Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Data2) CKE Static High toggling CK/CK [ Table 39 ] IDD4W Measurement - Loop Pattern1) 0 0 WR 0 1 0 0 1 0 00 0 0 0 0 00000000 1 D 1 0 0 0 1 0 00 0 0 0 0 - 2,3 D,D 1 1 1 1 1 0 00 0 0 0 0 - 4 WR 0 1 0 0 1 0 00 0 0 F 0 00110011 5 D 1 0 0 0 1 0 00 0 0 F 0 - 6,7 D,D 1 1 1 1 1 0 00 0 0 F 0 - 1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7 NOTE : 1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL. 2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL. ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Data2) 0 0 1 0 0 00 0 0 0 0 - 1 0 0 0 0 0 00 0 0 0 0 - D,D 1 1 1 1 0 0 00 0 0 F 0 - Static High toggling 3,4 2 5...8 repeat cycles 1...4, but BA[2:0] = 1 9...12 repeat cycles 1...4, but BA[2:0] = 2 13...16 repeat cycles 1...4, but BA[2:0] = 3 17...20 repeat cycles 1...4, but BA[2:0] = 4 21...24 repeat cycles 1...4, but BA[2:0] = 5 25...28 repeat cycles 1...4, but BA[2:0] = 6 29...32 repeat cycles 1...4, but BA[2:0] = 7 33...nRFC - 1 WE 0 D CAS REF 1,2 RAS Command 0 1 CS Cycle Number 0 Sub-Loop CKE CK/CK [ Table 40 ] IDD5B Measurement - Loop Pattern1) repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary. NOTE : 1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. 2. DQ signals are MID-LEVEL. - 39 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 0 00 0 0 0 0 - 1 0 0 00 1 0 0 0 00000000 D 1 0 0 0 0 0 00 0 0 0 0 - 2 Static High toggling repeat above D Command until nRRD - 1 nRRD ACT 0 0 1 1 0 1 00 0 0 F 0 - nRRD + 1 RDA 0 1 0 1 0 1 00 1 0 F 0 00110011 D 1 0 0 0 0 1 00 0 0 F 0 - 0 3 00 0 0 F 0 - 0 F 0 - nRRD + 2 ... repeat above D Command until 2*nRRD-1 2 2 * nRRD repeat Sub-Loop 0, but BA[2:0] = 2 3 3 * nRRD repeat Sub-Loop 1, but BA[2:0] = 3 4 4 * nRRD D 1 0 0 nFAW repeat Sub-Loop 0, but BA[2:0] = 4 6 nFAW+nRRD repeat Sub-Loop 1, but BA[2:0] = 5 7 nFAW+2*nRRD repeat Sub-Loop 0, but BA[2:0] = 6 8 nFAW+3*nRRD repeat Sub-Loop 1, but BA[2:0] = 7 9 nFAW+4*nRRD D 1 0 0 0 0 7 00 0 Assert and repeat above D Command until 2*nFAW - 1, if necessary 2*nFAW+0 ACT 0 0 1 1 0 0 00 0 0 F 0 - 2*nFAW+1 RDA 0 1 0 1 0 0 00 1 0 F 0 00110011 D 1 0 0 0 0 0 00 0 0 F 0 - 2*nFAW+2 11 0 Assert and repeat above D Command until nFAW - 1, if necessary 5 10 Data2) BA[2:0] 1 0 WE 1 1 CAS 0 0 RAS 0 RDA CS ACT 1 ... 1 Command ODT 0 0 Cycle Number Sub-Loop CKE CK/CK [ Table 41 ] IDD7 Measurement - Loop Pattern1) Repeat above D Command until 2*nFAW + nRRD - 1 2*nFAW+nRRD ACT 0 0 1 1 0 1 00 0 0 0 0 - 2*nFAW+nRRD+1 RDA 0 1 0 1 0 1 00 1 0 0 0 00000000 D 1 0 0 0 0 1 00 0 0 0 0 - 0 0 0 0 - 0 0 - 2*nFAW+nRRD+2 Repeat above D Command until 2*nFAW + 2*nRRD - 1 12 2*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 2 13 2*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 3 14 2*nFAW+4*nRRD D 1 0 0 0 0 3 00 Assert and repeat above D Command until 3*nFAW - 1, if necessary 15 3*nFAW repeat Sub-Loop 10, but BA[2:0] = 4 16 3*nFAW+nRRD repeat Sub-Loop 11, but BA[2:0] = 5 17 3*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 6 18 3*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 7 19 3*nFAW+4*nRRD D 1 0 0 0 0 7 00 0 0 Assert and repeat above D Command until 4*nFAW - 1, if necessary NOTE : 1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. 2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation. DQ signals are MID-LEVEL. - 40 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 11. 2Gb DDR3 SDRAM D-die IDD Specification Table [ Table 42 ] IDD Specification for 2Gb DDR3 D-die 512Mx4 (K4B2G0446D) Symbol DDR3-1066 (7-7-7) DDR3-1333 (9-9-9) DDR3-1600 (11-11-11) Unit 1.35V 1.5V 1.35V 1.5V 1.35V 1.5V IDD0 30 35 35 40 40 45 IDD1 40 45 45 50 50 55 mA IDD2P0(slow exit) 10 12 10 12 10 12 mA IDD2P1(fast exit) 13 15 13 15 15 15 mA mA NOTE mA IDD2N 15 17 15 20 17 20 IDD2NT 17 20 20 25 22 25 mA IDDQ2NT 35 40 35 40 35 40 mA IDD2Q 15 17 15 20 17 20 mA IDD3P 15 17 15 17 17 20 mA IDD3N 25 30 25 35 30 35 mA IDD4R 55 50 70 60 80 70 mA IDDQ4R 30 35 30 35 30 35 mA IDD4W 60 60 75 70 90 85 mA IDD5B 110 110 115 115 115 120 mA IDD6 10 12 10 12 10 12 mA IDD7 100 105 125 125 130 130 mA IDD8 10 12 10 12 10 12 mA NOTE : VDD condition : 1.45V for 1.35V operation, 1.575V for 1.5V operation 256Mx8 (K4B2G0846D) Symbol IDD0 DDR3-1066 (7-7-7) DDR3-1333 (9-9-9) DDR3-1600 (11-11-11) 1.35V 1.5V 1.35V 1.5V 1.35V 1.5V 30 35 35 40 40 45 Unit mA IDD1 40 45 45 50 50 55 mA IDD2P0(slow exit) 10 12 10 12 10 12 mA IDD2P1(fast exit) 13 15 13 15 15 15 mA IDD2N 15 17 15 20 17 20 mA IDD2NT 17 20 20 25 22 25 mA IDDQ2NT 65 70 65 70 65 70 mA IDD2Q 15 17 15 20 17 20 mA IDD3P 15 17 15 17 17 20 mA IDD3N 25 30 25 35 30 35 mA IDD4R 50 65 60 75 65 90 mA IDDQ4R 45 50 45 50 45 50 mA IDD4W 55 70 65 80 75 95 mA IDD5B 110 110 115 115 115 120 mA IDD6 10 12 10 12 10 12 mA IDD7 95 105 120 135 125 140 mA IDD8 10 12 10 12 10 12 mA NOTE : VDD condition : 1.45V for 1.35V operation, 1.575V for 1.5V operation - 41 - NOTE Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 