SANYO LV766106F

Ordering number : ENA1893
Monolithic Linear IC
LV766106F
For PAL/NTSC Color Television Sets
VIF/SIF/Y/C/Deflection /CbCr IN
Implemented in a Single Chip
Overview
The LV766106F is VIF/SIF/Y/C/D/Deflection /CbCr IN Implemented in a single chip for PAL/NTSC color television
sets.(*1)
Functions
• VIF / SIF / Y / C / Deflection / CbCr IN / Implemented in a Single Chip with CPU
• I2C Bus Control
Specifications
BIP Chip Maximum Ratings at Ta=25°C
Parameter
Symbol
Conditions
Unit
Allowable power dissipation
Pd max
1.3
W
Operating temperature
Topr
-10 to +65
°C
Storage temperature
Tstg
Maximum supply voltage
Maximum supply current
Ta ≤65°C (*2)
Ratings
-55 to +150
°C
V62 max
6.0
V
V4 max
6.0
V
I9 max
15
mA
I20 max
20
mA
I49 max
40
mA
(*1) μ-Controller Chip:LC87F3664A , F:FLASHROM=64Kbyte(Program_ROM:48Kbyte/character_ROM:16Kbyte)
(This production is produced and sold by SANYO under license of the Silicon Storage Technology Inc.)
(*2) Provided with a glass epoxy board (230×150×1.6 mm)
Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to
"standard application", intended for the use as general electronics equipment (home appliances, AV equipment,
communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be
intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace
instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety
equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case
of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee
thereof. If you should intend to use our products for applications outside the standard applications of our
customer who is considering such use and/or outside the scope of our intended standard applications, please
consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our
customer shall be solely responsible for the use.
Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate
the performance, characteristics, and functions of the described products in the independent state, and are not
guarantees of the performance, characteristics, and functions of the described products as mounted in the
customer' s products or equipment. To verify symptoms and states that cannot be evaluated in an independent
device, the customer should always evaluate and test devices mounted in the customer' s products or
equipment.
D0810 SY 20101028-S00006 No.A1893-1/41
LV766106F
BIP Operating Conditions at Ta=25°C
Parameter
Recommended supply voltage
Recommended supply current
Operating supply voltage range
Operating supply current range
Symbol
Conditions
Ratings
Unit
V62
5.0
V4
5.0
V
I9
10
mA
I20
13
mA
I49
30
mA
V
V62
4.7 to 5.3
V
V4
4.7 to 5.3
V
I9
7 to 13
mA
I20
11 to 15
mA
I49
28 to 35
mA
Package Dimensions
unit : mm (typ)
3300
33
1
32
0.2
13.8
64
15.24
57.2
(4.25)
0.51min
3.8
5.1max
0.95
1.78
(1.01)
0.5
SANYO : DIP64S(600mil)
No.A1893-2/41
LV766106F
μ-Controller Chip Absolute maximum ratings at Ta=25°C, VSS=0V
Parameter
Symbol
Pins
Conditions
Limits
VDD[V]
max
unit
Maximum Supply voltage
VDD max
CpuVDD
-0.3
~
+6.0
V
Input voltage
VI
XT1,RES#
-0.3
~
VDD+0.3
Output voltage
VO1
XT2,FILT
-0.3
~
VDD+0.3
VO2
CpuVDD2
-0.3
~
3.3V+0.3
VIO
Ports0,1
-0.3
~
VDD+0.3
Peak output
current
IOPH
Ports04~07,1
Mean Output
current
IOMH
Ports04~07,1
Total output
current
ΣIOAH
Ports04~07,1
Peak output
current
Mean output
current
IOPL
Ports0,1
For each pin
20
IOML1
P02,P03,P06,P07
Ports1
For each pin
1
IOML2
P00,P01,P04,P05
For each pin
8
ΣIOAL1
P02,P03,P06,P07
Ports1
P00,P01,P04,P05
The total of all
pins.
45
The total of all
pins.
16
Input/output voltage
High level
output
current
Low level
output
current
Total output
Current
ΣIOAL2
min
typ
-10
・CMOS output
・For each pin.
・CMOS output
・For each pin.
The total of all
pins.
mA
-1
-25
μ-Conttoller Chip Recommended operating range at Ta=-10°C to +65°C, VSS=0V
Parameter
Symbol
Pins
Conditions
Limits
VDD[V]
max.
unit
Operating supply
voltage range
Hold voltage
VDD
CpuVDD
0.229µs≤tCYC≤200µs
4.5
5.5
V
VHD
CpuVDD
RAMs and the registers data are
kept in HOLD mode.
2.0
5.5
High level input
Voltage
VIH1
Ports0,1,
P00 port input
/interrupt
Port00
Watch-dog
timer
RES#
4.5 to 5.5
0.3VDD
+0.7
VDD
4.5 to 5.5
0.9VDD
VDD
4.5 to 5.5
0.75VDD
VDD
Ports0,1,
P00 port input
/interrupt
Port00
Watch-dog timer
4.5 to 5.5
VSS
0.1VDD
+0.4
4.5 to 5.5
VSS
4.5 to 5.5
VSS
0.8VDD
-1.0
0.25VDD
VIH2
VIH3
Low level input
Voltage
VIL1
VIL2
VIL3
Operation cycle time
(*3)
Oscillation
frequency range
RES#
tCYC1
All functions operating
4.5 to 5.5
tCYC2
OSD and Data slicer are not
operating
Built-in VCO1
Oscillation System clock
Built-in VCO2
OCKSEL=0
oscillation
OCKSEL=1
OSD clock
4.5 to 5.5
FmVCO1
FmVCO2
(*4)
FmRC
Oscillation
stabilizing time
FsX’tal
(*4)
tmsVCO
XT1(P07),
XT2(P06)
min.
typ.
0.231
0.231
µs
200
4.5 to 5.5
13.0
4.5 to 5.5
12.5
MHz
16.6
Built-in RC oscillation
4.5 to 5.5
At the 32.768KHz crystal
Oscillating See the figure1
・after the HOLD mode
・Power-On
4.5 to 5.5
4.5 to 5.5
0.3
1.0
2.0
32.768
KHz
300
mS
(Note) FLASH-ROM erase/write temperature range :Ta=25±2°C(VDD=4.5 to 5.5V)
(*3) Relational expression between Tcyc and oscillation frequency;
1/1 frequency dividing: 3/FmVCO1, 1/2 frequency dividing: 6/FVCO1.
(*4) OCKSEL is the selectable register for OSD clock frequency. (See the LC873600 users manual for details.)
