SAMSUNG K4B2G0846D-HYK0

Rev. 1.01, Nov. 2010
K4B2G0446D
K4B2G0846D
2Gb D-die DDR3L SDRAM
78FBGA with Lead-Free & Halogen-Free
(RoHS compliant)
datasheet
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND
SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed
herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property
right is granted by one party to the other party under this document, by implication, estoppel or otherwise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or
similar applications where product failure could result in loss of life or personal or physical harm, or any
military or defense application, or any governmental procurement to which special terms or provisions
may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
ⓒ 2010 Samsung Electronics Co., Ltd. All rights reserved.
-1-
1.35V
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
Revision History
Revision No.
History
Draft Date
Remark
Editor
1.0
- First Spec. Release
Aug. 2010
-
S.H.Kim
1.01
- Corrected typo.
Nov. 2010
-
S.H.Kim
-2-
K4B2G0446D
K4B2G0846D
datasheet
Rev. 1.01
DDR3L SDRAM
Table Of Contents
2Gb D-die DDR3L SDRAM
1. Ordering Information ..................................................................................................................................................... 5
2. Key Features................................................................................................................................................................. 5
3. Package pinout/Mechanical Dimension & Addressing.................................................................................................. 6
3.1 x4 Package Pinout (Top view) : 78ball FBGA Package .......................................................................................... 6
3.2 x8 Package Pinout (Top view) : 78ball FBGA Package .......................................................................................... 7
3.3 FBGA Package Dimension (x4/x8) .......................................................................................................................... 8
4. Input/Output Functional Description.............................................................................................................................. 9
5. DDR3 SDRAM Addressing ........................................................................................................................................... 10
6. Absolute Maximum Ratings .......................................................................................................................................... 11
6.1 Absolute Maximum DC Ratings............................................................................................................................... 11
6.2 DRAM Component Operating Temperature Range ................................................................................................ 11
7. AC & DC Operating Conditions..................................................................................................................................... 11
7.1 Recommended DC operating Conditions (SSTL_1.5)............................................................................................. 11
8. AC & DC Input Measurement Levels ............................................................................................................................ 12
8.1 AC & DC Logic input levels for single-ended signals .............................................................................................. 12
8.2 VREF Tolerances...................................................................................................................................................... 14
8.3 AC & DC Logic Input Levels for Differential Signals ................................................................................................ 15
8.3.1. Differential signals definition ............................................................................................................................ 15
8.3.2. Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS) .................................................. 15
8.3.3. Single-ended requirements for differential signals ........................................................................................... 17
8.4 Differential Input Cross Point Voltage...................................................................................................................... 18
8.5 Slew rate definition for Differential Input Signals ..................................................................................................... 19
8.6 Slew rate definitions for Differential Input Signals ................................................................................................... 19
9. AC & DC Output Measurement Levels ......................................................................................................................... 19
9.1 Single-ended AC & DC Output Levels..................................................................................................................... 19
9.2 Differential AC & DC Output Levels......................................................................................................................... 19
9.3 Single-ended Output Slew Rate .............................................................................................................................. 20
9.4 Differential Output Slew Rate .................................................................................................................................. 21
9.5 Reference Load for AC Timing and Output Slew Rate ............................................................................................ 21
9.6 Overshoot/Undershoot Specification ....................................................................................................................... 22
9.6.1. Address and Control Overshoot and Undershoot specifications...................................................................... 22
9.6.2. Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications ...................................................... 23
9.7 34ohm Output Driver DC Electrical Characteristics................................................................................................. 23
9.7.1. Output Drive Temperature and Voltage Sensitivity .......................................................................................... 25
9.8 On-Die Termination (ODT) Levels and I-V Characteristics ..................................................................................... 25
9.8.1. ODT DC Electrical Characteristics ................................................................................................................... 26
9.8.2. ODT Temperature and Voltage sensitivity ...................................................................................................... 28
9.9 ODT Timing Definitions ........................................................................................................................................... 29
9.9.1. Test Load for ODT Timings .............................................................................................................................. 29
9.9.2. ODT Timing Definitions .................................................................................................................................... 29
10. IDD Current Measure Method..................................................................................................................................... 32
10.1 IDD Measurement Conditions ............................................................................................................................... 32
11. 2Gb DDR3 SDRAM D-die IDD Specification Table .................................................................................................... 41
12. Input/Output Capacitance ........................................................................................................................................... 42
13. Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 ...................................................................... 43
13.1 Clock Specification ................................................................................................................................................ 43
13.1.1. Definition for tCK(avg).................................................................................................................................... 43
13.1.2. Definition for tCK(abs).................................................................................................................................... 43
13.1.3. Definition for tCH(avg) and tCL(avg) .............................................................................................................. 43
13.1.4. Definition for note for tJIT(per), tJIT(per, Ick) ................................................................................................. 43
13.1.5. Definition for tJIT(cc), tJIT(cc, Ick) ................................................................................................................. 43
13.1.6. Definition for tERR(nper) ................................................................................................................................ 43
13.2 Refresh Parameters by Device Density................................................................................................................. 44
13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ................................................................. 44
13.3.1. Speed Bin Table Notes .................................................................................................................................. 47
-3-
K4B2G0446D
K4B2G0846D
datasheet
Rev. 1.01
DDR3L SDRAM
14. Timing Parameters by Speed Grade .......................................................................................................................... 48
14.1 Jitter Notes ............................................................................................................................................................ 51
14.2 Timing Parameter Notes........................................................................................................................................ 52
14.3 Address/Command Setup, Hold and Derating : .................................................................................................... 53
14.4 Data Setup, Hold and Slew Rate Derating : .......................................................................................................... 59
-4-
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
1. Ordering Information
[ Table 1 ] Samsung 2Gb DDR3L D-die ordering information table
Organization
DDR3L-1066 (7-7-7)
DDR3L-1333 (9-9-9)3
DDR3L-1600 (11-11-11)2
Package
512Mx4
K4B2G0446D-HYF8
K4B2G0446D-HYH9
K4B2G0446D-HYK0
78 FBGA
256Mx8
K4B2G0846D-HYF8
K4B2G0846D-HYH9
K4B2G0846D-HYK0
78 FBGA
NOTE :
1. Speed bin is in order of CL-tRCD-tRP.
2. Backward compatible to DDR3L-1333(9-9-9), DDR3L-1066(7-7-7)
3. Backward compatible to DDR3L-1066(7-7-7)
2. Key Features
[ Table 2 ] 2Gb DDR3 D-die Speed bins
Speed
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
6-6-6
7-7-7
9-9-9
11-11-11
Unit
tCK(min)
2.5
1.875
1.5
1.25
ns
CAS Latency
6
7
9
11
nCK
tRCD(min)
15
13.125
13.5
13.75
ns
tRP(min)
15
13.125
13.5
13.75
ns
tRAS(min)
37.5
37.5
36
35
ns
tRC(min)
52.5
50.625
49.5
48.75
ns
• JEDEC standard 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)
The 2Gb DDR3 SDRAM D-die is organized as a 64Mbit x 4 I/Os x 8banks,
• VDDQ = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)
32Mbit x 8 I/Os x 8banks device. This synchronous device achieves high
• 400 MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin,
667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin
speed double-data-rate transfer rates of up to 1600Mb/sec/pin (DDR3-
• 8 Banks
• Programmable CAS Latency(posted CAS): 5,6,7,8,9,10,11
• Programmable Additive Latency: 0, CL-2 or CL-1 clock
• Programmable CAS Write Latency (CWL) = 5(DDR3-800),
6(DDR3-1066), 7(DDR3-1333) and 8(DDR3-1600)
• 8-bit pre-fetch
• Burst Length: 8 (Interleave without any limit, sequential with starting
address “000” only), 4 with tCCD = 4 which does not allow seamless
read or write [either On the fly using A12 or MRS]
1600) for general applications.
The chip is designed to comply with the following key DDR3 SDRAM features such as posted CAS, Programmable CWL, Internal (Self) Calibration,
On Die Termination using ODT pin and Asynchronous Reset .
All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the crosspoint of differential clocks (CK rising and CK falling). All I/Os are synchronized with a
pair of bidirectional strobes (DQS and DQS) in a source synchronous fashion. The address bus is used to convey row, column, and bank address
information in a RAS/CAS multiplexing style. The DDR3 device operates
• Bi-directional Differential Data-Strobe
with a single 1.35V(1.28V~1.45V) or 1.5V(1.425V~1.575V) power supply
• Internal(self) calibration : Internal self calibration through ZQ pin
(RZQ : 240 ohm ± 1%)
and 1.35V(1.28V~1.45V) or 1.5V(1.425V~1.575V).
The 2Gb DDR3 D-die device is available in 78ball FBGAs(x4/x8)
• On Die Termination using ODT pin
• Average Refresh Period 7.8us at lower than TCASE 85°C, 3.9us at
85°C < TCASE < 95 °C
• Asynchronous Reset
• Package : 78 balls FBGA - x4/x8
• All of Lead-Free products are compliant for RoHS
• All of products are Halogen-free
NOTE : 1. This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in “DDR3 SDRAM Device Operation & Timing
Diagram”.
2. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation.
-5-
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
3. Package pinout/Mechanical Dimension & Addressing
3.1 x4 Package Pinout (Top view) : 78ball FBGA Package
1
2
3
A
VSS
VDD
B
VSS
C
VDDQ
D
VSSQ
E
VREFDQ
F
NC
VSS
G
ODT
VDD
H
NC
CS
J
VSS
K
4
5
6
7
8
9
NC
NC
VSS
VDD
A
VSSQ
DQ0
DM
VSSQ
VDDQ
B
DQ2
DQS
DQ1
DQ3
VSSQ
C
NC
DQS
VDD
VSS
VSSQ
D
VDDQ
NC
NC
NC
VDDQ
E
RAS
CK
VSS
NC
F
CAS
CK
VDD
CKE
G
WE
A10/AP
ZQ
NC
H
BA0
BA2
NC
VREFCA
VSS
J
VDD
A3
A0
A12/BC
BA1
VDD
K
L
VSS
A5
A2
A1
A4
VSS
L
M
VDD
A7
A9
A11
A6
VDD
M
N
VSS
RESET
A13
A14
A8
VSS
N
1
Ball Locations (x4)
A
B
C
Populated ball
Ball not populated
D
E
F
G
H
Top view
(See the balls through the package)
J
K
L
M
N
-6-
2
3
4
5
6
7
8
9
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
3.2 x8 Package Pinout (Top view) : 78ball FBGA Package
1
2
3
NC
A
VSS
VDD
B
VSS
VSSQ
C
VDDQ
DQ2
DQS
4
5
6
7
8
9
NU/TDQS
VSS
VDD
A
DQ0
DM/TDQS
VSSQ
VDDQ
B
DQS
DQ1
DQ3
VSSQ
C
VDD
VSS
VSSQ
D
E
D
VSSQ
DQ6
E
VREFDQ
VDDQ
DQ4
DQ7
DQ5
VDDQ
F
NC
VSS
RAS
CK
VSS
NC
F
G
ODT
VDD
CAS
CK
VDD
CKE
G
H
NC
CS
WE
A10/AP
ZQ
NC
H
J
VSS
BA0
BA2
NC
VREFCA
VSS
J
K
VDD
A3
A0
A12/BC
BA1
VDD
K
L
VSS
A5
A2
A1
A4
VSS
L
M
VDD
A7
A9
A11
A6
VDD
M
N
VSS
RESET
A13
A14
A8
VSS
N
1
Ball Locations (x8)
A
B
C
Populated ball
Ball not populated
D
E
F
G
H
Top view
(See the balls through the package)
J
K
L
M
N
-7-
2
3
4
5
6
7
8
9
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
3.3 FBGA Package Dimension (x4/x8)
Units : Millimeters
7.50 ± 0.10
#A1 INDEX MARK
3.20
1.60
B
0.80
0.80
(Datum B)
4.80
A
B
C
D
E
F
G
H
J
K
L
M
N
(0.95)
78 - ∅0.45 Solder ball
(Post Reflow ∅0.50 ± 0.05)
0.2 M A B
0.80 x 12 = 9.60
9 8 7 6 5 4 3 2 1
11.00 ± 0.10
0.80
(Datum A)
A
MOLDING AREA
(1.90)
0.10MAX
BOTTOM VIEW
7.50 ± 0.10
11.00 ± 0.10
#A1
0.35 ± 0.05
1.10 ± 0.10
TOP VIEW
-8-
datasheet
K4B2G0446D
K4B2G0846D
Rev. 1.01
DDR3L SDRAM
4. Input/Output Functional Description
[ Table 3 ] Input/Output function description
Symbol
Type
Function
CK, CK
Input
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of
the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and
output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or
Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After VREFCA has become
CKE
Input
CS
Input
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on
systems with multiple Ranks. CS is considered part of the command code.
ODT
Input
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When
enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode
Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is programmed to disable ODT.
RAS, CAS, WE
Input
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.
DM
(DMU), (DML)
Input
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of
DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1.
BA0 - BA2
Input
Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being
applied. Bank address also determines if the mode register or extended mode register is to be accessed during a
MRS cycle.
Input
Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands
to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions,
see below)
The address inputs also provide the op-code during Mode Register Set commands.
A10 / AP
Input
Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge)
A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or
all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses.
A12 / BC
Input
Burst Chop:A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be performed. (HIGH : no burst chop, LOW : burst chopped). See command truth table for details
RESET
Input
Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH.
RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and
20% of VDD, i.e.
DQ
Input/Output
Data Input/ Output: Bi-directional data bus.
Input/Output
Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the
x16, DQSL: corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data
strobe DQS, DQSL and DQSU are paired with differential signals DQS, DQSL and DQSU, respectively, to provide differential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and
does not support single-ended.
Output
Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in
MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When
disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4/
x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1.
A0 - A14
DQS, (DQS)
TDQS, (TDQS)
NC
stable during the power on and initialization sequence, it must be maintained during all operations (including SelfRefresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT
and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self -Refresh.
No Connect: No internal electrical connection is present.
VDDQ
Supply
DQ Power Supply: 1.35V(1.28V~1.45V) or & 1.5V(1.425V~1.575V)
VSSQ
Supply
DQ Ground
VDD
Supply
Power Supply: 1.35V(1.28V~1.45V) or & 1.5V(1.425V~1.575V)
VSS
Supply
Ground
VREFDQ
Supply
Reference voltage for DQ
VREFCA
Supply
Reference voltage for CA
ZQ
Supply
Reference Pin for ZQ calibration
NOTE : Input only pins (BA0-BA2, A0-A14, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination.