12. Input/Output Capacitance [ Table 43 ] Input/Output Capacitance Parameter Symbol DDR3-800 Min DDR3-1066 Max DDR3-1333 DDR3-1600 Min Max Min Max Min Max Units NOTE 1.35V Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS) CIO 1.5 2.5 1.5 2.5 1.5 2.3 1.2 2.3 pF 1,2,3 Input capacitance (CK and CK) CCK 0.8 1.6 0.8 1.6 TBD TBD TBD TBD pF 2,3 CDCK 0 0.15 0 0.15 TBD TBD TBD TBD pF 2,3,4 CI 0.75 1.3 0.75 1.3 0.75 1.3 0.75 1.3 pF 2,3,6 CDDQS 0 0.2 0 0.2 TBD TBD TBD TBD pF 2,3,5 CDI_CTRL -0.5 0.3 -0.5 0.3 TBD TBD TBD TBD pF 2,3,7,8 CDI_ADD_CMD -0.5 0.5 -0.5 0.5 TBD TBD TBD TBD pF 2,3,9,10 Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS) CDIO -0.5 0.3 -0.5 0.3 TBD TBD TBD TBD pF 2,3,11 Input/output capacitance of ZQ pin CZQ - 3 - 3 TBD TBD TBD TBD pF 2, 3, 12 Input capacitance delta (CK and CK) Input capacitance (All other input-only pins) Input/Output capacitance delta (DQS and DQS) Input capacitance delta (All control input-only pins) Input capacitance delta (all ADD and CMD input-only pins) 1.5V Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS) CIO 1.5 3.0 1.5 2.7 1.5 2.5 1.4 2.3 pF 1,2,3 Input capacitance (CK and CK) CCK 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 pF 2,3 CDCK 0 0.15 0 0.15 0 0.15 0 0.15 pF 2,3,4 CI 0.75 1.5 0.75 1.5 0.75 1.3 0.75 1.3 pF 2,3,6 CDDQS 0 0.2 0 0.2 0 0.15 0 0.15 pF 2,3,5 CDI_CTRL -0.5 0.3 -0.5 0.3 -0.4 0.2 -0.4 0.2 pF 2,3,7,8 CDI_ADD_CMD -0.5 0.5 -0.5 0.5 -0.4 0.4 -0.4 0.4 pF 2,3,9,10 Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS) CDIO -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11 Input/output capacitance of ZQ pin CZQ - 3 - 3 - 3 - 3 pF 2, 3, 12 Input capacitance delta (CK and CK) Input capacitance (All other input-only pins) Input capacitance delta (DQS and DQS) Input capacitance delta (All control input-only pins) Input capacitance delta (all ADD and CMD input-only pins) NOTE : 1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS 2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off. 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here 4. Absolute value of CCK-CCK 5. Absolute value of CIO(DQS)-CIO(DQS) 6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE. 7. CDI_CTRL applies to ODT, CS and CKE 8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK)) 9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE 10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK)) 11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS)) 12. Maximum external load capacitance on ZQ pin: 5pF - 42 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 13. Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 13.1 Clock Specification The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR3 SDRAM device. 13.1.1 Definition for tCK(avg) tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to rising edge. N ∑ tCKj N N=200 j=1 13.1.2 Definition for tCK(abs) tCK(abs) is defind as the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to production test. 13.1.3 Definition for tCH(avg) and tCL(avg) tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses: tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses: N ∑ N tCHj N x tCK(avg) ∑ N=200 j=1 tCLj N x tCK(avg) N=200 j=1 13.1.4 Definition for note for tJIT(per), tJIT(per, Ick) tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200} tJIT(per) defines the single period jitter when the DLL is already locked. tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only. tJIT(per) and tJIT(per,lck) are not subject to production test. 13.1.5 Definition for tJIT(cc), tJIT(cc, Ick) tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi} tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked. tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only. tJIT(cc) and tJIT(cc,lck) are not subject to production test. 13.1.6 Definition for tERR(nper) tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to production test. - 43 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 13.2 Refresh Parameters by Device Density [ Table 44 ] Refresh parameters by device density Parameter Symbol 1Gb 2Gb 4Gb 8Gb Units tRFC 110 160 300 350 ns 0 °C ≤ TCASE ≤ 85°C 7.8 7.8 7.8 7.8 µs 85 °C < TCASE ≤ 95°C 3.9 3.9 3.9 3.9 µs All Bank Refresh to active/refresh cmd time Average periodic refresh interval tREFI NOTE 1 NOTE : 1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material. 