(*5)When the base timer count of clock accuracy is necessary , use the port terminal (two ports) as the crystal oscillation.
(See the [12 μ-Controller Chip Crystal Oscillation Circuit and Sample Characteristics] for details.)
No.A1893-3/41
LV766106F
BIP Chip Electrical Characteristics at Ta=25°C, ICC=I9=10mA ICC=I20=13mA ICC=I49=30mA VCC=V62= V4=5.0V
Parameter
Symbol
Conditions
min
typ
max
Unit
[Circuit voltage, current]
Horizontal supply voltage
V20
I20=13mA
4.7
5.0
5.3
V
Logic supply voltage
V9
I9=10mA
3.0
3.3
3.6
V
RGB supply voltage
V49
I49=30mA
7.8
8.15
8.5
V
IF supply current
I62
V62=5.0V
56
65
74
mA
Video supply current
I4
V4=5.0V
65
77
89
mA
4.3
4.7
5
Vdc
0
0.3
0.7
Vdc
[VIF block]
Maximum RFAGC voltage
VRFH
CW=80 dBµ, DAC=0
Minimum RFAGC voltage
VRFL
CW=80 dBµ, DAC=63
RF AGC Delay Pt (@DAC=0)
RFAGC0
DAC=0
90
−
−
dBµ
RF AGC Delay Pt (@DAC=63)
RFAGC63
DAC=63
−
−
80
dBµ
Input sensitivity
Vi
Output-3db
−
−
46
dBµ
Sync signal tip level
VOtip
CW=80 dBµ
Video output amplitude
VO
80dBu,AM=78%,fm=15kHz
Video S/N
S/N
1.1
1.4
1.7
Vdc
1.90
2.00
2.10
Vp_p
CW=80 dBµ
40
45
−
dB
35
−
−
dB
−
5.0
15
%
C-S beat level
IC-S
V4.43MHz/V1.07MHz
Differential gain
DG
80 dBµ, 87.5% Video MOD
Differential phase
DP
80 dBµ, 87.5% Video MOD
−
5.0
10.0
APC pull-in range(U)
fPU
2.0
−
−
MHz
APC pull-in range(L)
fPL
1.5
−
−
MHz
NTSC Trap1(4.5MHz)
NTR1
−
−
-27
dB
BG Trap1(5.5MHz)
BTR1
−
−
-27
dB
I Trap1(6.0MHz)
ITR1
−
−
-27
dB
DK Trap1(6.5MHz)
DTR1
−
−
-27
dB
500
640
780
mVrms
deg
[SIF block]
FM detection output voltage
SOADJ
FM=±50kHz
FM limiting sensitivity
SLS
Output -3dB
-
-
60
dBµ
FM detection output f characteristics
SF
fm=100kHz
-1.0
0
5.0
dB
FM detection output distortion
STHD
FM=±50kHz
-
-
3.0
%
SIF S/N
SSN
DIN Audio
45.0
-
-
dB
AVGT
1kHz
-3.0
0.0
+3.0
dB
kHz
[AUDIO block]
Volume gain
(Stereo mode)
Frequency characteristic (Stereo mode)
AFREQT
−
20
30
Total harmonic distortion (Stereo mode)
ATHDT
DIN Audio
−
0.2
0.7
%
Output voltage noise
ANOT
DIN Audio
−
-75
-70
dBV
ACTT
DIN Audio
−
-80
-70
dB
AVGM
1kHz
-3.0
0.0
+3.0
dB
kHz
Cross talk
Volume gain
(Stereo mode)
(Stereo mode)
(Mono mode)
Frequency characteristic (Mono mode)
AFREQM
−
20
30
Total harmonic distortion (Mono mode)
ATHDM
DIN Audio
−
0.2
0.7
%
Output voltage noise
ANOM
DIN Audio
−
-75
-70
dBV
Mute
AMUTE
DIN Audio
−
-80
-70
dB
L/R Balance
ABT
1kHz
-0.5
0
0.5
dB
(Mono mode)
No.A1893-4/41
LV766106F
Parameter
Symbol
Conditions
min
typ
max
Unit
[Video block]
Video overall gain (Contrast max)
CONT127
11.0
13.5
16.0
dB
Contrast adjustment Characteristics
(Normal/max)
CONT64
-7.0
-4.5
-2.0
dB
Contrast adjustment characteristics (Min/max)
CONT0
-18.0
-15.5
-11.0
dB
-6.0
-3.0
0.0
dB
Video frequency Characteristics 1 NTSC
BW1
1.8MHz/100kHz ,
Y Filter.sys = 00
Video frequency characteristics 2 PAL
BW2
2.2MHz/100kHz ,
Y Filter.sys = 01
-6.0
-3.0
0.0
dB
Video frequency characteristics 3 WIDE
BW3
2.3MHz/100kHz ,
Y Filter.sys = 10
-6.0
-3.0
0.0
dB
Video frequency characteristics 4 APF
BW4
3.4MHz/100kHz ,
Y Filter.sys = 00,Y APF=1
-6.0
-3.0
0.0
dB
Chroma trap amount PAL
CtrapP
Y Filter.sys = 01
-26.0
-20.0
dB
Chroma trap amount NTSC
CtrapN
Y Filter.sys = 00
-26.0
-20.0
dB
DC restoration rate 1
ClampG1
DC.Rest=00
95.0
100.0
105.0
%
DC restoration rate 2
ClampG2
DC.Rest=01
102.0
107.0
112.0
%
DC restoration rate 3
ClampG3
DC.Rest=10
105.0
112.0
120.0
%
DC restoration rate 4
ClampG4
DC.Rest=11
118.0
128.0
136.0
%
Y-DL TIME1
TdY1
Y Filter.Sys=00
Y Delay Ajust=0100
1.40
ns
Y-DL TIME2
TdY2
Y Filter.Sys=01
Y Delay Ajust=0100
1.20
ns
Y-DL TIME3
TdY3
Y Filter.Sys=11,Delay Test=1
Y Delay Ajust=0100
1.60
ns
Y-DL TIME4
TdY4
Y Filter.Sys=10
Y Delay Ajust=0100
1.15
ns
Y-DL TIME Ajust1
TdYa1
Y Filter.Sys=00
Y Delay Ajust=0000
1.25
ns
Y-DL TIME Ajust2
TdYa2
Y Filter.Sys=00
Y Delay Ajust=0111
1.45
ns
Black stretch gain max
BKSTmax
Blk.Str.Gain=10 ,Blk.Str.Start=01
17.0
26.0
42.0
IRE
Black stretch gain mid
BKSTmid
Blk.Str.Gain=01 ,Blk.Str.Start=01
8.0
19.0
33.0
IRE
Black stretch gain min