-9-
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
5. DDR3 SDRAM Addressing
1Gb
Configuration
256Mb x 4
128Mb x 8
64Mb x 16
# of Bank
8
8
8
Bank Address
BA0 - BA2
BA0 - BA2
BA0 - BA2
Auto precharge
A10/AP
A10/AP
A10/AP
Row Address
A0 - A13
A0 - A13
A0 - A12
Column Address
A0 - A9,A11
A0 - A 9
A 0 - A9
BC switch on the fly
A12/BC
A12/BC
A12/BC
Page size *1
1 KB
1 KB
2 KB
Configuration
512Mb x 4
256Mb x 8
128Mb x 16
2Gb
# of Bank
8
8
8
Bank Address
BA0 - BA2
BA0 - BA2
BA0 - BA2
Auto precharge
A10/AP
A10/AP
A10/AP
Row Address
A0 - A14
A0 - A14
A0 - A13
Column Address
A0 - A9,A11
A0 - A 9
A 0 - A9
BC switch on the fly
A12/BC
A12/BC
A12/BC
Page size *1
1 KB
1 KB
2 KB
Configuration
1Gb x 4
512Mb x 8
256Mb x 16
# of Bank
8
8
8
Bank Address
BA0 - BA2
BA0 - BA2
BA0 - BA2
Auto precharge
A10/AP
A10/AP
A10/AP
4Gb
Row Address
A0 - A15
A0 - A15
A0 - A14
Column Address
A0 - A9,A11
A0 - A 9
A 0 - A9
BC switch on the fly
A12/BC
A12/BC
A12/BC
1 KB
1 KB
2 KB
Configuration
2Gb x 4
1Gb x 8
512Mb x 16
# of Bank
8
8
8
Bank Address
BA0 - BA2
BA0 - BA2
BA0 - BA2
Auto precharge
A10/AP
A10/AP
A10/AP
Page size
*1
8Gb
Row Address
A0 - A15
A0 - A15
A0 - A15
Column Address
A0 - A9,A11,A13
A0 - A9,A11
A 0 - A9
BC switch on the fly
A12/BC
A12/BC
A12/BC
2 KB
2 KB
2 KB
Page size
*1
NOTE 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered.
Page size is per bank, calculated as follows:
page size = 2 COLBITS * ORG÷8
where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits
- 10 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
6. Absolute Maximum Ratings
6.1 Absolute Maximum DC Ratings
[ Table 4 ] Absolute Maximum DC Ratings
Symbol
Parameter
Rating
Units
NOTE
VDD
Voltage on VDD pin relative to Vss
-0.4 V ~ 1.975 V
V
1,3
VDDQ
Voltage on VDDQ pin relative to Vss
-0.4 V ~ 1.975 V
V
1,3
VIN, VOUT
Voltage on any pin relative to Vss
-0.4 V ~ 1.975 V
V
1
TSTG
Storage Temperature
-55 to +100
°C
1, 2
NOTE :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be
equal to or less than 300mV.
6.2 DRAM Component Operating Temperature Range
[ Table 5 ] Temperature Range
Symbol
Parameter
rating
Unit
NOTE
TOPER
Operating Temperature Range
0 to 95
°C
1, 2, 3
NOTE :
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document
JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the
following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us.
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature
Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range.
7. AC & DC Operating Conditions
7.1 Recommended DC operating Conditions (SSTL_1.5)
[ Table 6 ] Recommended DC Operating Conditions
Symbol
VDD
VDDQ
Parameter
Supply Voltage
Supply Voltage for Output
Operation Voltage
Rating
Min.
Typ.
1.35V
1.283
1.35
1.5V
1.425
1.5
1.35V
1.283
1.35
1.5V
1.425
1.5
NOTE :
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
3. VDD & VDDQ rating are determined by operation voltage.
- 11 -
Units
Notes
1.45
V
1, 2, 3
1.575
V
1, 2, 3
1.45
V
1, 2, 3
1.575
V
1, 2, 3
Max.
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
8. AC & DC Input Measurement Levels
8.1 AC & DC Logic input levels for single-ended signals
[ Table 7 ] Single-ended AC & DC input levels for Command and Address
Symbol
Parameter
DDR3-800/1066/1333/1600
Min.
Max.
Unit
NOTE
1.35V
VIH.CA(DC90)
DC input logic high
VREF + 90
VDD
mV
1,5a)
VIL.CA(DC90)
DC input logic low
VSS
VREF - 90
mV
1,6a)
VREF + 160
Note 2
mV
1,2
VIL.CA(AC160) AC input logic low
Note 2
VREF - 160
mV
1,2
VIH.CA(AC135) AC input logic high
VREF+135
Note 2
mV
1,2
Note 2
VREF-135
mV
1,2
0.49*VDD
0.51*VDD
V
3,4
VIH.CA(AC160) AC input logic high
VIL.CA(AC135) AC input logic lowM
VREFCA(DC)
Reference Voltage for ADD,
CMD inputs
1.5V
VIH.CA(DC100) DC input logic high
VREF + 100
VDD
mV
1,5b)
VIL.CA(DC100) DC input logic low
VSS
VREF - 100
mV
1,6b)
VIH.CA(AC175) AC input logic high
VREF + 175
Note 2
mV
1,2,7
VIL.CA(AC175) AC input logic low
Note 2
VREF - 175
mV
1,2,8
VIH.CA(AC150) AC input logic high
VREF+150
Note 2
mV
1,2,7
VIL.CA(AC150) AC input logic low
Note 2
VREF-150
mV
1,2,8
0.49*VDD
0.51*VDD
V
3,4
VREFCA(DC)
Reference Voltage for ADD,
CMD inputs
NOTE :
1. For input only pins except RESET, VREF = VREFCA(DC)
2. See "Overshoot and Undershoot specifications" section.
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
4. For reference : approx. VDD/2 ± 15mV
5. VIH(dc) is used as a simplified symbol for VIH.CA(a) 1.35V : DC90, b) 1.5V : DC100)
6. VIL(dc) is used as a simplified symbol for VIL.CA(a) 1.35V : DC90, b) 1.5V : DC100)
7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175) and VIH.CA(AC150); VIH.CA(AC175) value is used when VREF + 175mV is referenced and VIH.CA(AC150) value is
used when VREF + 150mV is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175) and VIL.CA(AC150); VIL.CA(AC175) value is used when VREF - 175mV is referenced and VIL.CA(AC150) value is used
when VREF - 150mV is referenced.
- 12 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
[ Table 8 ] Single-ended AC & DC input levels for DQ and DM
Symbol
Parameter
DDR3-800/1066
Min.
DDR3-1333/1600
Max.
Min.
Max.
Unit
NOTE
1.35V
VIH.DQ(DC90) DC input logic high
VREF + 90
VDD
VREF + 90
VDD
mV
1,5a)
VSS
VREF - 90
VSS
VREF - 90
mV
1,6a)
VIH.DQ(AC160) AC input logic high
VREF + 160
Note 2
-
-
mV
1,2
VIL.DQ(AC160) AC input logic low
Note 2
VREF - 160
-
-
mV
1,2
VIH.DQ(AC135) AC input logic high
VREF + 135
Note 2
VREF + 135
Note 2
mV
1,2
VIL.DQ(AC135) AC input logic low
Note 2
VREF - 135
Note 2
VREF - 135
mV
1,2
0.49*VDD
0.51*VDD
0.49*VDD
0.51*VDD
V
3,4
VIL.DQ(DC90)
VREFDQ(DC)
DC input logic low
Reference Voltage for DQ,
DM inputs
1.5V
VIH.DQ(DC100) DC input logic high
VREF + 100
VDD
VREF + 100
VDD
mV
1,5b)
VIL.DQ(DC100) DC input logic low
VSS
VREF - 100
VSS
VREF - 100
mV
1,6b)
VIH.DQ(AC175) AC input logic high
VREF + 175
NOTE 2
-
-
mV
1,2,7
VIL.DQ(AC175) AC input logic low
NOTE 2
VREF - 175
-
-
mV
1,2,8
VIH.DQ(AC150) AC input logic high
VREF + 150
NOTE 2
VREF + 150
NOTE 2
mV
1,2,7
VIL.DQ(AC150) AC input logic low
NOTE 2
VREF - 150
NOTE 2
VREF - 150
mV
1,2,8
0.49*VDD
0.51*VDD
0.49*VDD
0.51*VDD
V
3,4
VREFDQ(DC)
Reference Voltage for DQ,
DM inputs
NOTE :
1. For input only pins except RESET, VREF = VREFDQ(DC)
2. See ’Overshoot/Undershoot Specification’ on page 22.
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
4. For reference : approx. VDD/2 ± 15mV
5. VIH(dc) is used as a simplified symbol for VIH.CA(a) 1.35V : DC90, b) 1.5V : DC100)
6. VIL(dc) is used as a simplified symbol for VIL.CA(a) 1.35V : DC90, b) 1.5V : DC100)
7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150) ; VIH.DQ(AC175) value is used when VREF + 175mV is referenced, VIH.DQ(AC150) value is used
when VREF + 150mV is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150) ; VIL.DQ(AC175) value is used when VREF - 175mV is referenced, VIL.DQ(AC150) value is used when
VREF - 150mV is referenced.
- 13 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
8.2 VREF Tolerances
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 1. It shows a valid reference voltage
VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise).
VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7 on
page 12. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD.
voltage
VDD
VSS
time
Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF.
"VREF" shall be understood as VREF(DC), as defined in Figure 1 .
This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing
and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
- 14 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
8.3 AC & DC Logic Input Levels for Differential Signals
8.3.1 Differential signals definition
tDVAC
Differential Input Voltage (i.e. DQS-DQS, CK-CK)
VIH.DIFF.AC.MIN
VIH.DIFF.MIN
0.0
half cycle
VIL.DIFF.MAX
VIL.DIFF.AC.MAX
tDVAC
time
Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC
8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)
[ Table 9 ] Differential AC & DC Input Levels
DDR3-800/1066/1333/1600
Symbol
Parameter
1.35V
1.5V
min
max
min
max
unit
NOTE
VIHdiff
differential input high
+0.18
NOTE 3
+0.20
NOTE 3
V
1
VILdiff
differential input low
NOTE 3
-0.18
NOTE 3
-0.20
V
1
VIHdiff(AC)
differential input high ac
2 x (VIH(AC) - VREF)
NOTE 3
2 x (VIH(AC) - VREF)
NOTE 3
V
2
NOTE 3
2 x (VIL(AC) - VREF)
NOTE 3
2 x (VIL(AC) - VREF)
V
2
VILdiff(AC)
differential input low ac
NOTE :
1. Used to define a differential signal slew-rate.
2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group,
then the reduced level applies also here.
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification"
- 15 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
[ Table 10 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.35V)
Slew Rate [V/ns]
tDVAC [ps] @ |VIH/Ldiff(AC)| = 320mV
tDVAC [ps] @ |VIH/Ldiff(AC)| = 270mV
min
max
min
max
> 4.0
TBD
-
TBD
-
4.0
TBD
-
TBD
-
3.0
TBD
-
TBD
-
2.0
TBD
-
TBD
-
1.8
TBD
-
TBD
-
1.6
TBD
-
TBD
-
1.4
TBD
-
TBD
-
1.2
TBD
-
TBD
-
1.0
TBD
-
TBD
-
< 1.0
TBD
-
TBD
-
[ Table 11 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.5V)
Slew Rate [V/ns]
tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV
tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV
min
max
min
max
> 4.0
75
-
175
-
4.0
57
-
170
-
3.0
50
-
167
-
2.0
38
-
163
-
1.8
34
-
162
-
1.6
29
-
161
-
1.4
22
-
159
-
1.2
13
-
155
-
1.0
0
-
150
-
< 1.0
0
-
150
-
- 16 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
8.3.3 Single-ended requirements for differential signals
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for
single-ended signals.
CK and CK have to approximately reach VSEHmin / VSELmax [approximately equal to the ac-levels { VIH(AC) / VIL(AC)} for ADD/CMD signals] in every
half-cycle.
DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax [approximately the ac-levels { VIH(AC) / VIL(AC)} for DQ signals] in every half-cycle
proceeding and following a valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and CK .
VDD or VDDQ
VSEH min
VSEH
VDD/2 or VDDQ/2
CK or DQS
VSEL max
VSEL
VSS or VSSQ
time
Figure 3. Single-ended requirement for differential signals
Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement
with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common
mode characteristics of these signals.
[ Table 12 ] Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU
Symbol
VSEH
VSEL
Parameter
DDR3-800/1066/1333/1600
Min
Max
Unit
NOTE
Single-ended high-level for strobes
(VDD/2)+0.175
NOTE3
V
1, 2
Single-ended high-level for CK, CK
(VDD/2)+0.175
NOTE3
V
1, 2
Single-ended low-level for strobes
NOTE3
(VDD/2)-0.175
V
1, 2
Single-ended low-level for CK, CK
NOTE3
(VDD/2)-0.175
V
1, 2
NOTE :
1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL(AC) of DQs.
2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the
reduced level applies also here
3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective
limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot
Specification"
- 17 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
8.4 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual
cross point of true and complement signal to the mid level between of VDD and VSS.
VDD
CK, DQS
VIX
VDD/2
VIX
VIX
CK, DQS
VSS
Figure 4. VIX Definition
[ Table 13 ] Cross point voltage for differential input signals (CK, DQS) : 1.35V
Symbol
DDR3L-800/1066/1333/1600
Parameter
Min
Max
Unit
NOTE
1
VIX
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK
-150
150
mV
VIX
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS
-150
150
mV
NOTE :
1. The relationbetween Vix Min/Max and VSEL/VSEH should satisfy following.
(VDD/2) + Vix(Min) - VSEL ≥ 25mV
VSEH - ((VDD/2) + Vix(Max)) ≥ 25mV
[ Table 14 ] Cross point voltage for differential input signals (CK, DQS) : 1.5V
Symbol
DDR3-800/1066/1333/1600
Parameter
VIX
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK
VIX
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS
Unit
Min
Max
-150
150
mV
-175
175
mV
-150
150
mV
NOTE
1
NOTE :
1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2
±250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns.
- 18 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
8.5 Slew rate definition for Differential Input Signals
See 14.3 “Address/Command Setup, Hold and Derating :” on page 50 for single-ended slew rate definitions for address and command signals.
See 14.4 “Data Setup, Hold and Slew Rate Derating :” on page 56 for single-ended slew rate definitions for data signals.
8.6 Slew rate definitions for Differential Input Signals
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in Table 15 and Figure 5.
[ Table 15 ] Differential input slew rate definition
Measured
Description
Differential input slew rate for rising edge (CK-CK and DQS-DQS)
Differential input slew rate for falling edge (CK-CK and DQS-DQS)
Defined by
From
To
VILdiffmax
VIHdiffmin
VIHdiffmin
VIHdiffmin - VILdiffmax
Delta TRdiff
VIHdiffmin - VILdiffmax
VILdiffmax
Delta TFdiff
NOTE :
The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds.
VIHdiffmin
0
VILdiffmax
delta TRdiff
delta TFdiff
Figure 5. Differential Input Slew Rate definition for DQS, DQS, and CK, CK
9. AC & DC Output Measurement Levels
9.1 Single-ended AC & DC Output Levels
[ Table 16 ] Single-ended AC & DC output levels
Symbol
Parameter
DDR3-800/1066/1333/1600
Units
NOTE
VOH(DC)
DC output high measurement level (for IV curve linearity)
0.8 x VDDQ
V
VOM(DC)
DC output mid measurement level (for IV curve linearity)
0.5 x VDDQ
V
VOL(DC)
DC output low measurement level (for IV curve linearity)
0.2 x VDDQ
V
VOH(AC)
AC output high measurement level (for output SR)
VTT + 0.1 x VDDQ
V
1
VOL(AC)
AC output low measurement level (for output SR)
VTT - 0.1 x VDDQ
V
1
NOTE : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test
load of 25Ω to VTT=VDDQ/2.