13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin. [ Table 45 ] DDR3-800 Speed Bins Speed DDR3-800 CL-nRCD-nRP 6-6-6 Parameter Internal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period ACT to PRE command period Units Symbol min max tAA 15 20 ns tRCD 15 - ns tRP 15 - ns tRC 52.5 - ns tRAS 37.5 9*tREFI ns NOTE CL = 5 CWL = 5 tCK(AVG) 3.0 3.3 ns 1,2,3,4,9,10 CL = 6 CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3 Supported CL Settings Supported CWL Settings 5,6 nCK 5 nCK [ Table 46 ] DDR3-1066 Speed Bins Speed DDR3-1066 CL-nRCD-nRP 7-7-7 Parameter Internal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period CL = 6 CL = 7 CL = 8 Symbol min max tAA 13.125 20 ns tRCD 13.125 - ns tRP 13.125 - ns NOTE tRC 50.625 - ns tRAS 37.5 9*tREFI ns CWL = 5 tCK(AVG) 3.0 3.3 ns 1,2,3,4,5,9,10 CWL = 6 tCK(AVG) ns 4 CWL = 5 tCK(AVG) ns 1,2,3,5 CWL = 6 tCK(AVG) ns 1,2,3,4 CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) ACT to PRE command period CL = 5 Units Reserved 2.5 3.3 Reserved Reserved 1.875 <2.5 Reserved 1.875 Supported CL Settings Supported CWL Settings - 44 - <2.5 ns 4 ns 1,2,3,4,8 ns 4 ns 1,2,3 5,6,7,8 nCK 5,6 nCK Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM [ Table 47 ] DDR3-1333 Speed Bins Speed DDR3-1333 CL-nRCD-nRP 9 -9 - 9 Parameter Units NOTE Symbol min max tAA 13.5 (13.125)8 20 ns tRCD 13.5 (13.125)8 - ns PRE command period tRP 13.5 (13.125)8 - ns ACT to ACT or REF command period tRC 49.5 (49.125)8 - ns tRAS 36 9*tREFI ns 3.0 3.3 ns 1,2,3,4,6,9,10 ns 4 Internal read command to first data ACT to internal read or write delay time ACT to PRE command period CL = 5 CL = 6 CL = 7 CL = 8 CL = 9 CL = 10 CWL = 5 tCK(AVG) CWL = 6,7 tCK(AVG) CWL = 5 tCK(AVG) ns 1,2,3,6 CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,6 CWL = 7 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,4,6 CWL = 7 tCK(AVG) ns 1,2,3,4 CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) Reserved 2.5 3.3 1.875 <2.5 Reserved Reserved 1.875 <2.5 ns 4 ns 1,2,3,6 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5,6 tCK(AVG) Reserved ns 4 ns 1,2,3,4,8 ns 4 1,2,3 CWL = 7 tCK(AVG) CWL = 5,6 tCK(AVG) 1.5 Reserved CWL = 7 tCK(AVG) Reserved ns 5,6,7,8,9 nCK 5,6,7 nCK Supported CL Settings Supported CWL Settings - 45 - <1.875 Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM [ Table 48 ] DDR3-1600 Speed Bins Speed DDR3-1600 CL-nRCD-nRP 11-11-11 Parameter Units NOTE Symbol min max tAA 13.75 (13.125)8 20 ns tRCD 13.75 (13.125)8 - ns PRE command period tRP 13.75 (13.125)8 - ns ACT to ACT or REF command period tRC 48.75 (48.125)8 - ns tRAS 35 9*tREFI ns 3.0 3.3 ns 1,2,3,4,7,9,10 ns 4 Internal read command to first data ACT to internal read or write delay time ACT to PRE command period CL = 5 CL = 6 CL = 7 CL = 8 CL = 9 CL = 10 CL = 11 CWL = 5 tCK(AVG) CWL = 6,7,8 tCK(AVG) CWL = 5 tCK(AVG) ns 1,2,3,7 CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,7 CWL = 7, 8 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,4,7 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7 CWL = 8 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,7 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7 Reserved 2.5 3.3 1.875 <2.5 1.875 <2.5 CWL = 8 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5,6 tCK(AVG) Reserved ns 4 CWL = 7 tCK(AVG) ns 1,2,3,4,7 CWL = 8 tCK(AVG) ns 1,2,3,4 CWL = 5,6 tCK(AVG) CWL = 7 tCK(AVG) 1.5 <1.875 Reserved Reserved 1.5 <1.875 ns 4 ns 1,2,3,7 CWL = 8 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5,6,7 tCK(AVG) Reserved ns 4 CWL = 8 tCK(AVG) ns 1,2,3,8 1.25 Supported CL Settings Supported CWL Settings - 46 - <1.5 5,6,7,8,9,10,11 nCK 5,6,7,8 nCK K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 13.3.1 Speed Bin Table Notes Absolute Specification {TOPER; VDDQ = VDD = 1.35V(1.28V~1.45V)}; NOTE : 1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting. 2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL". 3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED. 4. "Reserved" settings are not allowed. User must program a different value. 5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 8. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns (tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11). 9. DDR3 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate. 10. For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not mandatory in SPD coding. - 47 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 14. Timing Parameters by Speed Grade [ Table 49 ] Timing Parameters by Speed Bin Speed Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol MIN MAX MIN MAX MIN MAX MIN MAX tCK(DLL_OF F) 8 - 8 - 8 - 8 - Units NOTE ns 6 Clock Timing Minimum Clock Cycle Time (DLL off mode) Average Clock Period tCK(avg) See Speed Bins Table ps Clock Period tCK(abs) tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tJIT(per)min tJIT(per)max tJIT(per)min tJIT(per)max tJIT(per)min tJIT(per)max tJIT(per)min tJIT(per)max ps Average high pulse width tCH(avg) 0.47 0.53 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg) Average low pulse width tCL(avg) 0.47 0.53 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg) Clock Period Jitter tJIT(per) -100 100 -90 90 -80 80 -70 70 ps tJIT(per, lck) -90 90 -80 80 -70 70 -60 60 ps Clock Period Jitter during DLL locking period Cycle to Cycle Period Jitter tJIT(cc) 200 180 160 140 Cycle to Cycle Period Jitter during DLL locking period tJIT(cc, lck) 180 160 140 120 Cumulative