BKSTmin
Blk.Str.Gain=00 ,Blk.Str.Start=01
1.0
11.0
26.0
IRE
Black stretch start point max
(70IRE ΔV)
BKSTTHmax
Blk.Str.Gain=01 ,Blk.Str.Start=10
-4.0
0.0
6.0
IRE
Black stretch start point mid
(50IRE ΔV)
BKSTTHmid
Blk.Str.Gain=01 ,Blk.Str.Start=01
-5.0
0.0
5.0
IRE
Black stretch start point min
(40IRE ΔV)
BKSTTHmin
Blk.Str.Gain=01 ,Blk.Str.Start=00
-5.0
0.0
5.0
IRE
Sharp32T1
F=2.2MHz,Y Filter.Sys=00,
Y Gamma Start=11,C_Kill.ON=1
1.5
3.0
6.0
dB
F=2.2MHz,Y Filter.Sys=00,
Y Gamma Start=11,C_Kill.ON=1
9.0
12.0
15.0
dB
F=2.2MHz,Y Filter.Sys=00,
Y Gamma Start=11,C_Kill.ON=1
-14.0
-9.0
-7.5
dB
F=2.7MHz,Y Filter.Sys=01,
Y Gamma Start=11,C_Kill.ON=1
1.5
3.0
6.0
dB
F=2.7MHz,Y Filter.Sys=01,
Y Gamma Start=11,C_Kill.ON=1
8.5
11.5
15.0
dB
F=2.7MHz,Y Filter.Sys=01,
Y Gamma Start=11,C_Kill.ON=1
-14.0
-11.0
-8.0
dB
F=3.0MHz,Y Filter.Sys=10,
Y Gamma Start=11,C_Kill.ON=1
1.5
5.0
8.0
dB
F=3.0MHz,Y Filter.Sys=10,
Y Gamma Start=11,C_Kill.ON=1
10.0
13.5
17.0
dB
F=3.0MHz,Y Filter.Sys=10,
Y Gamma Start=11,C_Kill.ON=1
-14.0
-11.0
-7.0
dB
Sharpness variability range NTSC
(trap 1 mid)
Sharp63T1
(trap 1 max)
(trap 1 min)
Sharp0T1
Sharpness variability range PAL
Sharp32T2
(trap 2 mid)
Sharp63T2
(trap 2 max)
(trap 2 min)
Sharp0T2
Sharp32T4
Sharpness variability range 6MHz TRAP
(trap 4 mid)
Sharp63T4
(trap 4 max)
(trap 4 min)
Sharp0T4
No.A1893-5/41
LV766106F
Parameter
Symbol
Conditions
min
typ
max
Unit
White peak limiter effective point1
WPL1
APL=100% WPL=00
130.0
160.0
190.0
IRE
White peak limiter effective point2
WPL2
APL=100% WPL=01
90.0
125.0
140.0
IRE
105.0
130.0
IRE
85.0
120.0
IRE
White peak limiter effective point3
WPL3
APL=100% WPL=10
70.0
White peak limiter effective point4
WPL4
APL=100% WPL=11
50.0
Y gamma Start effective point 1
YGST1
Y gamma Start effective point 2
YGST2
Y gamma Start effective point 3
YGST3
Y gamma gain 1
YGGA1
Y gamma gain 2
YGGA2
Y gamma gain 3
YGGA3
Gray Mode Level
GRAY
Horizontal/vertical blanking output level
RGBBLK
Pre-shoot adjust1
PreShoot1
Pre-shoot adjust2
PreShoot2
Over-shoot adjust
OverShoot
Y Gamma Start=00
Y Gamma GAIN=01
Y Gamma Start=01
Y Gamma GAIN=01
Y Gamma Start=10
Y Gamma GAIN=01
Y Gamma Start=01
Y Gamma GAIN=00
Y Gamma Start=01
Y Gamma GAIN=01
Y Gamma Start=01
Y Gamma GAIN=10
GLAY MODE=1,
55
IRE
65
IRE
68
IRE
220
IRE
250
IRE
260
IRE
12.5
16.0
19.5
IRE
0.0
0.1
0.5
V
Pre-shoot adj.=00
0.92
0.97
1.02
Pre-shoot adj.=11
1.08
1.13
1.18
Over-shoot adj.=11
1.08
1.13
1.18
Cross B/W=10
[RGB output(cutoff drive)block]
Brightness control (Normal)
BRT64
1.8
2.3
2.7
V
Brightness control (Normal-H)
BRT64H
3.3
3.7
4.1
V
Hi brightness (max)
BRT127
40.0
50.0
60.0
IRE
Low brightness (min)
BRT0
-60.0
-50.0
-40.0
IRE
Vbias0
2.3
2.8
3.3
Vbias255
3.1
3.6
4.1
Vbiassns
-
3.5
-
mV/Bit
Cutoff control
(min)
(Bias control)
(max)
Resolution
V
V
Sub-bias control Resolution
Vsbiassns
-
7
-
mV/Bit
RGB Drive adjustment Maximum output
RGBout127
1.5
1.7
2.3
Vpp
RGB Output attenuation
RGBout0
5
10
13
dB
1.9
2.2
2.5
[Video SW block]
Video signal input 1DC voltage
VIN1DC
Video SW.=00
Video signal input 1AC voltage
VIN1AC
Video SW.=00
Video signal input 2DC voltage
VIN2DC
Video SW.=01
Video signal input 2AC voltage
VIN2AC
Video SW.=01
Video signal input 3DC voltage
VIN3DC
Video SW.=10
Video signal input 3AC voltage
VIN3AC
Video SW.=10
Video signal input 4DC voltage
VIN4DC
Video SW.=11
Video signal input 4AC voltage
VIN4AC
Video SW.=11
SVO pin DC voltage
SVODC
SVO pin AC voltage
SVOAC
SVO pin Ycmix AC Voltage
SVOYC
Video SW.=01,SVO SW=1
YCMIX=0
Video SW.=01,SVO SW=1
YCMIX=0
Video SW.=01,SVO SW=1
YCMIX=1
1
1.9
2.2
1.9
2.2
1.9
2.2
V
Vpp
2.5
1
V
Vpp
2.5
1
V
Vpp
2.5
1
V
Vpp
1.6
1.9
2.2
V
1.7
2
2.3
Vpp
0.1
0.14
0.18
Vpp
No.A1893-6/41
LV766106F
Parameter
Symbol
Conditions
min
typ
max
Unit
[Chroma block]: PAL/NTSC common
B-Y/Y amplitude ratio
CLRBY
75
100
150
%
Color control characteristics 1
CLRMN
Color MAX/CEN
1.6
2.0
2.4
ratio
Color control characteristics 2
CLRMM
Color MAX/MIN
30
40
50
dB
2
4
Color control sensitivity
CLRSE