9.2 Differential AC & DC Output Levels
[ Table 17 ] Differential AC & DC output levels
Symbol
Parameter
DDR3-800/1066/1333/1600
Units
NOTE
VOHdiff(AC)
AC differential output high measurement level (for output SR)
+0.2 x VDDQ
V
1
VOLdiff(AC)
AC differential output low measurement level (for output SR)
-0.2 x VDDQ
V
1
NOTE : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test
load of 25Ω to VTT=VDDQ/2 at each of the differential outputs.
- 19 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
9.3 Single-ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)
for single ended signals as shown in Table 18 and Figure 6.
[ Table 18 ] Single-ended output slew rate definition
Measured
Description
Single ended output slew rate for rising edge
From
To
VOL(AC)
VOH(AC)
VOH(AC)
Single ended output slew rate for falling edge
Defined by
VOH(AC)-VOL(AC)
Delta TRse
VOH(AC)-VOL(AC)
VOL(AC)
Delta TFse
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 19 ] Single-ended output slew rate
Parameter
Single ended output slew rate
Symbol
SRQse
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Operation
Voltage
Min
Max
Min
Max
Min
Max
Min
Max
1.35V
1.75
51)
1.75
51)
1.75
51)
1.75
51)
V/ns
1.5V
2.5
5
2.5
5
2.5
5
2.5
5
V/ns
Units
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
se : Single-ended Signals
For Ron = RZQ/7 setting
NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.
- Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ signals in
the same byte lane are static (i.e they stay at either high or low).
- Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining
DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.
VOH(AC)
VTT
VOL(AC)
delta TFse
delta TRse
Figure 6. Single-ended Output Slew Rate Definition
- 20 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
9.4 Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC)
for differential signals as shown in Table 20 and Figure 7.
[ Table 20 ] Differential output slew rate definition
Measured
Description
From
To
Differential output slew rate for rising edge
VOLdiff(AC)
VOHdiff(AC)
Differential output slew rate for falling edge
VOHdiff(AC)
VOLdiff(AC)
Defined by
VOHdiff(AC)-VOLdiff(AC)
Delta TRdiff
VOHdiff(AC)-VOLdiff(AC)
Delta TFdiff
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 21 ] Differential output slew rate
Parameter
Single ended output slew rate
Symbol
SRQdiff
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Operation
Voltage
Min
Max
Min
Max
Min
Max
Min
Max
1.35V
3.5
12
3.5
12
3.5
12
3.5
12
V/ns
1.5V
5
10
5
10
5
10
5
10
V/ns
Units
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
diff : Differential Signals
For Ron = RZQ/7 setting
VOHdiff(AC)
VTT
VOLdiff(AC)
delta TFdiff
delta TRdiff
Figure 7. Differential Output Slew Rate Definition
9.5 Reference Load for AC Timing and Output Slew Rate
Figure 8 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate
measurements.
It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their
production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.
VDDQ
CK/CK
DUT
DQ
DQS
DQS
VTT = VDDQ/2
25Ω
Reference
Point
Figure 8. Reference Load for AC Timing and Output Slew Rate
- 21 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
9.6 Overshoot/Undershoot Specification
9.6.1 Address and Control Overshoot and Undershoot specifications
[ Table 22 ] AC overshoot/undershoot specification for Address and Control pins (A0-A12, BA0-BA2. CS. RAS. CAS. WE. CKE, ODT)
Specification
Parameter
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Unit
1.35V
Maximum peak amplitude allowed for overshoot area (See Figure 9)
TBD
TBD
TBD
TBD
V
Maximum peak amplitude allowed for undershoot area (See Figure 9)
TBD
TBD
TBD
TBD
V
Maximum overshoot area above VDD (See Figure 9)
TBD
TBD
TBD
TBD
V-ns
Maximum undershoot area below VSS (See Figure 9)
TBD
TBD
TBD
TBD
V-ns
0.4V
0.4V
0.4V
V
1.5V
Maximum peak amplitude allowed for overshoot area (See Figure 9)
Maximum peak amplitude allowed for undershoot area (See Figure 9)
0.4V
0.4V
0.4V
0.4V
0.4V
V
Maximum overshoot area above VDD (See Figure 9)
0.67V-ns
0.5V-ns
0.4V-ns
0.33V-ns
V-ns
Maximum undershoot area below VSS (See Figure 9)
0.67V-ns
0.5V-ns
0.4V-ns
0.33V-ns
V-ns
Maximum Amplitude
Volts
(V)
Overshoot Area
VDD
VSS
Maximum Amplitude
Undershoot Area
Time (ns)
Figure 9. Address and Control Overshoot and Undershoot Definition
- 22 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications
[ Table 23 ] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask (DQ, DQS, DQS, DM, CK, CK)
Specification
Parameter
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
TBD
TBD
TBD
Unit
1.35V
Maximum peak amplitude allowed for overshoot area (See Figure 10)
TBD
V
Maximum peak amplitude allowed for undershoot area (See Figure 10)
TBD
TBD
TBD
TBD
V
Maximum overshoot area above VDDQ (See Figure 10)
TBD
TBD
TBD
TBD
V-ns
Maximum undershoot area below VSSQ (See Figure 10)
TBD
TBD
TBD
TBD
V-ns
1.5V
Maximum peak amplitude allowed for overshoot area (See Figure 10)
0.4V
0.4V
0.4V
0.4V
V
Maximum peak amplitude allowed for undershoot area (See Figure 10)
0.4V
0.4V
0.4V
0.4V
V
Maximum overshoot area above VDDQ (See Figure 10)
0.25V-ns
0.19V-ns
0.15V-ns
0.13V-ns
V-ns
Maximum undershoot area below VSSQ (See Figure 10)
0.25V-ns
0.19V-ns
0.15V-ns
0.13V-ns
V-ns
Maximum Amplitude
Volts
(V)
Overshoot Area
VDDQ
VSSQ
Undershoot Area
Maximum Amplitude
Time (ns)
Figure 10. Clock, Data, Strobe and Mask Overshoot and Undershoot Definition
9.7 34ohm Output Driver DC Electrical Characteristics
A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ
as follows:
RON34 = RZQ/7 (Nominal 34.3ohms +/- 10% with nominal RZQ=240ohm)
The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows
RONpu =
RONpd =
VDDQ-VOUT
under the condition that RONpd is turned off
l Iout l
VOUT
under the condition that RONpu is turned off
l Iout l
Output Driver
VDDQ
Ipu
To
other
circuity
RON
Pu
DQ
Iout
RON
Pd
Vout
Ipd
VSSQ
Figure 11. Output Driver : Definition of Voltages and Currents
- 23 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
[ Table 24 ] Output Driver DC Electrical Characteristics, assuming RZQ=240ohms ;
entire operating temperature range ; after proper ZQ calibration
RONnom
Resistor
Vout
Min
Nom
Max
Units
Notes
1.35V
RON34pd
34Ohms
RON34pu
RON40pd
40Ohms
RON40pu
Mismatch between Pull-up and Pull-down,
MMpupd
VOLdc = 0.2 x VDDQ
0.6
1.0
1.15
1,2,3
VOMdc = 0.5 x VDDQ
0.9
1.0
1.15
1,2,3
VOHdc = 0.8 x VDDQ
0.9
1.0
1.45
VOLdc = 0.2 x VDDQ
0.9
1.0
1.45
VOMdc = 0.5 x VDDQ
0.9
1.0
1.15
1,2,3
VOHdc = 0.8 x VDDQ
0.6
1.0
1.15
1,2,3
VOLdc = 0.2 x VDDQ
0.6
1.0
1.15
1,2,3
VOMdc = 0.5 x VDDQ
0.9
1.0
1.15
1,2,3
VOHdc = 0.8 x VDDQ
0.9
1.0
1.45
RZQ/7
RZQ/6
1,2,3
1,2,3
1,2,3
VOLdc = 0.2 x VDDQ
0.9
1.0
1.45
VOMdc = 0.5 x VDDQ
0.9
1.0
1.15
1,2,3
VOHdc = 0.8 x VDDQ
0.6
1.0
1.15
1,2,3
VOMdc = 0.5 x VDDQ
-10
10
%
1,2,3
1,2,4
1.5V
RON34pd
34Ohms
RON34pu
RON40pd
40Ohms
RON40pu
Mismatch between Pull-up and Pull-down,
MMpupd
VOLdc = 0.2 x VDDQ
0.6
1.0
1.1
1,2,3
VOMdc = 0.5 x VDDQ
0.9
1.0
1.1
1,2,3
VOHdc = 0.8 x VDDQ
0.9
1.0
1.4
RZQ/7
1,2,3
VOLdc = 0.2 x VDDQ
0.9
1.0
1.4
VOMdc = 0.5 x VDDQ
0.9
1.0
1.1
1,2,3
VOHdc = 0.8 x VDDQ
0.6
1.0
1.1
1,2,3
VOLdc = 0.2 x VDDQ
0.6
1.0
1.1
1,2,3
VOMdc = 0.5 x VDDQ
0.9
1.0
1.1
1,2,3
VOHdc = 0.8 x VDDQ
0.9
1.0
1.4
VOLdc = 0.2 x VDDQ
0.9
1.0
1.4
VOMdc = 0.5 x VDDQ
0.9
1.0
1.1
1,2,3
VOHdc = 0.8 x VDDQ
0.6
1.0
1.1
1,2,3
VOMdc = 0.5 x VDDQ
-10
10
RZQ/6
%
1,2,3
1,2,3
1,2,3
1,2,4
NOTE :
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS
3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X VDDQ. Other calibration schemes may be used to achieve the linearity spec shown
above, e.g. calibration at 0.2 X VDDQ and 0.8 X VDDQ
4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X VDDQ:
MMpupd =
RONpu - RONpd
RONnom
x 100
- 24 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
9.7.1 Output Drive Temperature and Voltage Sensitivity
If temperature and/or voltage change after calibration, the tolerance limits widen according to Table 25 and Table 26.
∆T = T - T(@calibration); ∆V = VDDQ - VDDQ (@calibration); VDD = VDDQ
*dRONdT and dRONdV are not subject to production test but are verified by design and characterization
[ Table 25 ] Output Driver Sensitivity Definition
Min
Max
Units
RONPU@VOHDC
0.6 - dRONdTH * |∆T| - dRONdVH * |∆V|
1.1 + dRONdTH * |∆T| + dRONdVH * |∆V|
RZQ/7
RON@VOMDC
0.9 - dRONdTM * |∆T| - dRONdVM * |∆V|
1.1 + dRONdTM * |∆T| + dRONdVM * |∆V|
RZQ/7
RONPD@VOLDC
0.6 - dRONdTL * |∆T| - dRONdVL * |∆V|
1.1 + dRONdTL * |∆T| + dRONdVL * |∆V|
RZQ/7
[ Table 26 ] Output Driver Voltage and Temperature Sensitivity
Speed Bin
800/1066/1333
1600
Units
Min
Max
Min
Max
dRONdTM
0
1.5
0
1.5
%/°C
dRONdVM
0
0.15
0
0.13
%/mV
dRONdTL
0
1.5
0
1.5
%/°C
dRONdVL
0
0.15
0
0.13
%/mV
dRONdTH
0
1.5
0
1.5
%/°C
dRONdVH
0
0.15
0
0.13
%/mV
9.8 On-Die Termination (ODT) Levels and I-V Characteristics
On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register.
ODT is applied to the DQ,DM, DQS/DQS and TDQS,TDQS (x8 devices only) pins.
A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd) are defined as
follows :
RTTpu =
RTTpd =
VDDQ-VOUT
under the condition that RTTpd is turned off
l Iout l
VOUT
under the condition that RTTpu is turned off
l Iout l
Chip in Termination Mode
ODT
VDDQ
Ipu
To
other
circuitry
like
RCV,
...