error across 2 cycles tERR(2per) - 147 147 - 132 132 - 118 118 -103 103 ps Cumulative error across 3 cycles tERR(3per) - 175 175 - 157 157 - 140 140 -122 122 ps Cumulative error across 4 cycles tERR(4per) - 194 194 - 175 175 - 155 155 -136 136 ps Cumulative error across 5 cycles tERR(5per) - 209 209 - 188 188 - 168 168 -147 147 ps Cumulative error across 6 cycles tERR(6per) - 222 222 - 200 200 - 177 177 -155 155 ps Cumulative error across 7 cycles tERR(7per) - 232 232 - 209 209 - 186 186 -163 163 ps Cumulative error across 8 cycles tERR(8per) - 241 241 - 217 217 - 193 193 -169 169 ps Cumulative error across 9 cycles tERR(9per) - 249 249 - 224 224 - 200 200 -175 175 ps Cumulative error across 10 cycles tERR(10per) - 257 257 - 231 231 - 205 205 -180 180 ps Cumulative error across 11 cycles tERR(11per) - 263 263 - 237 237 - 210 210 -184 184 ps Cumulative error across 12 cycles tERR(12per) - 269 269 - 242 242 - 215 215 -188 188 ps Cumulative error across n = 13, 14 ... 49, 50 cycles ps ps tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max tERR(nper) ps 24 Absolute clock HIGH pulse width tCH(abs) 0.43 - 0.43 - 0.43 - 0.43 - tCK(avg) 25 Absolute clock Low pulse width tCL(abs) 0.43 - 0.43 - 0.43 - 0.43 - tCK(avg) 26 tDQSQ - 200 - 150 - 125 - 100 ps 13 tQH 0.38 - 0.38 - 0.38 - 0.38 - tCK(avg) 13, g DQ low-impedance time from CK, CK tLZ(DQ) -800 400 -600 300 -500 250 -450 225 ps 13,14, f DQ high-impedance time from CK, CK tHZ(DQ) - 400 - 300 - 250 - 225 ps 13,14, f - - - - ps d, 17 - - - - ps d, 17 75 - 55 - ps d, 17 - 45 - ps d, 17 - 25 - ps Data Timing DQS,DQS to DQ skew, per group, per access DQ output hold time from DQS, DQS 1.35V Data setup time to DQS, DQS referenced to VIH(AC)VIL(AC) levels tDS(base) AC160 90 - 40 1.5V tDS(base) AC175 75 - 25 1.35V Data hold time from DQS, DQS referenced to VIH(AC)VIL(AC) levels tDH(base) DC90 160 - 110 - 1.5V tDH(base) DC100 150 - 100 - 65 1.35V Data setup time to DQS, DQS referenced to VIH(AC)VIL(AC) levels DQ and DM Input pulse width for each input tDS(base) AC135 140 - 90 - 45 1.5V tDS(base) AC150 125 - 75 - 30 - 10 - ps tDIPW 600 - 490 - 400 - 360 - ps - 48 - 28 Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM [ Table 49 ] Timing Parameters by Speed Bin (Cont.) Speed Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units NOTE Note 19 tCK 13, 19, g Note 11 tCK 11, 13, b 0.4 - tCK(avg) 13, g - 0.4 - tCK(avg) 13, g 0.9 - 0.9 - tCK Symbol MIN MAX MIN MAX MIN MAX MIN MAX DQS, DQS differential READ Preamble tRPRE 0.9 Note 19 0.9 Note 19 0.9 Note 19 0.9 DQS, DQS differential READ Postamble tRPST 0.3 Note 11 0.3 Note 11 0.3 Note 11 0.3 DQS, DQS differential output high time tQSH 0.38 - 0.38 - 0.4 - DQS, DQS differential output low time tQSL 0.38 - 0.38 - 0.4 DQS, DQS differential WRITE Preamble tWPRE 0.9 - 0.9 - DQS, DQS differential WRITE Postamble Data Strobe Timing tWPST 0.3 - 0.3 - 0.3 - 0.3 - tCK DQS, DQS rising edge output access time from rising CK, CK tDQSCK -400 400 -300 300 -255 255 -225 225 ps 13,f DQS, DQS low-impedance time (Referenced from RL1) tLZ(DQS) -800 400 -600 300 -500 250 -450 225 ps 13,14,f DQS, DQS high-impedance time (Referenced from RL+BL/2) tHZ(DQS) - 400 - 300 - 250 - 225 ps 12,13,14 DQS, DQS differential input low pulse width tDQSL 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 tCK 29, 31 DQS, DQS differential input high pulse width tDQSH 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 tCK 30, 31 DQS, DQS rising edge to CK, CK rising edge tDQSS -0.25 0.25 -0.25 0.25 -0.25 0.25 -0.27 0.27 tCK(avg) c DQS,DQS falling edge setup time to CK, CK rising edge tDSS 0.2 - 0.2 - 0.2 - 0.18 - tCK(avg) c, 32 DQS,DQS falling edge hold time to CK, CK rising edge tDSH 0.2 - 0.2 - 0.2 - 0.18 - tCK(avg) c, 32 tDLLK 512 - 512 - 512 - 512 - nCK tRTP max (4nCK,7.5ns) - max (4nCK,7.5ns) - max (4nCK,7.5ns) - max (4nCK,7.5ns) - e tWTR max (4nCK,7.5ns) - max (4nCK,7.5ns) - max (4nCK,7.5ns) - max (4nCK,7.5ns) - e,18 WRITE recovery time tWR 15 - 15 - 15 - 15 - ns Mode Register Set command cycle time tMRD 4 - 4 - 4 - 4 - nCK Mode Register Set command update delay tMOD max (12nCK,15ns) - max (12nCK,15ns) - max (12nCK,15ns) - max (12nCK,15ns) - tCCD 4 - 4 - 4 - 4 - - 1 - Command and Address Timing DLL locking time internal READ Command to PRECHARGE Command delay Delay from start of internal write transaction to internal read command CAS# to CAS# command delay Auto precharge write recovery + precharge time Multi-Purpose Register Recovery Time ACTIVE to PRECHARGE command period tDAL(min) tMPRR WR + roundup (tRP / tCK(AVG)) 1 tRAS - 1 - 1 - - max (4nCK,6ns) nCK nCK See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” max (4nCK,7.5ns) e - max (4nCK,6ns) - nCK 22 ns e ACTIVE to ACTIVE command period for 1KB page size tRRD max (4nCK,10ns) ACTIVE to ACTIVE command period for 2KB page size tRRD max (4nCK,10ns) - max (4nCK,10ns) - max (4nCK,7.5ns) - max (4nCK,7.5ns) - Four