fsc output level
FSC40
1
Residual higher harmonic level B
E_CAR_B
300
mVpp
Residual higher harmonic level R
E_CAR_R
300
mVpp
Residual higher harmonic level G
E_CAR_G
300
mVpp
a reference value
350
%/bit
mVpp
[Chroma block]: PAL
ACC amplitude characteristics 1
ACCM1_P
Input:+6dB/0dB 0dB=40IRE
0.7
1.0
1.2
ratio
ACC amplitude characteristics 2
ACCM2_P
Input:-20dB/0dB
0.7
1.0
1.1
ratio
0.50
0.56
0.67
ratio
-0.24
-0.19
-0.17
ratio
-0.56
-0.51
-0.46
ratio
85
90
95
°C
Demodulation output ratio
R-Y/B-Y:PAL
RB_P
Demodulation output ratio
G-Y/B-Y :PAL
GB_P
Demodulation output ratio
G-Y/R-Y :PAL
GR_P
Demodulation angle
R-Y/B-Y :PAL
ANGRB_P
Killer operating point 0 (PAL)
KILLP0
0dB=40IRE
-35
-22
dB
Killer operating point 3 (PAL)
KILLP3
0dB=40IRE
-38
-24
dB
KILLP0-KILLP3
0.5
6.0
dB
Difference between two Killer operating points
DKILLP
(PAL)
APC pull-in range (+)
PULIN+_P
APC pull-in range (-)
PULIN-_P
R-Y/B-Y_GainBalance,
R-Y/B-Y_Angle=Center
R-Y/B-Y_GainBalance,
R-Y/B-Y_Angle=Center,
R-Y= no-signal
R-Y/B-Y_GainBalance,
R-Y/B-Y_Angle=Center,
B-Y= no-signal
R-Y/B-Y_GainBalance,
R-Y/B-Y_Angle=Center
350
Hz
-350
Hz
[Chroma block]:NTSC
ACC amplitude characteristics 1
ACCM1_N
Input:+6dB/0dB 0dB=40IRE
0.7
1.0
1.2
ratio
ACC amplitude characteristics 2
ACCM2_N
Input:-20dB/0dB
0.7
1.0
1.1
ratio
0.80
0.90
1.00
ratio
0.22
0.27
0.38
ratio
95
105
111
°C
230
240
250
°C
Demodulation output ratio
R-Y/B-Y: NTSC
Demodulation output ratio
G-Y/B-Y: NTSC
Demodulation angle
B-Y/R-Y : NTSC
Demodulation angle
G-Y/B-Y : NTSC
RB_N
GB_N
ANGBR_N
ANGGB_N
R-Y/B-Y_GainBalance,
R-Y/B-Y_Angle =Center
R-Y/B-Y_GainBalance,
R-Y/B-Y_Angle =Center
R-Y/B-Y_GainBalance,
R-Y/B-Y_Angle =Center
R-Y/B-Y_GainBalance,
R-Y/B-Y_Angle =Center
Killer operating point 0 (NTSC)
KILLN0
0dB=40IRE
-40
-27
dB
Killer operating point 3 (NTSC)
KILLN3
0dB=40IRE
-43
-29
dB
KILLN0-KILLN3
0.5
6.0
Difference between two Killer operating points
DKILLN
(NTSC)
APC pull-in range (+)
PULIN+_N
APC pull-in range (-)
PULIN-_N
Tint center
TINCEN
Tint variable range (+)
TINT+
Tint variable range (-)
TINT-
Cr Output amplitude
CBCR-R
CbCr_IN=1 ,Cross B/W=01
Cb Output amplitude
CBCR-B
CbCr_IN=1 ,Cross B/W=01
dB
Hz
350
-350
Hz
10
deg
-35
deg
2.5
5.0
Vpp
3.25
5.75
Vpp
-10
0
deg
35
No.A1893-7/41
LV766106F
Parameter
Symbol
Conditions
min
typ
max
Unit
[Filter block]:Chroma BPF Characteristic
Reference: 4.43MHz
C.Filter.Sys=10
Reference: 4.13MHz
C.Filter.Sys=10
Reference: 3.93MHz
C.Filter.Sys=10
Reference: 4.43MHz
C.Filter.Sys=11
Reference: 4.13MHz
C.Filter.Sys=11
Reference: 3.93MHz
C.Filter.Sys=11
C-BPF1A (3.93MHz)
CBPF1A
C-BPF1B (4.73/4.13MHz)
CBPF1B
C-BPF1C (4.93/3.93MHz)
CBPF1C
C-BPF2A (3.93MHz)
CBPF2A
C-BPF2B (4.73/4.13MHz)
CBPF2B
C-BPF2C (4.93/3.93MHz)
CBPF2C
APC pull-in range (+)
PULIN+_N
APC pull-in range (-)
PULIN-_N
Tint center
TINCEN
Tint variable range (+)
TINT+
Tint variable range (-)
TINT-
Cr Output amplitude
CBCR-R
CbCr_IN=1 ,Cross B/W=01
Cb Output amplitude
CBCR-B
CbCr_IN=1 ,Cross B/W=01
-7.5
-3.0
-1.0
dB
-2.5
1.5
5.5
dB
-3.5
2.0
7.5
dB
-6.0
-3.0
-1.0
dB
-4.0
0.0
4.0
dB
-5.5
0.0
5.5
dB
350
Hz
-350
Hz
10
°C
-40
°C
1.7
3.4
Vpp
1.8
3.7
Vpp
-10
0
°C
40
[Filter block]:Chroma BPF Characteristic
C-BPF1A (3.93MHz)
CBPF1A
C-BPF1B (4.73/4.13MHz)
CBPF1B
C-BPF1C (4.93/3.93MHz)
CBPF1C
C-BPF2A (3.93MHz)
CBPF2A
C-BPF2B (4.73/4.13MHz)
CBPF2B
C-BPF2C (4.93/3.93MHz)
CBPF2C
Reference: 4.43MHz
C.Filter.Sys=10
Reference: 4.13MHz
C.Filter.Sys=10
Reference: 3.93MHz
C.Filter.Sys=10
Reference: 4.43MHz
C.Filter.Sys=11
Reference: 4.13MHz
C.Filter.Sys=11
Reference: 3.93MHz
C.Filter.Sys=11
-6.0
-3.0
-1.0
dB
-2.5
1.5
5.5
dB
-3.5
2.0
7.5
dB
-6.0
-3.0
-1.0
dB
-4.0
0.0
4.0
dB
-5.5
0.0
5.5
dB
15470
15670
15870
Hz
[Deflection block]
Horizontal free-running frequency
FH
Horizontal pull-in range
FH PULL
Horizontal output pulse width
H duty
36.1
37.6
39.1
µs
Horizontal output pulse saturation voltage
V Hsat
0
0.2
0.4
V
Vertical free-running cycle 50
VFR50
312.0
312.5
313.0
H
Vertical free-running cycle 60
VFR60