RTT
Iout=Ipd-Ipu
Pu
DQ
RTT
Iout
Pd
VOUT
Ipd
VSSQ
Figure 12. On-Die Termination : Definition of Voltages and Currents
- 25 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
9.8.1 ODT DC Electrical Characteristics
Table 27 provides and overview of the ODT DC electrical characteristics. They values for RTT60pd120, RTT60pu120, RTT120pd240, RTT120pu240, RTT40pd80,
RTT40pu80, RTT30pd60, RTT30pu60, RTT20pd40, RTT20pu40 are not specification requirements, but can be used as design guide lines:
[ Table 27 ] ODT DC Electrical Characteristics, assuming RZQ=240ohm +/- 1% entire operating temperature range; after proper ZQ calibration
1.35V
MR1 (A9,A6,A2)
RTT
RESISTOR
RTT120pd240
(0,1,0)
120 ohm
RTT120pu240
RTT120
RTT60pd120
(0,0,1)
60 ohm
RTT60pu120
RTT60
RTT40pd80
(0,1,1)
40 ohm
RTT40pu80
RTT40
RTT30pd60
(1,0,1)
30 ohm
RTT30pu60
RTT30
Vout
Min
Nom
Max
Unit
Notes
VOL(DC) 0.2XVDDQ
0.6
1.0
1.15
RZQ
1,2,3,4
0.5XVDDQ
0.9
1.0
1.15
RZQ
1,2,3,4
VOH(DC) 0.8XVDDQ
0.9
1.0
1.45
RZQ
1,2,3,4
VOL(DC) 0.2XVDDQ
0.9
1.0
1.45
RZQ
1,2,3,4
0.5XVDDQ
0.9
1.0
1.15
RZQ
1,2,3,4
VOH(DC) 0.8XVDDQ
0.6
1.0
1.15
RZQ
1,2,3,4
1,2,5
VIL(AC) to VIH(AC)
0.9
1.0
1.65
RZQ/2
VOL(DC) 0.2XVDDQ
0.6
1.0
1.15
RZQ/2
1,2,3,4
0.5XVDDQ
0.9
1.0
1.15
RZQ/2
1,2,3,4
VOH(DC) 0.8XVDDQ
0.9
1.0
1.45
RZQ/2
1,2,3,4
VOL(DC) 0.2XVDDQ
0.9
1.0
1.45
RZQ/2
1,2,3,4
0.5XVDDQ
0.9
1.0
1.15
RZQ/2
1,2,3,4
VOH(DC) 0.8XVDDQ
0.6
1.0
1.15
RZQ/2
1,2,3,4
1.65
RZQ/4
1,2,5
1,2,3,4
VIL(AC) to VIH(AC)
(1,0,0)
20 ohm
RTT20pu40
RTT20
1.0
0.6
1.0
1.15
RZQ/3
0.5XVDDQ
0.9
1.0
1.15
RZQ/3
1,2,3,4
VOH(DC) 0.8XVDDQ
0.9
1.0
1.45
RZQ/3
1,2,3,4
VOL(DC) 0.2XVDDQ
0.9
1.0
1.45
RZQ/3
1,2,3,4
0.5XVDDQ
0.9
1.0
1.15
RZQ/3
1,2,3,4
VOH(DC) 0.8XVDDQ
0.6
1.0
1.15
RZQ/3
1,2,3,4
VIL(AC) to VIH(AC)
0.9
1.0
1.65
RZQ/6
1,2,5
1,2,3,4
VOL(DC) 0.2XVDDQ
0.6
1.0
1.15
RZQ/4
0.5XVDDQ
0.9
1.0
1.15
RZQ/4
1,2,3,4
VOH(DC) 0.8XVDDQ
0.9
1.0
1.45
RZQ/4
1,2,3,4
VOL(DC) 0.2XVDDQ
0.9
1.0
1.45
RZQ/4
1,2,3,4
0.5XVDDQ
0.9
1.0
1.15
RZQ/4
1,2,3,4
VOH(DC) 0.8XVDDQ
0.6
1.0
1.15
RZQ/4
1,2,3,4
VIL(AC) to VIH(AC)
0.9
1.0
1.65
RZQ/8
1,2,5
1.15
RZQ/6
1,2,3,4
1,2,3,4
VOL(DC) 0.2XVDDQ
RTT20pd40
0.9
VOL(DC) 0.2XVDDQ
0.6
1.0
0.5XVDDQ
0.9
1.0
1.15
RZQ/6
VOH(DC) 0.8XVDDQ
0.9
1.0
1.45
RZQ/6
1,2,3,4
VOL(DC) 0.2XVDDQ
0.9
1.0
1.45
RZQ/6
1,2,3,4
0.5XVDDQ
0.9
1.0
1.15
RZQ/6
1,2,3,4
VOH(DC) 0.8XVDDQ
0.6
1.0
1.15
RZQ/6
1,2,3,4
VIL(AC) to VIH(AC)
0.9
1.0
1.65
RZQ/12
1,2,5
5
%
1,2,5,6
Deviation of VM w.r.t VDDQ/2, ∆VM
-5
- 26 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
1.5V
MR1 (A9,A6,A2)
RTT
RESISTOR
RTT120pd240
(0,1,0)
120 ohm
RTT120pu240
RTT120
RTT60pd240
Vout
Min
Nom
Max
Unit
Notes
VOL(DC) 0.2XVDDQ
0.6
1.0
1.1
RZQ
1,2,3,4
0.5XVDDQ
0.9
1.0
1.1
RZQ
1,2,3,4
1,2,3,4
VOH(DC) 0.8XVDDQ
0.9
1.0
1.4
RZQ
VOL(DC) 0.2XVDDQ
0.9
1.0
1.4
RZQ
1,2,3,4
0.5XVDDQ
0.9
1.0
1.1
RZQ
1,2,3,4
VOH(DC) 0.8XVDDQ
0.6
1.0
1.1
RZQ
1,2,3,4
VIL(AC) to VIH(AC)
0.9
1.0
1.6
RZQ/2
1,2,5
VOL(DC) 0.2XVDDQ
0.6
1.0
1.1
RZQ/2
1,2,3,4
0.5XVDDQ
0.9
1.0
1.1
RZQ/2
1,2,3,4
1.4
RZQ/2
1,2,3,4
1,2,3,4
VOH(DC) 0.8XVDDQ
(0,0,1)
60 ohm
RTT60pu240
RTT60
RTT40pd240
(0,1,1)
40 ohm
RTT40pu240
RTT40
RTT60pd240
(1,0,1)
RTT60pu240
RTT60
RTT60pd240
(1,0,0)
20 ohm
RTT60pu240
RTT60
1.0
0.9
1.0
1.4
RZQ/2
0.5XVDDQ
0.9
1.0
1.1
RZQ/2
1,2,3,4
VOH(DC) 0.8XVDDQ
0.6
1.0
1.1
RZQ/2
1,2,3,4
VIL(AC) to VIH(AC)
0.9
1.0
1.6
RZQ/4
1,2,5
VOL(DC) 0.2XVDDQ
0.6
1.0
1.1
RZQ/3
1,2,3,4
0.5XVDDQ
0.9
1.0
1.1
RZQ/3
1,2,3,4
VOH(DC) 0.8XVDDQ
0.9
1.0
1.4
RZQ/3
1,2,3,4
1,2,3,4
VOL(DC) 0.2XVDDQ
0.9
1.0
1.4
RZQ/3
0.5XVDDQ
0.9
1.0
1.1
RZQ/3
1,2,3,4
VOH(DC) 0.8XVDDQ
0.6
1.0
1.1
RZQ/3
1,2,3,4
VIL(AC) to VIH(AC)
0.9
1.0
1.6
RZQ/6
1,2,5
VOL(DC) 0.2XVDDQ
0.6
1.0
1.1
RZQ/4
1,2,3,4
0.5XVDDQ
0.9
1.0
1.1
RZQ/4
1,2,3,4
VOH(DC) 0.8XVDDQ
0.9
1.0
1.4
RZQ/4
1,2,3,4
1.4
RZQ/4
1,2,3,4
1,2,3,4
VOL(DC) 0.2XVDDQ
30 ohm
0.9
VOL(DC) 0.2XVDDQ
0.9
1.0
0.5XVDDQ
0.9
1.0
1.1
RZQ/4
VOH(DC) 0.8XVDDQ
0.6
1.0
1.1
RZQ/4
1,2,3,4
VIL(AC) to VIH(AC)
0.9
1.0
1.6
RZQ/8
1,2,5
VOL(DC) 0.2XVDDQ
0.6
1.0
1.1
RZQ/6
1,2,3,4
0.5XVDDQ
0.9
1.0
1.1
RZQ/6
1,2,3,4
VOH(DC) 0.8XVDDQ
0.9
1.0
1.4
RZQ/6
1,2,3,4
VOL(DC) 0.2XVDDQ
0.9
1.0
1.4
RZQ/6
1,2,3,4
1,2,3,4
0.5XVDDQ
0.9
1.0
1.1
RZQ/6
VOH(DC) 0.8XVDDQ
0.6
1.0
1.1
RZQ/6
1,2,3,4
VIL(AC) to VIH(AC)
0.9
1.0
1.6
RZQ/12
1,2,5
5
%
1,2,5,6
Deviation of VM w.r.t VDDQ/2, ∆VM
-5
- 27 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
NOTE :
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS
3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5XVDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g.
calibration at 0.2XVDDQ and 0.8XVDDQ.
4. Not a specification requirement, but a design guide line
5. Measurement definition for RTT:
Apply VIH(AC) to pin under test and measure current I(VIH(AC)), then apply VIL(AC) to pin under test and measure current I(VIL(AC)) respectively
RTT
=
VIH(AC) - VIL(AC)
I(VIH(AC)) - I(VIL(AC))
6. Measurement definition for VM and ∆VM : Measure voltage (VM) at test pin (midpoint) with no load
∆ VM =
2 x VM
VDDQ
-1
x 100
9.8.2 ODT Temperature and Voltage sensitivity
If temperature and/or voltage change after calibration, the tolerance limits widen according to table below
∆T = T - T(@calibration); ∆V = VDDQ - VDDQ (@calibration); VDD = VDDQ
[ Table 28 ] ODT Sensitivity Definition
RTT
Min
Max
Units
0.9 - dRTTdT * |∆T| - dRTTdV * |∆V|
1.6 + dRTTdT * |∆T| + dRTTdV * |∆V|
RZQ/2,4,6,8,12
[ Table 29 ] ODT Voltage and Temperature Sensitivity
Min
Max
Units
dRTTdT
0
1.5
%/°C
dRTTdV
0
0.15
%/mV
NOTE : These parameters may not be subject to production test. They are verified by design and characterization.
- 28 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
9.9 ODT Timing Definitions
9.9.1 Test Load for ODT Timings
Different than for timing measurements, the reference load for ODT timings is defined in Figure 13.
VDDQ
CK,CK
DUT DQ, DM
VTT=
VSSQ
RTT
=25 ohm
DQS , DQS
TDQS , TDQS
VSSQ
Timing Reference Points
Figure 13. ODT Timing Reference Load
9.9.2 ODT Timing Definitions
Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 30 and subsequent figures. Measurement reference settings are provided
in Table 31 .
[ Table 30 ] ODT Timing Definitions
Symbol
Begin Point Definition
End Point Definition
Figure
tAON
Rising edge of CK - CK defined by the end point of ODTLon
Extrapolated point at VSSQ
Figure 14
tAONPD
Rising edge of CK - CK with ODT being first registered high
Extrapolated point at VSSQ
Figure 15
tAOF
Rising edge of CK - CK defined by the end point of ODTLoff
End point: Extrapolated point at VRTT_Nom
Figure 16
tAOFPD
Rising edge of CK - CK with ODT being first registered low
End point: Extrapolated point at VRTT_Nom
Figure 17
tADC
Rising edge of CK - CK defined by the end point of ODTLcnw,
ODTLcwn4 of ODTLcwn8
End point: Extrapolated point at VRTT_Wr and VRTT_Nom
respectively
Figure 18
[ Table 31 ] Reference Settings for ODT Timing Measurements
Measured
Parameter
tAON
tAONPD
tAOF
tAOFPD
tADC
RTT_Nom Setting
RTT_Wr Setting
VSW1[V]
VSW2[V]
RZQ/4
NA
0.05
0.10
RZQ/12
NA
0.10
0.20
RZQ/4
NA
0.05
0.10
RZQ/12
NA
0.10
0.20
RZQ/4
NA
0.05
0.10
RZQ/12
NA
0.10
0.20
RZQ/4
NA
0.05
0.10
RZQ/12
NA
0.10
0.20
RZQ/12
RZQ/2
0.20
0.25
- 29 -
NOTE
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
Begin point : Rising edge of CK - CK
defined by the end point of ODTLon
CK
VTT
CK
tAON
TSW2
DQ, DM
DQS , DQS
TDQS , TDQS
TSW1
VSW2
VSW1
VSSQ
VSSQ
End point Extrapolated point at VSSQ
Figure 14. Definition of tAON
Begin point : Rising edge of CK - CK
with ODT being first registered high
CK
VTT
CK
tAONPD
TSW2
DQ, DM
DQS , DQS
TDQS , TDQS
TSW1
VSW2
VSW1
VSSQ
VSSQ
End point Extrapolated point at VSSQ
Figure 15. Definition of tAONPD
Begin point : Rising edge of CK - CK
defined by the end point of ODTLoff
CK
VTT
CK
tAOF
End point Extrapolated point at VRTT_Nom
VRTT_Nom
DQ, DM
DQS , DQS
TDQS , TDQS
TSW2
TSW1
VSW2
VSW1
VSSQ
TD_TAON_DEF
Figure 16. Definition of tAOF
- 30 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
Begin point : Rising edge of CK - CK
with ODT being first registered low
CK
VTT
CK
tAOFPD
End point Extrapolated point at VRTT_Nom
VRTT_Nom
DQ, DM
DQS , DQS
TDQS , TDQS
TSW2
TSW1
VSW2
VSW1
VSSQ
Figure 17. Definition of tAOFPD
Begin point : Rising edge of CK - CK
defined by the end point of ODTLcnw
Begin point : Rising edge of CK - CK defined by
the end point of ODTLcwn4 or ODTLcwn8
CK
VTT
CK
tADC
VRTT_Nom
DQ, DM
DQS , DQS
TDQS , TDQS
tADC
End point Extrapolated point at VRTT_Nom
TSW21
End point
Extrapolated point
TSW11
at VRTT_Nom
TSW22
VSW2
VRTT_Nom
TSW12
VSW1
VRTT_Wr
End point Extrapolated point at VRTT_Wr
VSSQ
Figure 18. Definition of tADC
- 31 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
10. IDD Current Measure Method
10.1 IDD Measurement Conditions
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 19 shows the setup and test load for IDD and
IDDQ measurements.
- IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and
IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in
IDD currents.
- IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied
together. Any IDD current is not included in IDDQ currents.
Attention : IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO
power to actual IO power as outlined in Figure 20. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ
are using one merged-power layer in Module PCB.
For IDD and IDDQ measurements, the following definitions apply :
- "0" and "LOW" is defined as VIN <= VILAC(max).
- "1" and "HIGH" is defined as VIN >= VIHAC(min).
- "FLOATING" is defined as inputs are VREF = VDD / 2.
- "Timing used for IDD and IDDQ Measured - Loop Patterns" are provided in Table 32
- "Basic IDD and IDDQ Measurement Conditions" are described in Table 33
- Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 32 on page 31 through Table 39.
- IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting
RON = RZQ/7 (34 Ohm in MR1);
Qoff = 0B (Output Buffer enabled in MR1);
RTT_Nom = RZQ/6 (40 Ohm in MR1);
RTT_Wr = RZQ/2 (120 Ohm in MR2);
TDQS Feature disabled in MR1
- Attention : The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.
- Define D = {CS, RAS, CAS, WE} := {HIGH, LOW, LOW, LOW}
- Define D = {CS, RAS, CAS, WE} := {HIGH, HIGH, HIGH, HIGH}
- RESET Stable time is : During a Cold Bood RESET (Initialization), current reading is valid once power is stable and RESET has been LOW for 1ms;
During Warm Boot RESET(while operating), current reading is valid after RESET has been LOW for 200ns + tRFC
[ Table 32 ] Timing used for IDD and IDDQ Measured - Loop Patterns
Parameter
Bin
tCKmin(IDD)
CL(IDD)
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
6-6-6
7-7-7
9-9-9
11-11-11
2.5
1.875
1.5
1.25
ns
6
7
9
11
nCK
Unit
tRCDmin(IDD)
6
7
9
11
nCK
tRCmin(IDD)
21
27
33
39
nCK
tRASmin(IDD)
15
20
24
28
nCK
tRPmin(IDD)
6
7
9
11
nCK
tFAW(IDD)
tRRD(IDD)
x4/x8
16
20
20
24
nCK
x16
20
27
30
32
nCK
x4/x8
4
4
4
5
nCK
x16
4
6
5
6
nCK
tRFC(IDD) - 512Mb
36
48
60
72
nCK
tRFC(IDD) - 1Gb
44
59
74
88
nCK
tRFC(IDD) - 2Gb
64
86
107
128
nCK
tRFC(IDD) - 4Gb
120
160
200
240
nCK
tRFC(IDD) - 8Gb
140
187
234
280
nCK
- 32 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
IDD
VDD
DDR3L SDRAM
IDDQ
VDDQ
RESET
CK/CK
CKE
DQS, DQS
CS
DQ, DM,
RAS, CAS, WE
TDQS, TDQS
RTT = 25 Ohm
VDDQ/2
A, BA
ODT
ZQ
VSS
VSSQ
[NOTE : DIMM level Output test load condition may be different from above]
Figure 19. Measurement Setup and Test Load for IDD and IDDQ Measurements
Application specific
memory channel
environment
IDDQ
Test Load
Channel
IO Power
Simulation
IDDQ
Simulation
IDDQ
Measurement
Correlation
Correction
Channel IO Power
Number
Figure 20. Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.