activate window for 1KB page size tFAW 40 - 37.5 - 30 - 30 - ns e Four activate window for 2KB page size tFAW 50 - 50 - 45 - 40 - ns e - 60 - ps b,16 - 45 - ps b,16 - 130 - ps b,16 120 - ps b,16 - 185 - ps b,16,27 e e 1.35V Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels tIS(base) AC160 215 - 140 - 80 1.5V tIS(base) AC175 200 - 125 - 65 1.35V Command and Address hold time from CK, CK referenced to VIH(AC) / VIL(AC) levels tIH(base) DC90 285 - 210 - 150 1.5V tIH(base) DC100 275 200 140 1.35V Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels tIS(base) AC135 365 - 290 - 205 1.5V tIS(base) AC150 350 - 275 - 190 - 170 - ps b,16,27 tIPW 900 - 780 - 620 - 560 - ps 28 Power-up and RESET calibration time tZQinitI 512 - 512 - 512 - 512 - nCK Normal operation Full calibration time tZQoper 256 - 256 - 256 - 256 - nCK tZQCS 64 - 64 - 64 - 64 - nCK Control & Address Input pulse width for each input Calibration Timing Normal operation short calibration time - 49 - 23 Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM [ Table 49 ] Timing Parameters by Speed Bin (Cont.) Speed Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol MIN MAX MIN MAX MIN MAX MIN MAX tXPR max(5nCK, tRFC + 10ns) - max(5nCK, tRFC + 10ns) - max(5nCK, tRFC + 10ns) - max(5nCK, tRFC + 10ns) - Exit Self Refresh to commands not requiring a locked DLL tXS max(5nCK,t RFC + 10ns) - max(5nCK,t RFC + 10ns) - max(5nCK,t RFC + 10ns) - max(5nCK,t RFC + 10ns) - Exit Self Refresh to commands requiring a locked DLL Units NOTE Reset Timing Exit Reset from CKE HIGH to a valid command Self Refresh Timing tXSDLL tDLLK(min) - tDLLK(min) - tDLLK(min) - tDLLK(min) - Minimum CKE low width for Self refresh entry to exit timing tCKESR tCKE(min) + 1tCK - tCKE(min) + 1tCK - tCKE(min) + 1tCK - tCKE(min) + 1tCK - Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down Entry (PDE) tCKSRE max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - Valid Clock Requirement before Self Refresh Exit (SRX) or Power-Down Exit (PDX) or Reset Exit tCKSRX max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - tXP max (3nCK, 7.5ns) - max (3nCK, 7.5ns) - max (3nCK,6ns) - max (3nCK,6ns) - tXPDLL max (10nCK, 24ns) - max (10nCK, 24ns) - max (10nCK, 24ns) - max (10nCK, 24ns) - tCKE max (3nCK, 7.5ns) - max (3nCK, 5.625ns) - max (3nCK, 5.625ns) - max (3nCK,5ns) - nCK Power Down Timing Exit Power Down with DLL on to any valid command;Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL CKE minimum pulse width Command pass disable delay 2 tCPDED 1 - 1 - 1 - 1 - tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCK 15 Timing of ACT command to Power Down entry tACTPDEN 1 - 1 - 1 - 1 - nCK 20 Timing of PRE command to Power Down entry tPRPDEN 1 - 1 - 1 - 1 - nCK 20 Timing of RD/RDA command to Power Down entry tRDPDEN RL + 4 +1 - RL + 4 +1 - RL + 4 +1 - RL + 4 +1 - Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) tWRPDEN WL + 4 +(tWR/ tCK(avg)) - WL + 4 +(tWR/ tCK(avg)) - WL + 4 +(tWR/ tCK(avg)) - WL + 4 +(tWR/ tCK(avg)) - nCK 9 tWRAPDEN WL + 4 +WR +1 - WL + 4 +WR +1 - WL + 4 +WR +1 - WL + 4 +WR +1 - nCK 10 tWRPDEN WL + 2 +(tWR/ tCK(avg)) - WL + 2 +(tWR/ tCK(avg)) - WL + 2 +(tWR/ tCK(avg)) - WL + 2 +(tWR/ tCK(avg)) - nCK 9 tWRAPDEN WL +2 +WR +1 - WL +2 +WR +1 - WL +2 +WR +1 - WL +2 +WR +1 - nCK 10 Power Down Entry to Exit Timing Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) nCK Timing of REF command to Power Down entry tREFPDEN 1 - 1 - 1 - 1 - Timing of MRS command to Power Down entry tMRSPDEN tMOD(min) - tMOD(min) - tMOD(min) - tMOD(min) - 20,21 ODT high time without write command or with write command and BC4 ODTH4 4 - 4 - 4 - 4 - nCK ODT high time with Write command and BL8 ODTH8 6 - 6 - 6 - 6 - nCK Asynchronous RTT turn-on delay (Power-Down with DLL frozen) tAONPD 2 8.5 2 8.5 2 8.5 2 8.5 ns Asynchronous RTT turn-off delay (Power-Down with DLL frozen) tAOFPD 2 8.5 2 8.5 2 8.5 2 8.5 ns RTT turn-on tAON -400 400 -300 300 -250 250 -225 225 ps 7,f RTT_NOM and RTT_WR turn-off time from ODTLoff reference tAOF 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) 8,f RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) f First DQS pulse rising edge after tDQSS margining mode is programmed tWLMRD 40 - 40 - 40 - 40 - tCK 3 DQS/DQS delay after tDQS margining mode is programmed tWLDQSEN 25 - 25 - 25 - 25 - tCK 3 Write leveling setup time from rising CK, CK crossing to rising DQS, DQS crossing tWLH 325 - 245 - 195 - 165 - ps Write leveling hold time from rising DQS, DQS crossing to rising CK, CK crossing tWLH 325 - 245 - 195 - 165 - ps Write leveling output delay tWLO 0 9 0 9 0 9 0 7.5 ns Write leveling output error tWLOE 0 2 0 2 0 2 0 2 ns ODT Timing Write Leveling Timing - 50 - datasheet K4B2G0446D K4B2G0846D Rev. 1.01 DDR3L SDRAM 14.1 Jitter Notes Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min. Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. Specific Note c These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. Specific Note d These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe signal (DQS(L/U), DQS(L/U)) crossing. Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter. Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!) Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <= 12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12. Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/ max usage!) - 51 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 14.2 Timing Parameter Notes 1. Actual value dependant upon measurement level definitions which are TBD. 2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands. 3. The max values are system dependent. 4. WR as programmed in mode register 5. Value must be rounded-up to next higher integer value 6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI. 7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet" 8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet". 9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer. 10. WR in clock cycles as programmed in MR0 11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing Diagram Datasheet. 12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated by TBD 13. Value is only valid for RON34 14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method. 15. tREFI depends on TOPER 16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals, VREF(DC) = VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC). See Address/Command Setup, Hold and Derating : on page 53. . 17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals, VREF(DC)= VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC). See Data Setup, Hold and Slew Rate Derating : on page 59. 18. Start of internal write transaction is defined as follows ; For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL. For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL 19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram Datasheet" 20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be applied until finishing those operations. 21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet". 22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function. 23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters. One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula: ZQCorrection (TSens x Tdriftrate) + (VSens x Vdriftrate) where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities. For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as: 0.5 (1.5 x 1) + (0.15 x 15) = 0.133 ~ ~ 128ms 24. n = from 13 cycles to 50 cycles. This row defines 38 parameters. 25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge. 26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge. 27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns]. 28. Pulse width of a input signal is defined as the width between the first crossing of VREF(DC) and the consecutive crossing of VREF(DC) 29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge. 30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge. 31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application. 32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application. - 52 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 14.3 Address/Command Setup, Hold and Derating : For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see Table 50) to the ∆tIS and ∆tIH derating value (see Table 51) respectively. Example: tIS (total setup time) = tIS(base) + ∆tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIH(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max. If the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac region’, use nominal slew rate for derating value (see Figure 21). If the actual signal is later than the nominal slew rate line anywhere between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see Figure 23). Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC). Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If the actual signal is always later than the nominal slew rate line between shaded ’dc to VREF(DC) region’, use nominal slew rate for derating value (see Figure 22). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line to the actual signal from the dc level to VREF(DC) level is used for derating value (see Figure 24). For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC (see Table 51). Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC). For slew rates in between the values listed in Table 51, the derating values may obtained by linear interpolation. These values are typically not subject to production test. They are verified by design and characterization. [ Table 50 ] ADD/CMD Setup and Hold Base-Values for 1V/ns [ps] DDR3L-800 DDR3L-1066 DDR3L-1333 DDR3L-1600 reference tIS(base) AC160 215 140 80 60 VIH/L(AC) tIS(base) AC135 365 290 205 185 VIH/L(AC) tIH(base)-DC90 285 210 150 130 VIH/L(DC) NOTE : 1. AC/DC referenced for 1V/ns Address/Command slew rate and 2 V/ns differential CK-Ck slew rate 2. The tIS(base) AC135 specifications are adjusted from the tIS(base) AC160 specification by adding an additional 125ps for DDR3L-800/1066 or 100ps for DDR3L-1333/1600 of derating to accommodate for the lower alternate threshold of 135mV and another 25ps to account for the earlier reference point [(160mV-135mV)/1 V/ns] [ Table 51 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-AC/DC based ∆tIS, ∆tIH Derating [ps] AC/DC based AC175 Threshold -> VIH(AC) = VREF(DC) + 175mV, VIL(AC) = VREF(DC) - 175mV CLK,CLK Differential Slew Rate 4.0 V/ns CMD/ ADD Slew rate V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4V/ns 1.2V/ns 1.0V/ns ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH 2.0 88 50 88 50 88 50 96 58 104 66 112 74 120 84 128 100 1.5 59 34 59 34 59 34 67 42 75 50 83 58 91 68 99 84 1.0 0 0 0 0 0 0 8 8 16 16 24 24 32 34 40 50 0.9 -2 -4 -2 -4 -2 -4 6 4 14 12 22 20 30 30 38 46 0.8 -6 -10 -6 -10 -6 -10 2 -2 10 6 18 14 26 24 34 40 0.7 -11 -16 -11 -16 -11 -16 -3 -8 5 0 13 8 21 18 29 34 0.6 -17 -26 -17 -26 -17 -26 -9 -18 -1 -10 7 -2 15 8 23 24 0.5 -35 -40 -35 -40 -35 -40 -27 -32 -19 -24 -11 -16 -2 -6 5 10 0.4 -62 -60 -62 -60 -62 -60 -54 -52 -46 -44 -38 -36 -30 -26 -22 -10 - 53 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM [ Table 52 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-AC/DC based - Alternate AC150 Threshold ∆tIS, ∆tIH Derating [ps] AC/DC based Alternate AC150 Threshold -> VIH(AC) = VREF(DC) + 150mV, VIL(AC) = VREF(DC) - 150mV CLK,CLK Differential Slew Rate 4.0 V/ns CMD/ ADD Slew rate V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4V/ns 1.2V/ns 1.0V/ns ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH 2.0 75 50 75 50 75 50 83 58 91 66 99 74 107 84 115 100 1.5 50 34 50 34 50 34 58 42 66 50 74 58 82 68 90 84 1.0 0 0 0 0 0 0 8 8 16 16 24 24 32 34 40 50 0.9 0 -4 0 -4 0 -4 8 4 16 12 24 20 32 30 40 46 0.8 0 -10 0 -10 0 -10 8 -2 16 6 24 14 32 24 40 40 0.7 0 -16 0 -16 0 -16 8 -8 16 0 24 8 32 18 40 34 0.6 -1 -26 -1 -26 -1 -26 7 -18 15 -10 23 -2 31 8 39 24 0.5 -10 -40 -10 -40 -10 -40 -2 -32 6 -24 14 -16 22 -6 30 10 0.4 -25 -60 -25 -60 -25 -60 -17 -52 -9 -44 -1 -36 7 -26 15 -10 [ Table 53 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition tVAC @175mV [ps] Slew Rate[V/ns] min tVAC @150mV [ps] max min max >2.0 75 - 175 - 2.0 57 - 170 - 1.5 50 - 167 - 1.0 38 - 163 - 0.9 34 - 162 - 0.8 29 - 161 - 0.7 22 - 159 - 0.6 13 - 155 - 0.5 0 - 150 - < 0.5 0 - 150 - - 54 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM NOTE :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ tVAC VIH(AC) min VREF to ac region VIH(DC) min nominal slew rate VREF(DC) nominal slew rate VIL(DC) max VREF to ac region VIL(AC) max tVAC VSS ∆ TF Setup Slew Rate = VREF(DC) - VIL(AC)max Falling Signal ∆ TF ∆ TR Setup Slew Rate V (AC)min - VREF(DC) = IH Rising Signal ∆ TR Figure 21. Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS (for ADD/CMD with respect to clock). - 55 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM NOTE :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ VIH(AC) min VIH(DC) min dc to VREF region nominal slew rate VREF(DC) nominal slew rate dc to VREF region VIL(DC) max VIL(AC) max VSS ∆ TR Hold Slew Rate VREF(DC) - VIL(DC)max Rising Signal = ∆ TR ∆ TF Hold Slew Rate VIH(DC)min - VREF(DC) = Falling Signal ∆ TF Figure 22. Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH (for ADD/CMD with respect to clock). - 56 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM NOTE :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ nominal line tVAC VIH(AC) min VREF to ac region VIH(DC) min tangent line VREF(DC) tangent line VIL(DC) max VREF to ac region VIL(AC) max nominal line ∆ TR tVAC VSS ∆ TF tangent line[VIH(AC)min - VREF(DC)] Setup Slew Rate = Rising Signal ∆ TR Setup Slew Rate tangent line[VREF(DC) - VIL(AC)max] Falling Signal = ∆ TF Figure 23. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS (for ADD/CMD with respect to clock) - 57 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM NOTE :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ VIH(AC) min nominal line VIH(DC) min dc to VREF region tangent line VREF(DC) dc to VREF region tangent line nominal line VIL(DC) max VIL(AC) max VSS ∆ TR ∆ TF Hold Slew Rate tangent line [ VREF(DC) - VIL(DC)max ] Rising Signal = ∆ TR Hold Slew Rate tangent line [ VIH(DC)min - VREF(DC) ] Falling Signal = ∆ TF Figure 24. Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH (for ADD/CMD with respect to clock) - 58 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM 14.4 Data Setup, Hold and Slew Rate Derating : For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see Table 54) to the ∆ tDS and ∆tDH (see Table 55) derating value respectively. Example: tDS (total setup time) = tDS(base) + ∆tDS. Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIH(AC)min. Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max (see Figure 25). If the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac region’, use nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see Figure 27). Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC) (see Figure ). If the actual signal is always later than the nominal slew rate line between shaded ’dc level to VREF(DC) region’, use nominal slew rate for derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line to the actual signal from the dc level to VREF(DC) level is used for derating value (see Figure 28). For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC (see Table 56). Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC). For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation. These values are typically not subject to production test. They are verified by design and characterization. [ Table 54 ] Data Setup and Hold Base-Values [ps] tDS(base) AC175 tDS(base) AC150 tDS(base) AC135 tDH(base) DC100 DDR3-800 75 125 150 DDR3-1066 25 75 100 DDR3-1333 30 65 DDR3-1600 10 45 reference VIH/L(AC) VIH/L(AC) VIH/L(AC) VIH/L(DC) NOTE : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate) [ Table 55 ] Derating values DDR3-800/1066 tDS/tDH - (AC175) DDR3 DQ Slew 800/ rate 1066 V/ns 2.0 1.5 1.0 0.9 0.8 0.7 0.6 0.5 0.4 4.0 V/ns ∆tDS ∆tDH 88 50 59 34 0 0 - ∆tDS, ∆tDH Derating in [ps] AC/DC based1 DQS,DQS Differential Slew Rate 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns ∆tDS ∆tDH ∆tDS ∆tDH ∆tDS ∆tDH ∆tDS ∆tDH 88 50 88 50 59 34 59 34 67 42 0 0 0 0 8 8 16 16 -2 -4 -2 -4 6 4 14 12 -6 -10 2 -2 10 6 -3 -8 5 0 -1 -10 - 1.4V/ns ∆tDS ∆tDH 22 20 18 14 13 8 7 -2 -11 -16 - 1.2V/ns ∆tDS ∆tDH 26 24 21 18 15 8 -2 -6 -30 -26 1.0V/ns ∆tDS ∆tDH 29 34 23 24 6 10 -22 -10 NOTE : 1. Cell contents shaded in red are defined as ’not supported’. [ Table 56 ] Derating values for DDR3-800/1066/1333/1600 tDS/tDH - (AC150) DQ Slew rate V/ns 2.0 1.5 1.0 0.9 0.8 0.7 0.6 0.5 0.4 4.0 V/ns ∆tDS ∆tDH 75 50 50 34 0 0 - 3.0 V/ns ∆tDS ∆tDH 75 50 50 34 0 0 0 -4 - ∆tDS, ∆tDH Derating in [ps] AC/DC based1 DQS,DQS Differential Slew Rate 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4V/ns ∆tDS ∆tDH ∆tDS ∆tDH ∆tDS ∆tDH ∆tDS ∆tDH 75 50 50 34 58 42 0 0 8 8 16 16 0 -4 8 4 16 12 24 20 0 -10 8 -2 16 6 24 14 8 -8 16 0 24 8 15 -10 23 -2 14 -16 - NOTE : 1. Cell contents shaded in red are defined as ’not supported’. - 59 - 1.2V/ns ∆tDS ∆tDH 32 24 32 18 31 8 22 -6 7 -26 1.0V/ns ∆tDS ∆tDH 40 34 39 24 30 10 15 -10 Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM [ Table 57 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition Slew Rate[V/ns] >2.0 2.0 1.5 1.0 0.9 0.8 0.7 0.6 0.5 <0.5 tVAC[ps] DDR3-800/1066 (AC175) tVAC[ps] DDR3-800/1066/1333/1600 (AC150) min max min max 75 57 50 38 34 29 22 13 0 0 - 175 170 167 163 162 161 159 155 155 150 - - 60 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM NOTE :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ tVAC VIH(AC) min VREF to ac region VIH(DC) min nominal slew rate VREF(DC) nominal slew rate VIL(DC) max VREF to ac region VIL(AC) max tVAC VSS ∆ TF Setup Slew Rate= VREF(DC) - VIL(AC)max Falling Signal ∆ TF ∆ TR Setup Slew Rate VIH(AC)min - VREF(DC) = Rising Signal ∆ TR Figure 25. Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS (for ADD/CMD with respect to clock). - 61 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM NOTE :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ VIH(AC) min VIH(DC) min dc to VREF region nominal slew rate VREF(DC) nominal slew rate dc to VREF region VIL(DC) max VIL(AC) max VSS ∆ TR Hold Slew Rate VREF(DC) - VIL(DC)max Rising Signal = ∆ TR ∆ TF Hold Slew Rate VIH(DC)min - VREF(DC) = Falling Signal ∆ TF Figure 26. Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH (for ADD/CMD with respect to clock). - 62 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM NOTE :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ nominal line tVAC VIH(AC) min VREF to ac region VIH(DC) min tangent line VREF(DC) tangent line VIL(DC) max VREF to ac region VIL(AC) max nominal line ∆ TR tVAC VSS ∆ TF tangent line[VIH(AC)min - VREF(DC)] Setup Slew Rate = Rising Signal ∆ TR Setup Slew Rate tangent line[VREF(DC) - VIL(AC)max] Falling Signal = ∆ TF Figure 27. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS (for ADD/CMD with respect to clock) - 63 - Rev. 1.01 datasheet K4B2G0446D K4B2G0846D DDR3L SDRAM NOTE :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ VIH(AC) min nominal line VIH(DC) min dc to VREF region tangent line VREF(DC) dc to VREF region tangent line nominal line VIL(DC) max VIL(AC) max VSS ∆ TR ∆ TF Hold Slew Rate tangent line [ VREF(DC) - VIL(DC)max ] Rising Signal = ∆ TR Hold Slew Rate tangent line [ VIH(DC)min - VREF(DC) ] Falling Signal = ∆ TF Figure 28. Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH (for ADD/CMD with respect to clock) - 64 -