262.0
262.5
263.0
H
Horizontal output pulse phase
HPHCENpal
3.8
5.8
7.8
µs
Horizontal output pulse phase
HPHCENnt
3.8
5.8
7.8
µs
Horizontal position adjustment range
HPH range
Horizontal position adjustment
maximum variability width
HPH step
Horizontal blanking left @0
BLKL0
H.BLK.L:000
8000
Horizontal blanking left @7
BLKL7
H.BLK.L:111
11500
Horizontal blanking right @0
BLKR0
H.BLK.R:000
-1600
-600
400
ns
Horizontal blanking right @7
BLKR7
H.BLK.R:111
1800
2800
3800
ns
Horizontal output stop voltage
H stop
reference
3.30
3.60
3.90
V
Horizontal phase bow correction @16
HBOW16
-0.5
0
0.5
µs
Horizontal phase bow correction @0
HBOW0
0.7
1.2
1.7
µs
Horizontal phase bow correction @31
HBOW31
-1.5
-1.0
-0.5
µs
Horizontal phase angle correction @16
HANG16
-0.5
0
0.5
µs
Horizontal phase angle correction @0
HANG0
0.4
0.9
1.4
µs
Horizontal phase angle correction @31
HANG31
-1.3
-0.8
-0.3
µs
±400
Hz
±1.8
5bit
µs
180.0
ns
9000
10000
ns
12500
13500
ns
No.A1893-8/41
LV766106F
Parameter
Symbol
Conditions
min
typ
max
Unit
<Vertical screen size adjustment>
Vertical ramp output amplitude PAL @64
Vspal64
V.SIZE:1000000
0.75
1.05
1.35
Vp-p
Vertical ramp output amplitude NTSC @64
Vsnt64
V.SIZE:1000000
0.75
1.05
1.35
Vp-p
Vertical ramp output amplitude PAL @0
Vspal0
V.SIZE:0000000
0.30
0.60
0.9
Vp-p
Vertical ramp output amplitude NTSC @0
Vsnt0
V.SIZE:0000000
0.30
0.60
0.9
Vp-p
Vertical ramp output amplitude PAL @127
Vspal127
V.SIZE:1111111
1.25
1.55
1.85
Vp-p
Vertical ramp output amplitude NTSC @127
Vsnt127
V.SIZE:1111111
1.25
1.55
1.85
Vp-p
Vertical ramp DC voltage @32
Vdc32
V.DC:10000
2.10
2.40
2.70
Vdc
Vertical ramp DC voltage @0
Vdc0
V.DC:00000
1.80
2.10
2.40
Vdc
Vertical ramp DC voltage @63
Vdc63
V.DC:11111
2.55
2.85
3.15
Vdc
Vertical position @8
Vshift8
V.SHIFT:1000
500
550
600
µs
Vertical position @0
Vshift0
V.SHIFT:0000
0
50
100
µs
Vertical position @15
Vshift15
V.SHIFT:1111
950
1000
1050
µs
Vpsizecomp
V.COMP:000
0.89
0.93
0.97
ratio
Vertical linearity @16
Vlin16
V.LIN:10000
0.7
1.00
1.30
ratio
Vertical linearity @0
Vlin0
V.LIN:00000
1.30
1.60
1.90
ratio
Vertical linearity @31
Vlin31
V.LIN:11111
0.35
0.65
0.95
ratio
Vertical S-shaped correction @16
Vscor16
V.SC:10000
0.70
1.00
1.30
ratio
Vertical S-shaped correction @0
Vscor0
V.SC:00000
1.10
1.40
1.70
ratio
Vertical S-shaped correction @31
Vscor31
V.SC:11111
0.30
0.60
0.90
ratio
H size comp
H.COMP:000
0.18
0.28
0.38
V
<Vertical screen position adjustment>
<High-voltage dependent vertical size correction>
Vertical size Correction @0
<Vertical screen linearity adjustment>
<High-voltage dependent horizontal size correction>
Horizontal size correction @0
No.A1893-9/41
LV766106F
Test Conditions at Ta=25°C, ICC=I9=10mA, ICC=I20=13mA, ICC=I49=30mA, VCC=V62= V4=5.0V
Parameter
Symbol
Test
point
Input signal
Test method
Bus conditions
[Circuit voltage,current]
Horizontal supply voltage (pin 20)
V20
Logic supply voltage (pin 9)
V9
RGB supply voltage(pin 49)
I49
IF supply current(pin 62)
I62
Video / vertical supply current (pin 4)
I4
20
9
49
62
4
No signal
Apply a current of 13mA to pin 20 and
measure the voltage at pin 20.
No signal
Apply a current of 11mA to pin 9 and measure Initial
the voltage at pin 9.
No signal
Apply a current of 12mA to pin 49 and
measure the voltage (V) at pin49.
No signal
Apply a voltage of 5.0V to pin 62 and measure Initial
the incoming DC current (mA).
(IF AGC 2.5V applied)
Apply a voltage of 5.0V to pin 4 and measure Initial
the incoming DC current (mA).
No signal
Initial
Initial
• VIF Block Input Signals and Test Conditions
1. Input signals must be input to the PIF IN (pin 56) in the Test Circuit.
2. Input signal voltage values are the levels at the VIF IN (pin 56) in the Test Circuit.
3. Signal contents and signal levels
4. Bus control condition: VIF SYS.SW=”000”, APC.SIS.TEST="0",SVO.SW="0",VIDEO LEVEL=”ADJ
Input signal
Waveform
Conditions
SG1
38.9MHz
CW
SG2
34.47MHz
CW
SG3
33.4MHz
CW
SG4
Frequency variable
CW
SG5
38.9MHz
87.5% Video Mod.