- 33 -
K4B2G0446D
K4B2G0846D
datasheet
Rev. 1.01
DDR3L SDRAM
[ Table 33 ] Basic IDD and IDDQ Measurement Conditions
Symbol
Description
Operating One Bank Active-Precharge Current
IDD0
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between ACT and PRE; Command, Address,
Bank Address Inputs: partially toggling according to Table 32 on page 31 ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active
at a time: 0,0,1,1,2,2,... (see Table 32); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 32
Operating One Bank Active-Read-Precharge Current
IDD1
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between ACT, RD and PRE; Command,
Address, Bank Address Inputs, Data IO: partially toggling according to Table 33 on page 32 ; DM:stable at 0; Bank Activity: Cycling with one bank active at
a time: 0,0,1,1,2,2,... (see Table 33); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 33
Precharge Standby Current
IDD2N
CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 34 on page 32 ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode
Registers2); ODT Signal: stable at 0; Pattern Details: see Table 34
Precharge Standby ODT Current
IDD2NT
CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 35 on page 33 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode
Registers2); ODT Signal: toggling according to Table 35 ; Pattern Details: see Table 35
IDDQ2NT
Precharge Standby ODT IDDQ Current
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current
Precharge Power-Down Current Slow Exit
IDD2P0
CKE: Low; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0;
Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exi3)
Precharge Power-Down Current Fast Exit
IDD2P1
CKE: Low; External clock: On; tCK, CL: see Table 32 on page 32; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0;
Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit3)
Precharge Quiet Standby Current
IDD2Q
CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0;
Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0
Active Standby Current
IDD3N
CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 34 on page 32 ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode
Registers2); ODT Signal: stable at 0; Pattern Details: see Table 34
Active Power-Down Current
IDD3P
CKE: Low; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0;
Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0
Operating Burst Read Current
IDD4R
CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling according to Table 36 on page 33 ; Data IO: seamless read data burst with different data between one burst and the next one according to
Table 36 ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 12); Output Buffer and
RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 36
IDDQ4R
Operating Burst Read IDDQ Current
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current
Operating Burst Write Current
IDD4W
CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling according to Table 37 on page 34 ; Data IO: seamless write data burst with different data between one burst and the next one according to
Table 37; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 37); Output Buffer and RTT:
Enabled in Mode Registers2); ODT Signal: stable at HIGH; Pattern Details: see Table 37
Burst Refresh Current
IDD5B
CKE: High; External clock: On; tCK, CL, nRFC: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between REF; Command, Address, Bank Address
Inputs: partially toggling according to Table 38 on page 34 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38);
Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 38
Self Refresh Current: Normal Temperature Range
IDD6
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK:
LOW; CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: SelfRefresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING
- 34 -
K4B2G0446D
K4B2G0846D
datasheet
Rev. 1.01
DDR3L SDRAM
[ Table 33 ] Basic IDD and IDDQ Measurement Conditions
Symbol
Description
Operating Bank Interleave Read Current
IDD7
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 32 on page 32 ; BL: 81); AL: CL-1; CS: High between ACT and RDA;
Command, Address, Bank Address Inputs: partially toggling according to Table 39 on page 35 ; Data IO: read data bursts with different data between one
burst and the next one according to Table 39 ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing,
see Table 39 ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 39
IDD8
RESET Low Current
RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal :
FLOATING
NOTE :
1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit
4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range
6) Read Burst type : Nibble Sequential, set MR0 A[3]=0B
- 35 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data2)
0
Cycle
Number
Sub-Loop
CKE
CK/CK
[ Table 34 ] IDD0 Measurement - Loop Pattern1)
0
ACT
0
0
1
1
0
0
00
0
0
0
0
-
1,2
D, D
1
0
0
0
0
0
00
0
0
0
0
-
D, D
1
1
1
1
0
0
00
0
0
0
0
-
00
0
0
0
0
-
3,4
...
nRAS
Static High
toggling
...
repeat pattern 1...4 until nRAS - 1, truncate if necessary
PRE
0
0
1
0
0
0
repeat pattern 1...4 until nRC - 1, truncate if necessary
1*nRC + 0
ACT
0
0
1
1
0
0
00
0
0
F
0
-
1*nRC + 1, 2
D, D
1
0
0
0
0
0
00
0
0
F
0
-
D, D
1
1
1
1
0
0
00
0
0
F
0
-
0
0
F
0
1*nRC + 3, 4
...
1*nRC + nRAS
...
repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary
PRE
0
0
1
0
0
repeat 1...4 until 2*nRC - 1, truncate if necessary
1
2*nRC
repeat Sub-Loop 0, use BA[2:0] = 1 instead
2
4*nRC
repeat Sub-Loop 0, use BA[2:0] = 2 instead
3
6*nRC
repeat Sub-Loop 0, use BA[2:0] = 3 instead
4
8*nRC
repeat Sub-Loop 0, use BA[2:0] = 4 instead
5
10*nRC
repeat Sub-Loop 0, use BA[2:0] = 5 instead
6
12*nRC
repeat Sub-Loop 0, use BA[2:0] = 6 instead
7
14*nRC
repeat Sub-Loop 0, use BA[2:0] = 7 instead
NOTE :
1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
2. DQ signals are MID-LEVEL.
- 36 -
0
00
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data2)
0
Cycle
Number
Sub-Loop
CKE
CK/CK
[ Table 35 ] IDD1 Measurement - Loop Pattern1)
0
ACT
0
0
1
1
0
0
00
0
0
0
0
-
1,2
D, D
1
0
0
0
0
0
00
0
0
0
0
-
D, D
1
1
1
1
0
0
00
0
0
0
0
-
00
0
0
0
0
00000000
00
0
0
0
0
-
3,4
...
nRCD
...
nRAS
Static High
toggling
...
repeat pattern 1...4 until nRCD- 1, truncate if necessary
RD
0
1
0
1
0
0
repeat pattern 1...4 until nRAS - 1, truncate if necessary
PRE
0
0
1
0
0
0
repeat pattern 1...4 until nRC - 1, truncate if necessary
1*nRC+0
ACT
0
0
1
1
0
0
00
0
0
F
0
-
1*nRC + 1, 2
D, D
1
0
0
0
0
0
00
0
0
F
0
-
D, D
1
1
1
1
0
0
00
0
0
F
0
-
0
F
0
00110011
0
F
0
-
1*nRC + 3, 4
...
1*nRC + nRCD
...
1*nRC + nRAS
...
repeat pattern nRC + 1,..., 4 until nRC + nRCD - 1, truncate if necessary
RD
0
1
0
1
0
0
00
0
repeat pattern nRC + 1,..., 4 until nRC +nRAS - 1, truncate if necessary
PRE
0
0
1
0
0
0
00
0
repeat pattern nRC + 1,..., 4 until 2 * nRC - 1, truncate if necessary
1
2*nRC
repeat Sub-Loop 0, use BA[2:0] = 1 instead
2
4*nRC
repeat Sub-Loop 0, use BA[2:0] = 2 instead
3
6*nRC
repeat Sub-Loop 0, use BA[2:0] = 3 instead
4
8*nRC
repeat Sub-Loop 0, use BA[2:0] = 4 instead
5
10*nRC
repeat Sub-Loop 0, use BA[2:0] = 5 instead
6
12*nRC
repeat Sub-Loop 0, use BA[2:0] = 6 instead
7
14*nRC
repeat Sub-Loop 0, use BA[2:0] = 7 instead
NOTE :
1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
1
0
0
0
0
0
00
0
1
D
1
0
0
0
0
0
00
0
2
D
1
1
1
1
0
0
00
0
D
1
1
1
1
0
0
00
0
0
Static High
toggling
3
1
4-7
repeat Sub-Loop 0, use BA[2:0] = 1 instead
2
8-11
repeat Sub-Loop 0, use BA[2:0] = 2 instead
3
12-15
repeat Sub-Loop 0, use BA[2:0] = 3 instead
4
16-19
repeat Sub-Loop 0, use BA[2:0] = 4 instead
5
20-23
repeat Sub-Loop 0, use BA[2:0] = 5 instead
6
24-27
repeat Sub-Loop 0, use BA[2:0] = 6 instead
7
28-31
repeat Sub-Loop 0, use BA[2:0] = 7 instead
NOTE :
1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.
2. DQ signals are MID-LEVEL.
- 37 -
Data2)
CS
D
A[2:0]
Command
0
A[6:3]
Cycle
Number
0
A[9:7]
Sub-Loop
CKE
CK/CK
[ Table 36 ] IDD2 and IDD3N Measurement - Loop Pattern1)
0
0
0
-
0
0
0
-
0
F
0
-
F
0
-
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data2)
CKE
Static High
toggling
CK/CK
[ Table 37 ] IDD2NT and IDDQ2NT Measurement - Loop Pattern1)
0
0
D
1
0
0
0
0
0
00
0
0
0
0
-
1
D
1
0
0
0
0
0
00
0
0
0
0
2
D
1
1
1
1
0
0
00
0
0
F
0
3
D
1
1
1
1
0
0
00
0
0
F
0
1
4-7
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1
2
8-11
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2
3
12-15
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3
4
16-19
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4
5
20-23
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5
6
24-27
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6
7
28-31
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7
NOTE :
1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.
2. DQ signals are MID-LEVEL.
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data2)
CKE
Static High
toggling
CK/CK
[ Table 38 ] IDD4R and IDDQ4R Measurement - Loop Pattern1)
0
0
RD
0
1
0
1
0
0
00
0
0
0
0
00000000
1
D
1
0
0
0
0
0
00
0
0
0
0
-
2,3
D,D
1
1
1
1
0
0
00
0
0
0
0
-
4
RD
0
1
0
1
0
0
00
0
0
F
0
00110011
5
D
1
0
0
0
0
0
00
0
0
F
0
-
D,D
1
1
1
1
0
0
00
0
0
F
0
-
6,7
1
8-15
repeat Sub-Loop 0, but BA[2:0] = 1
2
16-23
repeat Sub-Loop 0, but BA[2:0] = 2
3
24-31
repeat Sub-Loop 0, but BA[2:0] = 3
4
32-39
repeat Sub-Loop 0, but BA[2:0] = 4
5
40-47
repeat Sub-Loop 0, but BA[2:0] = 5
6
48-55
repeat Sub-Loop 0, but BA[2:0] = 6
7
56-63
repeat Sub-Loop 0, but BA[2:0] = 7
NOTE :
1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.
2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.
- 38 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
Sub-Loop
Cycle
Number
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data2)
CKE
Static High
toggling
CK/CK
[ Table 39 ] IDD4W Measurement - Loop Pattern1)
0
0
WR
0
1
0
0
1
0
00
0
0
0
0
00000000
1
D
1
0
0
0
1
0
00
0
0
0
0
-
2,3
D,D
1
1
1
1
1
0
00
0
0
0
0
-
4
WR
0
1
0
0
1
0
00
0
0
F
0
00110011
5
D
1
0
0
0
1
0
00
0
0
F
0
-
6,7
D,D
1
1
1
1
1
0
00
0
0
F
0
-
1
8-15
repeat Sub-Loop 0, but BA[2:0] = 1
2
16-23
repeat Sub-Loop 0, but BA[2:0] = 2
3
24-31
repeat Sub-Loop 0, but BA[2:0] = 3
4
32-39
repeat Sub-Loop 0, but BA[2:0] = 4
5
40-47
repeat Sub-Loop 0, but BA[2:0] = 5
6
48-55
repeat Sub-Loop 0, but BA[2:0] = 6
7
56-63
repeat Sub-Loop 0, but BA[2:0] = 7
NOTE :
1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.
2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data2)
0
0
1
0
0
00
0
0
0
0
-
1
0
0
0
0
0
00
0
0
0
0
-
D,D
1
1
1
1
0
0
00
0
0
F
0
-
Static High
toggling
3,4
2
5...8
repeat cycles 1...4, but BA[2:0] = 1
9...12
repeat cycles 1...4, but BA[2:0] = 2
13...16
repeat cycles 1...4, but BA[2:0] = 3
17...20
repeat cycles 1...4, but BA[2:0] = 4
21...24
repeat cycles 1...4, but BA[2:0] = 5
25...28
repeat cycles 1...4, but BA[2:0] = 6
29...32
repeat cycles 1...4, but BA[2:0] = 7
33...nRFC - 1
WE
0
D
CAS
REF
1,2
RAS
Command
0
1
CS
Cycle
Number
0
Sub-Loop
CKE
CK/CK
[ Table 40 ] IDD5B Measurement - Loop Pattern1)
repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.
NOTE :
1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
2. DQ signals are MID-LEVEL.
- 39 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
0
0
00
0
0
0
0
-
1
0
0
00
1
0
0
0
00000000
D
1
0
0
0
0
0
00
0
0
0
0
-
2
Static High
toggling
repeat above D Command until nRRD - 1
nRRD
ACT
0
0
1
1
0
1
00
0
0
F
0
-
nRRD + 1
RDA
0
1
0
1
0
1
00
1
0
F
0
00110011
D
1
0
0
0
0
1
00
0
0
F
0
-
0
3
00
0
0
F
0
-
0
F
0
-
nRRD + 2
...
repeat above D Command until 2*nRRD-1
2
2 * nRRD
repeat Sub-Loop 0, but BA[2:0] = 2
3
3 * nRRD
repeat Sub-Loop 1, but BA[2:0] = 3
4
4 * nRRD
D
1
0
0
nFAW
repeat Sub-Loop 0, but BA[2:0] = 4
6
nFAW+nRRD
repeat Sub-Loop 1, but BA[2:0] = 5
7
nFAW+2*nRRD
repeat Sub-Loop 0, but BA[2:0] = 6
8
nFAW+3*nRRD
repeat Sub-Loop 1, but BA[2:0] = 7
9
nFAW+4*nRRD
D
1
0
0
0
0
7
00
0
Assert and repeat above D Command until 2*nFAW - 1, if necessary
2*nFAW+0
ACT
0
0
1
1
0
0
00
0
0
F
0
-
2*nFAW+1
RDA
0
1
0
1
0
0
00
1
0
F
0
00110011
D
1
0
0
0
0
0
00
0
0
F
0
-
2*nFAW+2
11
0
Assert and repeat above D Command until nFAW - 1, if necessary
5
10
Data2)
BA[2:0]
1
0
WE
1
1
CAS
0
0
RAS
0
RDA
CS
ACT
1
...