10-stairstep wave
(Subcarrier: 4.43MHz)
SG6
38.9MHz
fm=15kHz,AM=78%
SG7
38.9MHz, 90dBu
87.5% Video Mod.
50IRE Luma
(Carrier: variable)
50IRE
50IRE Luma
No.A1893-10/41
LV766106F
Parameter
Symbol
Test point
Input signal
Test method
Bus conditions
[VIF block ]
Maximum RF AGC
voltage
VRFH
Minimum RF AGC
voltage
VRFL
RF AGC Delay Pt
(@DAC=0)
RFAGC0
RF AGC Delay Pt
(@DAC=63)
RFAGC63
Input sensitivity
Vi
Sync tip level
VOtip
Video output
amplitude
VO
Video S/N
S/N
C-S beat level
IC-S
58
SG1
80dBμ
Measure the DC voltage at pin 58.
RF.AGC=”000000”
58
SG1
80dBμ
Measure the DC voltage at pin 58.
RF.AGC=”111111”
SG1
Obtain the input level at which the DC voltage at pin 58 becomes
2.5V.
RF.AGC=”000000”
SG1
Obtain the input level at which the DC voltage at pin 58 becomes
2.5V.
RF.AGC=”111111”
SG6
Using an oscilloscope, observe the level at pin 61 and obtain the
input level at which the waveform's amplitude becomes 1.4Vp-p.
61
SG1
80dBμ
Measure the DC voltage at pin 61.
61
SG6
80dBμ
61
SG1
80dBμ
61
SG1
SG2
SG3
Using an oscilloscope, adjust the waveform's amplitude at pin 61 to
about 2Vpp and measure the waveform’s amplitude.
* After this measurement, set "Video Level DAC" to the value
adjusted .
Measure the noise voltage (Vsn) at pin 61 with an RMS voltmeter
through a 10kHz to 5.0MHz band-pass filter and calculate
20log(1.43/Vsn).
Input a 80dBμ SG1 signal and measure the DC voltage (V60) at pin
60. Mix SG1=74dBμ, SG2=64dBμ, and SG3=64dBμ to enter the
mixture in the VIF IN. Apply V60 to pin 60 from an external DC
power supply. Using a spectrum analyzer, measure the difference
between pin 61’s 4.43MHz component and 1.07MHz component.
Using a vector scope, measure the level at Pin 61.
58
58
61
Differential gain
DG
61
SG5
80dBμ
Differential phase
DP
61
SG5
80dBμ
Using a vector scope, measure the level at Pin 61.
APC pull-in range
(U),(L)
fPU, fPL
61
SG4
80dBμ
NT Trap1
(4.5MHz)
NTR1
Connect an oscilloscope to pin 61 and adjust the SG4 frequency to a
frequency higher than 38.9MHz to bring the PLL into unlocked
mode. (A beat signal appears.) Lower the SG4 frequency and
measure the frequency at which the PLL locks again.
In the same manner, adjust the SG4 frequency to a lower frequency
to bring the PLL into unlocked mode. Higher the SG4 frequency
and measure the frequency at which the PLL locks again.
Determine the output level difference between carrier frequencies SIF.SYS=”00”
of 1MHz and 4.5MHz.(Reference:1MHz)
BG Trap 1
(5.5MHz)
BTR1
I Trap1
(6.0MHz)
ITR1
DK Trap1
(6.5MHz)
DTR1
61
61
61
61
SG7
SG7
Determine the output level difference between carrier frequencies
of 1MHz and 5.5MHz.(Reference:1MHz)
SIF.SYS=”01”
SG7
Determine the output level difference between carrier frequencies
of 1MHz and 6.0MHz.(Reference:1MHz)
SIF.SYS=”10”
SG7
Determine the output level difference between carrier frequencies
of 1MHz and 6.5MHz.(Reference:1MHz)
SIF.SYS=”11”
No.A1893-11/41
LV766106F
•SIF Block (FM block) Input Signals and Test Conditions
Unless otherwise specified, the following conditions apply when each measurement is made.
1. Bus control condition: IF.AGC.SW=“1”, SIF.SYS=”01”,DEEM-TC=”0”,FM.GAIN=”0”
2. SW: IF1=“ON”, pin 19=5V
3. Input signals are input to pin 52 and the carrier frequency is 5.5MHz.
Parameter
Symbol
FM detection output
voltage
SOADJ
FM limiting
sensitivity
SLS
FM detection output
f characteristics
(fm=100kHz)
FM detection output
distortion
SF
SIF.S/N
SSN
Test point
64
64
64
STHD
64
64
Input signal
Test method
90dBμ,
fm=400Hz,
FM=±50kHz
fm=400Hz,
FM=±50kHz
Measure the 400 Hz component (SV1:mVrms) of the FM
detection output at pin 64.
90dBμ,
fm=100kHz
FM=±50kHz
90dBμ,
fm=400Hz,
FM=±50kHz
90dBμ,
CW
Set SW: IF1="OFF".
Measure (SV2: mVrms) the FM detection output of pin 64.
Calculate as follows: SF=20log(SV1/SV2) [dB]
Measure the distortion factor of the 400Hz component of the FM detection
output at pin 64.
Bus conditions
Measure the input level (dBμ) at which the 400Hz component of
the FM detection output at pin 64 becomes -3dB relative to SV1.
Measure the noise level (DIN AUDIO, SV4:mVrms) at pin 64.
Calculate as
follows: SSN=20log(SV1/SV4) [dB]
•Audio Block Input Signals and Test Conditions
Unless otherwise specified, the following conditions apply when each measurement is made.
1. Bus control condition:
Audio Mute ="0", A.MONI.SW="1", FM MUTE="1", Audio SW ="00",
VOL FIL="0", IF AGC="1"MONO Mode="0", Volume (L/MONO) ="0000000"
2. Enter an input signal EXT1/EXT2-LIN from pin 2/pin8.
3. Enter an input signal EXT1/EXT2-RIN from pin 1/pin7.
4. Output signal LOUT is output to pin 50.
5. Output signal ROUT is output to pin 51.
Parameter
Symbol
Test
point
Input signal
Test method
Bus conditions
[AUDIO block]
Volume gain
(Stereo mode)
Maximum
output voltage
(Stereo mode)
Frequency
characteristic
(Stereo mode)
Total harmonic
distortion
(Stereo mode)
Output
voltage noise
(Stereo mode)
Cross talk
(Stereo mode)
Volume gain
(Mono mode)
Maximum
output voltage
(Mono mode)
Frequency
characteristic
(Mono mode)
Total harmonic
distortion
(Mono mode)
Output voltage
noise
(Mono mode)
Mute
AVGT
50
AVOT
2
AFREQT
2
EXT1-LIN(2PIN)
EXT2-LIN(8PIN)
=1kHz,300mVrms
EXT1-LIN(2PIN)
EXT2-LIN(8PIN)
=1kHz
EXT1-LIN(2PIN)
EXT2-LIN(8PIN)
=300mVrms
Measure the 1kHz component (V1:mVrms) at the LOUT(50PIN)
and calculate as follows: AVGT=20log(V1/300) [dB]
When the distortion (DIN.AUDIO) of the LOUT(pin50) is 1%,
Measure the voltage level at the EXT-LIN (pin 2).