1
Command
ODT
0
0
Cycle
Number
Sub-Loop
CKE
CK/CK
[ Table 41 ] IDD7 Measurement - Loop Pattern1)
Repeat above D Command until 2*nFAW + nRRD - 1
2*nFAW+nRRD
ACT
0
0
1
1
0
1
00
0
0
0
0
-
2*nFAW+nRRD+1
RDA
0
1
0
1
0
1
00
1
0
0
0
00000000
D
1
0
0
0
0
1
00
0
0
0
0
-
0
0
0
0
-
0
0
-
2*nFAW+nRRD+2
Repeat above D Command until 2*nFAW + 2*nRRD - 1
12
2*nFAW+2*nRRD
repeat Sub-Loop 10, but BA[2:0] = 2
13
2*nFAW+3*nRRD
repeat Sub-Loop 11, but BA[2:0] = 3
14
2*nFAW+4*nRRD
D
1
0
0
0
0
3
00
Assert and repeat above D Command until 3*nFAW - 1, if necessary
15
3*nFAW
repeat Sub-Loop 10, but BA[2:0] = 4
16
3*nFAW+nRRD
repeat Sub-Loop 11, but BA[2:0] = 5
17
3*nFAW+2*nRRD
repeat Sub-Loop 10, but BA[2:0] = 6
18
3*nFAW+3*nRRD
repeat Sub-Loop 11, but BA[2:0] = 7
19
3*nFAW+4*nRRD
D
1
0
0
0
0
7
00
0
0
Assert and repeat above D Command until 4*nFAW - 1, if necessary
NOTE :
1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation. DQ signals are MID-LEVEL.
- 40 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
11. 2Gb DDR3 SDRAM D-die IDD Specification Table
[ Table 42 ] IDD Specification for 2Gb DDR3 D-die
512Mx4 (K4B2G0446D)
Symbol
DDR3-1066 (7-7-7)
DDR3-1333 (9-9-9)
DDR3-1600 (11-11-11)
Unit
1.35V
1.5V
1.35V
1.5V
1.35V
1.5V
IDD0
30
35
35
40
40
45
IDD1
40
45
45
50
50
55
mA
IDD2P0(slow exit)
10
12
10
12
10
12
mA
IDD2P1(fast exit)
13
15
13
15
15
15
mA
mA
NOTE
mA
IDD2N
15
17
15
20
17
20
IDD2NT
17
20
20
25
22
25
mA
IDDQ2NT
35
40
35
40
35
40
mA
IDD2Q
15
17
15
20
17
20
mA
IDD3P
15
17
15
17
17
20
mA
IDD3N
25
30
25
35
30
35
mA
IDD4R
55
50
70
60
80
70
mA
IDDQ4R
30
35
30
35
30
35
mA
IDD4W
60
60
75
70
90
85
mA
IDD5B
110
110
115
115
115
120
mA
IDD6
10
12
10
12
10
12
mA
IDD7
100
105
125
125
130
130
mA
IDD8
10
12
10
12
10
12
mA
NOTE : VDD condition : 1.45V for 1.35V operation, 1.575V for 1.5V operation
256Mx8 (K4B2G0846D)
Symbol
IDD0
DDR3-1066 (7-7-7)
DDR3-1333 (9-9-9)
DDR3-1600 (11-11-11)
1.35V
1.5V
1.35V
1.5V
1.35V
1.5V
30
35
35
40
40
45
Unit
mA
IDD1
40
45
45
50
50
55
mA
IDD2P0(slow exit)
10
12
10
12
10
12
mA
IDD2P1(fast exit)
13
15
13
15
15
15
mA
IDD2N
15
17
15
20
17
20
mA
IDD2NT
17
20
20
25
22
25
mA
IDDQ2NT
65
70
65
70
65
70
mA
IDD2Q
15
17
15
20
17
20
mA
IDD3P
15
17
15
17
17
20
mA
IDD3N
25
30
25
35
30
35
mA
IDD4R
50
65
60
75
65
90
mA
IDDQ4R
45
50
45
50
45
50
mA
IDD4W
55
70
65
80
75
95
mA
IDD5B
110
110
115
115
115
120
mA
IDD6
10
12
10
12
10
12
mA
IDD7
95
105
120
135
125
140
mA
IDD8
10
12
10
12
10
12
mA
NOTE : VDD condition : 1.45V for 1.35V operation, 1.575V for 1.5V operation
- 41 -
NOTE
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
12. Input/Output Capacitance
[ Table 43 ] Input/Output Capacitance
Parameter
Symbol
DDR3-800
Min
DDR3-1066
Max
DDR3-1333
DDR3-1600
Min
Max
Min
Max
Min
Max
Units
NOTE
1.35V
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
CIO
1.5
2.5
1.5
2.5
1.5
2.3
1.2
2.3
pF
1,2,3
Input capacitance
(CK and CK)
CCK
0.8
1.6
0.8
1.6
TBD
TBD
TBD
TBD
pF
2,3
CDCK
0
0.15
0
0.15
TBD
TBD
TBD
TBD
pF
2,3,4
CI
0.75
1.3
0.75
1.3
0.75
1.3
0.75
1.3
pF
2,3,6
CDDQS
0
0.2
0
0.2
TBD
TBD
TBD
TBD
pF
2,3,5
CDI_CTRL
-0.5
0.3
-0.5
0.3
TBD
TBD
TBD
TBD
pF
2,3,7,8
CDI_ADD_CMD
-0.5
0.5
-0.5
0.5
TBD
TBD
TBD
TBD
pF
2,3,9,10
Input/output capacitance delta
(DQ, DM, DQS, DQS, TDQS, TDQS)
CDIO
-0.5
0.3
-0.5
0.3
TBD
TBD
TBD
TBD
pF
2,3,11
Input/output capacitance of ZQ pin
CZQ
-
3
-
3
TBD
TBD
TBD
TBD
pF
2, 3, 12
Input capacitance delta
(CK and CK)
Input capacitance
(All other input-only pins)
Input/Output capacitance delta
(DQS and DQS)
Input capacitance delta
(All control input-only pins)
Input capacitance delta
(all ADD and CMD input-only pins)
1.5V
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
CIO
1.5
3.0
1.5
2.7
1.5
2.5
1.4
2.3
pF
1,2,3
Input capacitance
(CK and CK)
CCK
0.8
1.6
0.8
1.6
0.8
1.4
0.8
1.4
pF
2,3
CDCK
0
0.15
0
0.15
0
0.15
0
0.15
pF
2,3,4
CI
0.75
1.5
0.75
1.5
0.75
1.3
0.75
1.3
pF
2,3,6
CDDQS
0
0.2
0
0.2
0
0.15
0
0.15
pF
2,3,5
CDI_CTRL
-0.5
0.3
-0.5
0.3
-0.4
0.2
-0.4
0.2
pF
2,3,7,8
CDI_ADD_CMD
-0.5
0.5
-0.5
0.5
-0.4
0.4
-0.4
0.4
pF
2,3,9,10
Input/output capacitance delta
(DQ, DM, DQS, DQS, TDQS, TDQS)
CDIO
-0.5
0.3
-0.5
0.3
-0.5
0.3
-0.5
0.3
pF
2,3,11
Input/output capacitance of ZQ pin
CZQ
-
3
-
3
-
3
-
3
pF
2, 3, 12
Input capacitance delta
(CK and CK)
Input capacitance
(All other input-only pins)
Input capacitance delta
(DQS and DQS)
Input capacitance delta
(All control input-only pins)
Input capacitance delta
(all ADD and CMD input-only pins)
NOTE :
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS
2. This parameter is not subject to production test. It is verified by design and characterization.
The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with
VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die
termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK
5. Absolute value of CIO(DQS)-CIO(DQS)
6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.
7. CDI_CTRL applies to ODT, CS and CKE
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))
12. Maximum external load capacitance on ZQ pin: 5pF
- 42 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
13. Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600
13.1 Clock Specification
The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR3
SDRAM device.
13.1.1 Definition for tCK(avg)
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to
rising edge.
N
∑
tCKj
N
N=200
j=1
13.1.2 Definition for tCK(abs)
tCK(abs) is defind as the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to production test.
13.1.3 Definition for tCH(avg) and tCL(avg)
tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses:
tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses:
N
∑
N
tCHj
N x tCK(avg)
∑
N=200
j=1
tCLj
N x tCK(avg)
N=200
j=1
13.1.4 Definition for note for tJIT(per), tJIT(per, Ick)
tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200}
tJIT(per) defines the single period jitter when the DLL is already locked.
tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.
tJIT(per) and tJIT(per,lck) are not subject to production test.
13.1.5 Definition for tJIT(cc), tJIT(cc, Ick)
tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi}
tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.
tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.
tJIT(cc) and tJIT(cc,lck) are not subject to production test.
13.1.6 Definition for tERR(nper)
tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to production test.
- 43 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
13.2 Refresh Parameters by Device Density
[ Table 44 ] Refresh parameters by device density
Parameter
Symbol
1Gb
2Gb
4Gb
8Gb
Units
tRFC
110
160
300
350
ns
0 °C ≤ TCASE ≤ 85°C
7.8
7.8
7.8
7.8
µs
85 °C < TCASE ≤ 95°C
3.9
3.9
3.9
3.9
µs
All Bank Refresh to active/refresh cmd time
Average periodic refresh interval
tREFI
NOTE
1
NOTE :
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in
this material.
13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
[ Table 45 ] DDR3-800 Speed Bins
Speed
DDR3-800
CL-nRCD-nRP
6-6-6
Parameter
Internal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
ACT to PRE command period
Units
Symbol
min
max
tAA
15
20
ns
tRCD
15
-
ns
tRP
15
-
ns
tRC
52.5
-
ns
tRAS
37.5
9*tREFI
ns
NOTE
CL = 5
CWL = 5
tCK(AVG)
3.0
3.3
ns
1,2,3,4,9,10
CL = 6
CWL = 5
tCK(AVG)
2.5
3.3
ns
1,2,3
Supported CL Settings
Supported CWL Settings
5,6
nCK
5
nCK
[ Table 46 ] DDR3-1066 Speed Bins
Speed
DDR3-1066
CL-nRCD-nRP
7-7-7
Parameter
Internal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
CL = 6
CL = 7
CL = 8
Symbol
min
max
tAA
13.125
20
ns
tRCD
13.125
-
ns
tRP
13.125
-
ns
NOTE
tRC
50.625
-
ns
tRAS
37.5
9*tREFI
ns
CWL = 5
tCK(AVG)
3.0
3.3
ns
1,2,3,4,5,9,10
CWL = 6
tCK(AVG)
ns
4
CWL = 5
tCK(AVG)
ns
1,2,3,5
CWL = 6
tCK(AVG)
ns
1,2,3,4
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
ACT to PRE command period
CL = 5
Units
Reserved
2.5
3.3
Reserved
Reserved
1.875
<2.5
Reserved
1.875
Supported CL Settings
Supported CWL Settings
- 44 -
<2.5
ns
4
ns
1,2,3,4,8
ns
4
ns
1,2,3
5,6,7,8
nCK
5,6
nCK
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
[ Table 47 ] DDR3-1333 Speed Bins
Speed
DDR3-1333
CL-nRCD-nRP
9 -9 - 9
Parameter
Units
NOTE
Symbol
min
max
tAA
13.5
(13.125)8
20
ns
tRCD
13.5
(13.125)8
-
ns
PRE command period
tRP
13.5
(13.125)8
-
ns
ACT to ACT or REF command period
tRC
49.5
(49.125)8
-
ns
tRAS
36
9*tREFI
ns
3.0
3.3
ns
1,2,3,4,6,9,10
ns
4
Internal read command to first data
ACT to internal read or write delay time
ACT to PRE command period
CL = 5
CL = 6
CL = 7
CL = 8
CL = 9
CL = 10
CWL = 5
tCK(AVG)
CWL = 6,7
tCK(AVG)
CWL = 5
tCK(AVG)
ns
1,2,3,6
CWL = 6
tCK(AVG)
Reserved
ns
1,2,3,4,6
CWL = 7
tCK(AVG)
Reserved
ns
4
CWL = 5
tCK(AVG)
Reserved
ns
4
CWL = 6
tCK(AVG)
ns
1,2,3,4,6
CWL = 7
tCK(AVG)
ns
1,2,3,4
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
Reserved
2.5
3.3
1.875
<2.5
Reserved
Reserved
1.875
<2.5
ns
4
ns
1,2,3,6
CWL = 7
tCK(AVG)
Reserved
ns
1,2,3,4
CWL = 5,6
tCK(AVG)
Reserved
ns
4
ns
1,2,3,4,8
ns
4
1,2,3
CWL = 7
tCK(AVG)
CWL = 5,6
tCK(AVG)
1.5
Reserved
CWL = 7
tCK(AVG)
Reserved
ns
5,6,7,8,9
nCK
5,6,7
nCK
Supported CL Settings
Supported CWL Settings
- 45 -
<1.875
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
[ Table 48 ] DDR3-1600 Speed Bins
Speed
DDR3-1600
CL-nRCD-nRP
11-11-11
Parameter
Units
NOTE
Symbol
min
max
tAA
13.75
(13.125)8
20
ns
tRCD
13.75
(13.125)8
-
ns
PRE command period
tRP
13.75
(13.125)8
-
ns
ACT to ACT or REF command period
tRC
48.75
(48.125)8
-
ns
tRAS
35
9*tREFI
ns
3.0
3.3
ns
1,2,3,4,7,9,10
ns
4
Internal read command to first data
ACT to internal read or write delay time
ACT to PRE command period
CL = 5
CL = 6
CL = 7
CL = 8
CL = 9
CL = 10
CL = 11
CWL = 5
tCK(AVG)
CWL = 6,7,8
tCK(AVG)
CWL = 5
tCK(AVG)
ns
1,2,3,7
CWL = 6
tCK(AVG)
Reserved
ns
1,2,3,4,7
CWL = 7, 8
tCK(AVG)
Reserved
ns
4
CWL = 5
tCK(AVG)
Reserved
ns
4
CWL = 6
tCK(AVG)
ns
1,2,3,4,7
CWL = 7
tCK(AVG)
Reserved
ns
1,2,3,4,7
CWL = 8
tCK(AVG)
Reserved
ns
4
CWL = 5
tCK(AVG)
Reserved
ns
4
CWL = 6
tCK(AVG)
ns
1,2,3,7
CWL = 7
tCK(AVG)
Reserved
ns
1,2,3,4,7
Reserved
2.5
3.3
1.875
<2.5
1.875
<2.5
CWL = 8
tCK(AVG)
Reserved
ns
1,2,3,4
CWL = 5,6
tCK(AVG)
Reserved
ns
4
CWL = 7
tCK(AVG)
ns
1,2,3,4,7
CWL = 8
tCK(AVG)
ns
1,2,3,4
CWL = 5,6
tCK(AVG)
CWL = 7
tCK(AVG)
1.5
<1.875
Reserved
Reserved
1.5
<1.875
ns
4
ns
1,2,3,7
CWL = 8
tCK(AVG)
Reserved
ns
1,2,3,4
CWL = 5,6,7
tCK(AVG)
Reserved
ns
4
CWL = 8
tCK(AVG)
ns
1,2,3,8
1.25
Supported CL Settings
Supported CWL Settings
- 46 -
<1.5
5,6,7,8,9,10,11
nCK
5,6,7,8
nCK
K4B2G0446D
K4B2G0846D
datasheet
Rev. 1.01
DDR3L SDRAM
13.3.1 Speed Bin Table Notes
Absolute Specification {TOPER; VDDQ = VDD = 1.35V(1.28V~1.45V)};
NOTE :
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements
from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns],
rounding up to the next "SupportedCL".
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or
1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. "Reserved" settings are not allowed. User must program a different value.
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
8. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example,
DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte
20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte
18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin
+ tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns (tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).