Measure the voltage level (V2:mVrms) at the LOUT(pin50) and
calculate as follows: AFT=20log(V2/300) [dB]
When the AFT is –3dB, Measure the frequency at the EXT-LIN
(pin 2).
Measure the distortion (DIN.AUDIO) of the 1kHz component at
the LOUT (50PIN).
ATHDT
50
EXT1-LIN(2PIN)
EXT2-LIN(8PIN)
=1kHz,300mVrms
ANOT
50
No signal
Measure the noise level (DIN AUDIO) at the LOUT (pin50).
51
AVGM
50
AVOM
2
AFREQM
2
EXT1-LIN(2PIN)
EXT2-LIN(8PIN)
=1kHz,300mVrms
EXT1-LIN(2PIN)
EXT2-LIN(8PIN)
=1kHz,300mVrms
EXT1-LIN(2PIN)
EXT2-LIN(8PIN)
=1kHz
EXT1-LIN(2PIN)
EXT2-LIN(8PIN)
=300mVrms
Measure the 1kHz component (V3:mVrms) at the ROUT (pin51)
ACTT
ATHDM
50
ANOM
50
AMUTE
50
L/R Balance
51
ABT
EXT1-LIN(2PIN)
EXT2-LIN(8PIN)
=1kHz,300mVrms
No signal
EXT1-LIN(2PIN)
EXT2-LIN(8PIN)
=1kHz,300mVrms
EXT1-LIN(2PIN)
EXT1-RIN(1PIN)
EXT2-LIN(8PIN)
EXT2-RIN(7PIN)
=1KHz,300mVrms
and calculate as follows: ACTT=20log(V3/300) [dB]
Measure the 1kHz component (V4:mVrms) at the LOUT (pin50) Audio SW=10
Mono Mode=1
and calculate as follows: AVGM=20log(V4/300) [dB]
When the distortion (DIN.AUDIO) of the LOUT(pin50) is 1%,
Measure the voltage level at the EXT-LIN (PIN 2).
Audio SW=10
Mono Mode=1
Measure the voltage level (V5:mVrms) at the LOUT (pin50) and
calculate as follows: AFM=20log(V5/300) [dB]
When the AFM is –3dB, Measure the frequency at the EXT-LIN
(PIN 2).
Measure the distortion (DIN.AUDIO) of the 1kHz component at
the LOUT (pin50).
Audio SW=10
Mono Mode=1
Measure the noise level (DIN AUDIO) at the LOUT (50PIN).
Mono Mode=1
Audio SW=10
Mono Mode=1
Measure the 1kHz component (V8:mVrms) at the LOUT (PIN50) Audio.mute =1
and calculate as follows: AMUTE =20log(V8/300) [dB]
Measure the 1KHz component(V9:mVrms) at the ROUT (PIN51)
and calculate as follows: ABT=20Log(V1/V9) [dB]
No.A1893-12/41
LV766106F
• Video Block
Input Signals and Test Conditions
1. C IN Input*chroma burst signal: 40 IRE
2. Y IN input signal
3. Bus control bit conditions: Initial test state
100IRE:714mV
·l0IRE signal (L-0): NTSC standard sync signal
PEDESTAL LEVEL
H SYNC
4.7μs
(H/V SYNC: 40IRE: 286mV)
· XIRE signal (L-X)
XIRE (X= 0 to 100)
0 IRE
· CW signal (L-CW)
20 IRE CW signal
50 IRE
· BLACK STRETCH A point (0IRE to 99IRE) signal (L-BK)
60μs
100IRE
…100IRE white signal as other H …
5 μs
Point A
· R/G/B IN Input signal
· RGB Input signal 1 (0-1)
to each 20μs
0.7V
0.35V
0.0VDC
A B
· RGB Input signal 2 (0-2)
20μs
30μs
5.0V
0.0VDC
No.A1893-13/41
LV766106F
Parameter
Symbol
Test point
Input
Test method
signal
Bus conditions
[Video block]
Video overall gain
CONT127
46
L-50
Measure the output signal’s 50IRE amplitude (CNTHB Vp-p) CONTRAST:1111111
L-50
Measure the output signal’s 50IRE amplitude (CNTCB Vp-p) CONTRAST:1000000
(Contrast max)
Contrast adjustment
and calculate CONT127= 20log (CNTHB/0.357).
CONT64
characteristics
46
and calculate CONT63= 20log (CNTCB/CNTHB).
Y Gamma Start=11
Y Gamma Start=11
(normal/max)
Contrast adjustment
CONT0
46
L-50
characteristics (min/max)
Video frequency
Measure the output signal’s 50IRE amplitude (CNTLB Vp-p) CONTRAST:0000000
and calculate CONT0=20log (CNTLB/CNTHB).
BW1
L-CW
46
Characteristics 1
With the input signal’s continuous wave=100kHz, measure the Y Filter.sys:00
output signal’s continuous wave amplitude (PEAKDC Vpp).
(NTSC)
Y Gamma Start=11
SHARPNESS: 001010
With the input signal’s continuous wave=1.8MHz, measure the Y Gamma Start=11
output signal’s continuous wave amplitude (CW1.8 Vpp).
Calculate BW1=20Log (CW1.8/PEAKDC).
Video frequency
BW2
Characteristics 2
46
L-CW
(PAL)
Video frequency
BW3
L-CW
46
Characteristics 3
(6MHz TRAP)
Video frequency
BW4
L-CW
46
Characteristics 4
(APF)
With the input signal’s continuous wave=2.2MHz, measure the Y Filter.sys:01
output signal’s continuous wave amplitude (CW2.2 Vp-p).
SHARPNESS: 001010
Calculate BW2=20Log (CW2.2/PEAKDC).