9. DDR3 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate.
10. For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not mandatory in SPD coding.
- 47 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
14. Timing Parameters by Speed Grade
[ Table 49 ] Timing Parameters by Speed Bin
Speed
Parameter
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Symbol
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
tCK(DLL_OF
F)
8
-
8
-
8
-
8
-
Units
NOTE
ns
6
Clock Timing
Minimum Clock Cycle Time (DLL off mode)
Average Clock Period
tCK(avg)
See Speed Bins Table
ps
Clock Period
tCK(abs)
tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max +
tJIT(per)min
tJIT(per)max
tJIT(per)min
tJIT(per)max
tJIT(per)min
tJIT(per)max
tJIT(per)min
tJIT(per)max
ps
Average high pulse width
tCH(avg)
0.47
0.53
0.47
0.53
0.47
0.53
0.47
0.53
tCK(avg)
Average low pulse width
tCL(avg)
0.47
0.53
0.47
0.53
0.47
0.53
0.47
0.53
tCK(avg)
Clock Period Jitter
tJIT(per)
-100
100
-90
90
-80
80
-70
70
ps
tJIT(per, lck)
-90
90
-80
80
-70
70
-60
60
ps
Clock Period Jitter during DLL locking period
Cycle to Cycle Period Jitter
tJIT(cc)
200
180
160
140
Cycle to Cycle Period Jitter during DLL locking period
tJIT(cc, lck)
180
160
140
120
Cumulative error across 2 cycles
tERR(2per)
- 147
147
- 132
132
- 118
118
-103
103
ps
Cumulative error across 3 cycles
tERR(3per)
- 175
175
- 157
157
- 140
140
-122
122
ps
Cumulative error across 4 cycles
tERR(4per)
- 194
194
- 175
175
- 155
155
-136
136
ps
Cumulative error across 5 cycles
tERR(5per)
- 209
209
- 188
188
- 168
168
-147
147
ps
Cumulative error across 6 cycles
tERR(6per)
- 222
222
- 200
200
- 177
177
-155
155
ps
Cumulative error across 7 cycles
tERR(7per)
- 232
232
- 209
209
- 186
186
-163
163
ps
Cumulative error across 8 cycles
tERR(8per)
- 241
241
- 217
217
- 193
193
-169
169
ps
Cumulative error across 9 cycles
tERR(9per)
- 249
249
- 224
224
- 200
200
-175
175
ps
Cumulative error across 10 cycles
tERR(10per)
- 257
257
- 231
231
- 205
205
-180
180
ps
Cumulative error across 11 cycles
tERR(11per)
- 263
263
- 237
237
- 210
210
-184
184
ps
Cumulative error across 12 cycles
tERR(12per)
- 269
269
- 242
242
- 215
215
-188
188
ps
Cumulative error across n = 13, 14 ... 49, 50 cycles
ps
ps
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max
tERR(nper)
ps
24
Absolute clock HIGH pulse width
tCH(abs)
0.43
-
0.43
-
0.43
-
0.43
-
tCK(avg)
25
Absolute clock Low pulse width
tCL(abs)
0.43
-
0.43
-
0.43
-
0.43
-
tCK(avg)
26
tDQSQ
-
200
-
150
-
125
-
100
ps
13
tQH
0.38
-
0.38
-
0.38
-
0.38
-
tCK(avg)
13, g
DQ low-impedance time from CK, CK
tLZ(DQ)
-800
400
-600
300
-500
250
-450
225
ps
13,14, f
DQ high-impedance time from CK, CK
tHZ(DQ)
-
400
-
300
-
250
-
225
ps
13,14, f
-
-
-
-
ps
d, 17
-
-
-
-
ps
d, 17
75
-
55
-
ps
d, 17
-
45
-
ps
d, 17
-
25
-
ps
Data Timing
DQS,DQS to DQ skew, per group, per access
DQ output hold time from DQS, DQS
1.35V
Data setup time to DQS, DQS referenced to
VIH(AC)VIL(AC) levels
tDS(base)
AC160
90
-
40
1.5V
tDS(base)
AC175
75
-
25
1.35V
Data hold time from DQS, DQS referenced to
VIH(AC)VIL(AC) levels
tDH(base)
DC90
160
-
110
-
1.5V
tDH(base)
DC100
150
-
100
-
65
1.35V
Data setup time to DQS, DQS referenced to
VIH(AC)VIL(AC) levels
DQ and DM Input pulse width for each input
tDS(base)
AC135
140
-
90
-
45
1.5V
tDS(base)
AC150
125
-
75
-
30
-
10
-
ps
tDIPW
600
-
490
-
400
-
360
-
ps
- 48 -
28
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
[ Table 49 ] Timing Parameters by Speed Bin (Cont.)
Speed
Parameter
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Units
NOTE
Note 19
tCK
13, 19, g
Note 11
tCK
11, 13, b
0.4
-
tCK(avg)
13, g
-
0.4
-
tCK(avg)
13, g
0.9
-
0.9
-
tCK
Symbol
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
DQS, DQS differential READ Preamble
tRPRE
0.9
Note 19
0.9
Note 19
0.9
Note 19
0.9
DQS, DQS differential READ Postamble
tRPST
0.3
Note 11
0.3
Note 11
0.3
Note 11
0.3
DQS, DQS differential output high time
tQSH
0.38
-
0.38
-
0.4
-
DQS, DQS differential output low time
tQSL
0.38
-
0.38
-
0.4
DQS, DQS differential WRITE Preamble
tWPRE
0.9
-
0.9
-
DQS, DQS differential WRITE Postamble
Data Strobe Timing
tWPST
0.3
-
0.3
-
0.3
-
0.3
-
tCK
DQS, DQS rising edge output access time from rising
CK, CK
tDQSCK
-400
400
-300
300
-255
255
-225
225
ps
13,f
DQS, DQS low-impedance time (Referenced from RL1)
tLZ(DQS)
-800
400
-600
300
-500
250
-450
225
ps
13,14,f
DQS, DQS high-impedance time (Referenced from
RL+BL/2)
tHZ(DQS)
-
400
-
300
-
250
-
225
ps
12,13,14
DQS, DQS differential input low pulse width
tDQSL
0.45
0.55
0.45
0.55
0.45
0.55
0.45
0.55
tCK
29, 31
DQS, DQS differential input high pulse width
tDQSH
0.45
0.55
0.45
0.55
0.45
0.55
0.45
0.55
tCK
30, 31
DQS, DQS rising edge to CK, CK rising edge
tDQSS
-0.25
0.25
-0.25
0.25
-0.25
0.25
-0.27
0.27
tCK(avg)
c
DQS,DQS falling edge setup time to CK, CK rising edge
tDSS
0.2
-
0.2
-
0.2
-
0.18
-
tCK(avg)
c, 32
DQS,DQS falling edge hold time to CK, CK rising edge
tDSH
0.2
-
0.2
-
0.2
-
0.18
-
tCK(avg)
c, 32
tDLLK
512
-
512
-
512
-
512
-
nCK
tRTP
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
e
tWTR
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
e,18
WRITE recovery time
tWR
15
-
15
-
15
-
15
-
ns
Mode Register Set command cycle time
tMRD
4
-
4
-
4
-
4
-
nCK
Mode Register Set command update delay
tMOD
max
(12nCK,15ns)
-
max
(12nCK,15ns)
-
max
(12nCK,15ns)
-
max
(12nCK,15ns)
-
tCCD
4
-
4
-
4
-
4
-
-
1
-
Command and Address Timing
DLL locking time
internal READ Command to PRECHARGE Command
delay
Delay from start of internal write transaction to internal
read command
CAS# to CAS# command delay
Auto precharge write recovery + precharge time
Multi-Purpose Register Recovery Time
ACTIVE to PRECHARGE command period
tDAL(min)
tMPRR
WR + roundup (tRP / tCK(AVG))
1
tRAS
-
1
-
1
-
-
max
(4nCK,6ns)
nCK
nCK
See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin”
max
(4nCK,7.5ns)
e
-
max
(4nCK,6ns)
-
nCK
22
ns
e
ACTIVE to ACTIVE command period for 1KB page size
tRRD
max
(4nCK,10ns)
ACTIVE to ACTIVE command period for 2KB page size
tRRD
max
(4nCK,10ns)
-
max
(4nCK,10ns)
-
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
Four activate window for 1KB page size
tFAW
40
-
37.5
-
30
-
30
-
ns
e
Four activate window for 2KB page size
tFAW
50
-
50
-
45
-
40
-
ns
e
-
60
-
ps
b,16
-
45
-
ps
b,16
-
130
-
ps
b,16
120
-
ps
b,16
-
185
-
ps
b,16,27
e
e
1.35V
Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels
tIS(base)
AC160
215
-
140
-
80
1.5V
tIS(base)
AC175
200
-
125
-
65
1.35V
Command and Address hold time from CK, CK referenced to VIH(AC) / VIL(AC) levels
tIH(base)
DC90
285
-
210
-
150
1.5V
tIH(base)
DC100
275
200
140
1.35V
Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels
tIS(base)
AC135
365
-
290
-
205
1.5V
tIS(base)
AC150
350
-
275
-
190
-
170
-
ps
b,16,27
tIPW
900
-
780
-
620
-
560
-
ps
28
Power-up and RESET calibration time
tZQinitI
512
-
512
-
512
-
512
-
nCK
Normal operation Full calibration time
tZQoper
256
-
256
-
256
-
256
-
nCK
tZQCS
64
-
64
-
64
-
64
-
nCK
Control & Address Input pulse width for each input
Calibration Timing
Normal operation short calibration time
- 49 -
23
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
[ Table 49 ] Timing Parameters by Speed Bin (Cont.)
Speed
Parameter
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Symbol
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
tXPR
max(5nCK,
tRFC +
10ns)
-
max(5nCK,
tRFC +
10ns)
-
max(5nCK,
tRFC +
10ns)
-
max(5nCK,
tRFC +
10ns)
-
Exit Self Refresh to commands not requiring a locked
DLL
tXS
max(5nCK,t
RFC +
10ns)
-
max(5nCK,t
RFC +
10ns)
-
max(5nCK,t
RFC +
10ns)
-
max(5nCK,t
RFC + 10ns)
-
Exit Self Refresh to commands requiring a locked DLL
Units
NOTE
Reset Timing
Exit Reset from CKE HIGH to a valid command
Self Refresh Timing
tXSDLL
tDLLK(min)
-
tDLLK(min)
-
tDLLK(min)
-
tDLLK(min)
-
Minimum CKE low width for Self refresh entry to exit
timing
tCKESR
tCKE(min) +
1tCK
-
tCKE(min) +
1tCK
-
tCKE(min) +
1tCK
-
tCKE(min) +
1tCK
-
Valid Clock Requirement after Self Refresh Entry
(SRE) or Power-Down Entry (PDE)
tCKSRE
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
Valid Clock Requirement before Self Refresh Exit
(SRX) or Power-Down Exit (PDX) or Reset Exit
tCKSRX
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
tXP
max
(3nCK,
7.5ns)
-
max
(3nCK,
7.5ns)
-
max
(3nCK,6ns)
-
max
(3nCK,6ns)
-
tXPDLL
max
(10nCK,
24ns)
-
max
(10nCK,
24ns)
-
max
(10nCK,
24ns)
-
max
(10nCK,
24ns)
-
tCKE
max
(3nCK,
7.5ns)
-
max
(3nCK,
5.625ns)
-
max
(3nCK,
5.625ns)
-
max
(3nCK,5ns)
-
nCK
Power Down Timing
Exit Power Down with DLL on to any valid command;Exit Precharge Power Down with DLL
frozen to commands not requiring a locked DLL
Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL
CKE minimum pulse width
Command pass disable delay
2
tCPDED
1
-
1
-
1
-
1
-
tPD
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCK
15
Timing of ACT command to Power Down entry
tACTPDEN
1
-
1
-
1
-
1
-
nCK
20
Timing of PRE command to Power Down entry
tPRPDEN
1
-
1
-
1
-
1
-
nCK
20
Timing of RD/RDA command to Power Down entry
tRDPDEN
RL + 4 +1
-
RL + 4 +1
-
RL + 4 +1
-
RL + 4 +1
-
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF)
tWRPDEN
WL + 4
+(tWR/
tCK(avg))
-
WL + 4
+(tWR/
tCK(avg))
-
WL + 4
+(tWR/
tCK(avg))
-
WL + 4
+(tWR/
tCK(avg))
-
nCK
9
tWRAPDEN
WL + 4
+WR +1
-
WL + 4
+WR +1
-
WL + 4
+WR +1
-
WL + 4 +WR
+1
-
nCK
10
tWRPDEN
WL + 2
+(tWR/
tCK(avg))
-
WL + 2
+(tWR/
tCK(avg))
-
WL + 2
+(tWR/
tCK(avg))
-
WL + 2
+(tWR/
tCK(avg))
-
nCK
9
tWRAPDEN
WL +2 +WR
+1
-
WL +2 +WR
+1
-
WL +2 +WR
+1
-
WL +2 +WR
+1
-
nCK
10
Power Down Entry to Exit Timing
Timing of WRA command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF)
Timing of WR command to Power Down entry
(BC4MRS)
Timing of WRA command to Power Down entry
(BC4MRS)
nCK
Timing of REF command to Power Down entry
tREFPDEN
1
-
1
-
1
-
1
-
Timing of MRS command to Power Down entry
tMRSPDEN
tMOD(min)
-
tMOD(min)
-
tMOD(min)
-
tMOD(min)
-
20,21
ODT high time without write command or with write
command and BC4
ODTH4
4
-
4
-
4
-
4
-
nCK
ODT high time with Write command and BL8
ODTH8
6
-
6
-
6
-
6
-
nCK
Asynchronous RTT turn-on delay (Power-Down with
DLL frozen)
tAONPD
2
8.5
2
8.5
2
8.5
2
8.5
ns
Asynchronous RTT turn-off delay (Power-Down with
DLL frozen)
tAOFPD
2
8.5
2
8.5
2
8.5
2
8.5
ns
RTT turn-on
tAON
-400
400
-300
300
-250
250
-225
225
ps
7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff
reference
tAOF
0.3
0.7
0.3
0.7
0.3
0.7
0.3
0.7
tCK(avg)
8,f
RTT dynamic change skew
tADC
0.3
0.7
0.3
0.7
0.3
0.7
0.3
0.7
tCK(avg)
f
First DQS pulse rising edge after tDQSS margining
mode is programmed
tWLMRD
40
-
40
-
40
-
40
-
tCK
3
DQS/DQS delay after tDQS margining mode is programmed
tWLDQSEN
25
-
25
-
25
-
25
-
tCK
3
Write leveling setup time from rising CK, CK crossing
to rising DQS, DQS crossing
tWLH
325
-
245
-
195
-
165
-
ps
Write leveling hold time from rising DQS, DQS crossing to rising CK, CK crossing
tWLH
325
-
245
-
195
-
165
-
ps
Write leveling output delay
tWLO
0
9
0
9
0
9
0
7.5
ns
Write leveling output error
tWLOE
0
2
0
2
0
2
0
2
ns
ODT Timing
Write Leveling Timing
- 50 -
datasheet
K4B2G0446D
K4B2G0846D
Rev. 1.01
DDR3L SDRAM
14.1 Jitter Notes
Specific Note a
Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the
input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm,
another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.
Specific Note b
These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition
edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e.
tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is,
these parameters should be met whether clock jitter is present or not.
Specific Note c
These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK)
crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative
to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
Specific Note d
These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data
strobe signal (DQS(L/U), DQS(L/U)) crossing.
Specific Note e
For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)},
which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the
device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.
Specific Note f
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input
clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = +
193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to
tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the
min/max usage!)
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.
Specific Note g
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input
clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has
tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min +
tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) =
tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/
max usage!)
- 51 -
K4B2G0446D
K4B2G0846D
datasheet
Rev. 1.01
DDR3L SDRAM
14.2 Timing Parameter Notes
1. Actual value dependant upon measurement level definitions which are TBD.
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register
5. Value must be rounded-up to next higher integer value
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet"
8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet".
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing
Diagram Datasheet.
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated
by TBD
13. Value is only valid for RON34
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.
15. tREFI depends on TOPER
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,
VREF(DC) = VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC).
See Address/Command Setup, Hold and Derating : on page 53. .
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,
VREF(DC)= VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC).
See Data Setup, Hold and Slew Rate Derating : on page 59.
18. Start of internal write transaction is defined as follows ;
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram
Datasheet"
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down
IDD spec will not be applied until finishing those operations.
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time
such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet".
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula:
ZQCorrection
(TSens x Tdriftrate) + (VSens x Vdriftrate)
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.
For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as:
0.5
(1.5 x 1) + (0.15 x 15)
= 0.133 ~
~ 128ms
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].
28. Pulse width of a input signal is defined as the width between the first crossing of VREF(DC) and the consecutive crossing of VREF(DC)
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
- 52 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
14.3 Address/Command Setup, Hold and Derating :
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see
Table 50) to the ∆tIS and ∆tIH derating value (see Table 51) respectively.
Example: tIS (total setup time) = tIS(base) + ∆tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of
VREF(DC) and the first crossing of VIH(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of
VREF(DC) and the first crossing of VIL(AC)max. If the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac
region’, use nominal slew rate for derating value (see Figure 21). If the actual signal is later than the nominal slew rate line anywhere between shaded
’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see Figure 23).
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).
Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If
the actual signal is always later than the nominal slew rate line between shaded ’dc to VREF(DC) region’, use nominal slew rate for derating value (see
Figure 22). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line
to the actual signal from the dc level to VREF(DC) level is used for derating value (see Figure 24).
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC (see Table 51).
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).
For slew rates in between the values listed in Table 51, the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization.
[ Table 50 ] ADD/CMD Setup and Hold Base-Values for 1V/ns
[ps]
DDR3L-800
DDR3L-1066
DDR3L-1333
DDR3L-1600
reference
tIS(base) AC160
215
140
80
60
VIH/L(AC)
tIS(base) AC135
365
290
205
185
VIH/L(AC)
tIH(base)-DC90
285
210
150
130
VIH/L(DC)
NOTE :
1. AC/DC referenced for 1V/ns Address/Command slew rate and 2 V/ns differential CK-Ck slew rate
2. The tIS(base) AC135 specifications are adjusted from the tIS(base) AC160 specification by adding an additional 125ps for DDR3L-800/1066 or 100ps for DDR3L-1333/1600
of derating to accommodate for the lower alternate threshold of 135mV and another 25ps to account for the earlier reference point [(160mV-135mV)/1 V/ns]
[ Table 51 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-AC/DC based
∆tIS, ∆tIH Derating [ps] AC/DC based
AC175 Threshold -> VIH(AC) = VREF(DC) + 175mV, VIL(AC) = VREF(DC) - 175mV
CLK,CLK Differential Slew Rate
4.0 V/ns
CMD/
ADD
Slew
rate
V/ns
3.0 V/ns
2.0 V/ns
1.8 V/ns
1.6 V/ns
1.4V/ns
1.2V/ns
1.0V/ns
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
2.0
88
50
88
50
88
50
96
58
104
66
112
74
120
84
128
100
1.5
59
34
59
34
59
34
67
42
75
50
83
58
91
68
99
84
1.0
0
0
0
0
0
0
8
8
16
16
24
24
32
34
40
50
0.9
-2
-4
-2
-4
-2
-4
6
4
14
12
22
20
30
30
38
46
0.8
-6
-10
-6
-10
-6
-10
2
-2
10
6
18
14
26
24
34
40
0.7
-11
-16
-11
-16
-11
-16
-3
-8
5
0
13
8
21
18
29
34
0.6
-17
-26
-17
-26
-17
-26
-9
-18
-1
-10
7
-2
15
8
23
24
0.5
-35
-40
-35
-40
-35
-40
-27
-32
-19
-24
-11
-16
-2
-6
5
10
0.4
-62
-60
-62
-60
-62
-60
-54
-52
-46
-44
-38
-36
-30
-26
-22
-10
- 53 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
[ Table 52 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-AC/DC based - Alternate AC150 Threshold
∆tIS, ∆tIH Derating [ps] AC/DC based
Alternate AC150 Threshold -> VIH(AC) = VREF(DC) + 150mV, VIL(AC) = VREF(DC) - 150mV
CLK,CLK Differential Slew Rate
4.0 V/ns
CMD/
ADD
Slew
rate
V/ns
3.0 V/ns
2.0 V/ns
1.8 V/ns
1.6 V/ns
1.4V/ns
1.2V/ns
1.0V/ns
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
2.0
75
50
75
50
75
50
83
58
91
66
99
74
107
84
115
100
1.5
50
34
50
34
50
34
58
42
66
50
74
58
82
68
90
84
1.0
0
0
0
0
0
0
8
8
16
16
24
24
32
34
40
50
0.9
0
-4
0
-4
0
-4
8
4
16
12
24
20
32
30
40
46
0.8
0
-10
0
-10
0
-10
8
-2
16
6
24
14
32
24
40
40
0.7
0
-16
0
-16
0
-16
8
-8
16
0
24
8
32
18
40
34
0.6
-1
-26
-1
-26
-1
-26
7
-18
15
-10
23
-2
31
8
39
24
0.5
-10
-40
-10
-40
-10
-40
-2
-32
6
-24
14
-16
22
-6
30
10
0.4
-25
-60
-25
-60
-25
-60
-17
-52
-9
-44
-1
-36
7
-26
15
-10
[ Table 53 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition
tVAC @175mV [ps]
Slew Rate[V/ns]
min
tVAC @150mV [ps]
max
min
max
>2.0
75
-
175
-
2.0
57
-
170
-
1.5
50
-
167
-
1.0
38
-
163
-
0.9
34
-
162
-
0.8
29
-
161
-
0.7
22
-
159
-
0.6
13
-
155
-
0.5
0
-
150
-
< 0.5
0
-
150
-
- 54 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
NOTE :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
tVAC
VIH(AC) min
VREF to ac
region
VIH(DC) min
nominal
slew rate
VREF(DC)
nominal slew
rate
VIL(DC) max
VREF to ac
region
VIL(AC) max
tVAC
VSS
∆ TF
Setup Slew Rate = VREF(DC) - VIL(AC)max
Falling Signal
∆ TF
∆ TR
Setup Slew Rate
V (AC)min - VREF(DC)
= IH
Rising Signal
∆ TR
Figure 21. Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock).
- 55 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
NOTE :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
VIH(AC) min
VIH(DC) min
dc to VREF
region
nominal
slew rate
VREF(DC)
nominal
slew rate
dc to VREF
region
VIL(DC) max
VIL(AC) max
VSS
∆ TR
Hold Slew Rate VREF(DC) - VIL(DC)max
Rising Signal =
∆ TR
∆ TF
Hold Slew Rate VIH(DC)min - VREF(DC)
=
Falling Signal
∆ TF
Figure 22. Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock).
- 56 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
NOTE :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
nominal
line
tVAC
VIH(AC) min
VREF to ac
region
VIH(DC) min
tangent
line
VREF(DC)
tangent
line
VIL(DC) max
VREF to ac
region
VIL(AC) max
nominal
line
∆ TR
tVAC
VSS
∆ TF
tangent line[VIH(AC)min - VREF(DC)]
Setup Slew Rate
=
Rising Signal
∆ TR
Setup Slew Rate tangent line[VREF(DC) - VIL(AC)max]
Falling Signal =
∆ TF
Figure 23. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock)
- 57 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
NOTE :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
VIH(AC) min
nominal
line
VIH(DC) min
dc to VREF
region
tangent
line
VREF(DC)
dc to VREF
region
tangent
line
nominal
line
VIL(DC) max
VIL(AC) max
VSS
∆ TR
∆ TF
Hold Slew Rate tangent line [ VREF(DC) - VIL(DC)max ]
Rising Signal =
∆ TR
Hold Slew Rate tangent line [ VIH(DC)min - VREF(DC) ]
Falling Signal =
∆ TF
Figure 24. Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock)
- 58 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
14.4 Data Setup, Hold and Slew Rate Derating :
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see
Table 54) to the ∆ tDS and ∆tDH (see Table 55) derating value respectively. Example: tDS (total setup time) = tDS(base) + ∆tDS.
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIH(AC)min.
Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max
(see Figure 25). If the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac region’, use nominal slew rate for
derating value. If the actual signal is later than the nominal slew rate line anywhere
between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see
Figure 27).
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).
Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC)
(see Figure ). If the actual signal is always later than the nominal slew rate line between shaded ’dc level to VREF(DC) region’, use nominal slew rate for
derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent
line to the actual signal from the dc level to VREF(DC) level is used for derating value (see Figure 28).
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC (see Table 56).
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).
For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization.
[ Table 54 ] Data Setup and Hold Base-Values
[ps]
tDS(base) AC175
tDS(base) AC150
tDS(base) AC135
tDH(base) DC100
DDR3-800
75
125
150
DDR3-1066
25
75
100
DDR3-1333
30
65
DDR3-1600
10
45
reference
VIH/L(AC)
VIH/L(AC)
VIH/L(AC)
VIH/L(DC)
NOTE : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)
[ Table 55 ] Derating values DDR3-800/1066 tDS/tDH - (AC175)
DDR3 DQ
Slew
800/ rate
1066 V/ns
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
0.4
4.0 V/ns
∆tDS ∆tDH
88
50
59
34
0
0
-
∆tDS, ∆tDH Derating in [ps] AC/DC based1
DQS,DQS Differential Slew Rate
3.0 V/ns
2.0 V/ns
1.8 V/ns
1.6 V/ns
∆tDS ∆tDH ∆tDS ∆tDH ∆tDS ∆tDH ∆tDS ∆tDH
88
50
88
50
59
34
59
34
67
42
0
0
0
0
8
8
16
16
-2
-4
-2
-4
6
4
14
12
-6
-10
2
-2
10
6
-3
-8
5
0
-1
-10
-
1.4V/ns
∆tDS ∆tDH
22
20
18
14
13
8
7
-2
-11
-16
-
1.2V/ns
∆tDS ∆tDH
26
24
21
18
15
8
-2
-6
-30
-26
1.0V/ns
∆tDS ∆tDH
29
34
23
24
6
10
-22
-10
NOTE : 1. Cell contents shaded in red are defined as ’not supported’.
[ Table 56 ] Derating values for DDR3-800/1066/1333/1600 tDS/tDH - (AC150)
DQ
Slew
rate
V/ns
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
0.4
4.0 V/ns
∆tDS ∆tDH
75
50
50
34
0
0
-
3.0 V/ns
∆tDS ∆tDH
75
50
50
34
0
0
0
-4
-
∆tDS, ∆tDH Derating in [ps] AC/DC based1
DQS,DQS Differential Slew Rate
2.0 V/ns
1.8 V/ns
1.6 V/ns
1.4V/ns
∆tDS ∆tDH ∆tDS ∆tDH ∆tDS ∆tDH ∆tDS ∆tDH
75
50
50
34
58
42
0
0
8
8
16
16
0
-4
8
4
16
12
24
20
0
-10
8
-2
16
6
24
14
8
-8
16
0
24
8
15
-10
23
-2
14
-16
-
NOTE : 1. Cell contents shaded in red are defined as ’not supported’.
- 59 -
1.2V/ns
∆tDS ∆tDH
32
24
32
18
31
8
22
-6
7
-26
1.0V/ns
∆tDS ∆tDH
40
34
39
24
30
10
15
-10
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
[ Table 57 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition
Slew Rate[V/ns]
>2.0
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
<0.5
tVAC[ps] DDR3-800/1066 (AC175)
tVAC[ps] DDR3-800/1066/1333/1600 (AC150)
min
max
min
max
75
57
50
38
34
29
22
13
0
0
-
175
170
167
163
162
161
159
155
155
150
-
- 60 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
NOTE :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
tVAC
VIH(AC) min
VREF to ac
region
VIH(DC) min
nominal
slew rate
VREF(DC)
nominal slew
rate
VIL(DC) max
VREF to ac
region
VIL(AC) max
tVAC
VSS
∆ TF
Setup Slew Rate= VREF(DC) - VIL(AC)max
Falling Signal
∆ TF
∆ TR
Setup Slew Rate VIH(AC)min - VREF(DC)
=
Rising Signal
∆ TR
Figure 25. Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock).
- 61 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
NOTE :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
VIH(AC) min
VIH(DC) min
dc to VREF
region
nominal
slew rate
VREF(DC)
nominal
slew rate
dc to VREF
region
VIL(DC) max
VIL(AC) max
VSS
∆ TR
Hold Slew Rate VREF(DC) - VIL(DC)max
Rising Signal =
∆ TR
∆ TF
Hold Slew Rate VIH(DC)min - VREF(DC)
=
Falling Signal
∆ TF
Figure 26. Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock).
- 62 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
NOTE :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
nominal
line
tVAC
VIH(AC) min
VREF to ac
region
VIH(DC) min
tangent
line
VREF(DC)
tangent
line
VIL(DC) max
VREF to ac
region
VIL(AC) max
nominal
line
∆ TR
tVAC
VSS
∆ TF
tangent line[VIH(AC)min - VREF(DC)]
Setup Slew Rate
=
Rising Signal
∆ TR
Setup Slew Rate tangent line[VREF(DC) - VIL(AC)max]
Falling Signal =
∆ TF
Figure 27. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock)
- 63 -
Rev. 1.01
datasheet
K4B2G0446D
K4B2G0846D
DDR3L SDRAM
NOTE :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
VIH(AC) min
nominal
line
VIH(DC) min
dc to VREF
region
tangent
line
VREF(DC)
dc to VREF
region
tangent
line
nominal
line
VIL(DC) max
VIL(AC) max
VSS
∆ TR
∆ TF
Hold Slew Rate tangent line [ VREF(DC) - VIL(DC)max ]
Rising Signal =
∆ TR
Hold Slew Rate tangent line [ VIH(DC)min - VREF(DC) ]
Falling Signal =
∆ TF
Figure 28. Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock)
- 64 -