Y Gamma Start=11
With the input signal’s continuous wave=2.3MHz, measure the Y Filter.sys:10
output signal’s continuous wave amplitude (CW2.3 Vp-p).
SHARPNESS: 001010
Calculate BW3=20Log (CW2.3/PEAKDC).
Y Gamma Start=11
With the input signal’s continuous wave=3.4MHz, measure the Y Filter.sys:00
output signal’s continuous wave amplitude (CW3.4 Vp-p).
SHARPNESS: 001010
Calculate BW3=20Log (CW3.4/PEAKDC).
Y APF:1
Y Gamma Start=11
Chroma trap amount
CtraPP
PAL
Chroma trap amount
CtraPN
L-CW
46
NTSC
DC restoration rate 1
46
L-CW
ClampG1
46
L-0
L-100
With the input signal’s continuous wave=4.43MHz, measure Y Filter.sys:01
the output signal’s continuous wave amplitude (F0P Vp-p).
Sharpness: 000000
Calculate CtraP=20Log (F0P/PEAKDC).
Y Gamma Start=11
With the input signal’s continuous wave=3.58MHz, measure Y Filter.sys:00
the output signal’s continuous wave amplitude (F0N Vp-p).
Sharpness: 000000
Calculate CtraN=20Log (F0N/PEAKDC).
Y Gamma Start=11
Measure the output signal’s 0IRE DC level
Sub.Bais:1111111
(BRTPL V).
CONTRAST:0111111
Measure the output signal’s 0IRE DC level(DRVPH V) and
Sub.Bais:1111111
100IRE amplitude (DRVH Vp-p) and calculate
Contrast:0111111
ClampG=100×(1+(DRVPH-BRTPL)/DRVH).
DCREST=00
BLK.STR.START=11
WPL=0
DC restoration rate 2
ClampG2
46
L-100
With DCREST = 01, carry out measurement similarly to the case of DCREST =01
the DC restoration rate 1.
DC restoration rate 3
ClampG3
46
L-100
With DCREST = 10, carry out measurement similarly to the case of DCREST =10
the DC restoration rate 1.
DC restoration rate 4
ClampG4
46
L-100
With DCREST = 11, carry out measurement similarly to the case of DCREST =11
the DC restoration rate 1.
Y-DL TIME1
TdY1
46
L-50
(NTSC)
Obtain the time difference (the delay time) from when the rise Y Filter.sys:00
of the input signal's 50IRE amplitude to the output signal's
YDELAY Ajust:100
50IRE amplitude.
Y-DL TIME2
TdY2
(PAL)
46
L-50
Obtain the time difference (the delay time) from when the rise Y Filter.sys:01
of the input signal's 50IRE amplitude to the output signal's
YDELAY Ajust:100
50IRE amplitude.
Y-DL TIME3
Y-DL TIME4
TdY3
TdY4
46
46
L-50
L-50
(6MHz TRAP)
Obtain the time difference (the delay time) from when the rise Y Filter.sys:11
of the input signal's 50IRE amplitude to the output signal's
YDELAY Ajust:100
50IRE amplitude.
Delay Test:1
Obtain the time difference (the delay time) from when the rise Y Filter.sys:10
of the input signal's 50IRE amplitude to the output signal's
YDELAY Ajust:100
50IRE amplitude.
Y-DL TIME Ajust1
TdYa1
46
L-50
Obtain the time difference (the delay time) from when the rise Y Filter.sys:00
of the input signal's 50IRE amplitude to the output signal's
Y Delay Ajust:000
50IRE amplitude.
No.A1893-14/41
LV766106F
Parameter
Symbol
Y-DL TIME Ajust2
Test point
TdYa2
Input signal
L-50
46
Test method
Bus conditions
Obtain the time difference (the delay time) from when the rise
Y Filter.sys:00
of the input signal's 50IRE amplitude to the output signal's
Y Delay Ajust:111
50IRE amplitude.
Black stretch gain
BKST max
46
(MAX)
Black stretch gain
BKST mid
(MID)
46
L-BK
Measure the 0IRE DC level(BKST1 V) at point A of the output
Blk.str.start=11
(A=0IRE)
signal in the Black Stretch Defeat (Black Stretch OFF) mode
Y Filter.sys:10
Measure the 0IRE DC level(BKST2 V) at point A of the output
Blk.str.gain=10
signal in the Black Stretch ON mode.
Blk.str.start=01
Calculate BKST max=50 (BKST1-BKST2)/CNTHB.
Y Filter.sys:10
L-BK
With Blk.str.gain = 01, carry out the same measurement as for
Blk.str.gain=01
(A=0IRE)
the case of black stretch gain (MAX).
Blk.str.start=01
L-BK
With Blk.str.gain = 00, carry out the same measurement as for
Blk.str.gain=00
(A=0IRE)
the case of black stretch gain (max).
Blk.str.start=01
L-BK
Measure the 60IRE DC level(BKST3 V) at point A of the output
Blk.str.gain=01
(A=60IRE)
signal in the Black Stretch ON mode.
Blk.str.start=10
Y Filter.sys:10
Black stretch gain
BKST min
46
(MIN)
Y Filter.sys:10
Black stretch start max
(60IRE ΔBlack)
BKSTTH max
46
Y Filter.sys:10
Black stretch start mid
(50IRE ΔBlack)
BKSTTH mid
46
Measure the 60IRE DC level(BKST4 V) at point A of the output
Blk.str.gain=00
signal in the Black Stretch Defeat (Black Stretch OFF) mode.
Blk.str.start=11
Calculate BKSTTHmax=50 (BKST4-BKST3)/CNTHB.
Y Filter.sys:10
L-BK
Measure the 50IRE DC level(BKST5 V) at point A of the output signal
Blk.str.gain=01
(A=50IRE)
in the Black Stretch Defeat ON mode.
Blk.str.start=01
Y Filter.sys:10
Calculate
Blk.str.gain=00
BKSTTHmid=50 BKST6-BKST5)/CNTHB.
Blk.str.start=11
Y Filter.sys:10
Black stretch start min
(40IRE ΔBlack)
BKSTTH min
46
L-BK
Measure the 40IRE DC level(BKST7 V) at pointAof the output signal in the
Blk.str.gain=01
(A=40IRE)
Black Stretch Defeat ON mode.
Blk.str.start=00
Y Filter.sys:10
Sharpness variable range Sharp32T1
(NTSC)
46
L-CW
Measure the 40IRE DC level(BKST8 V) at point A of the output
Blk.str.gain=00
signal in the Black Stretch Defeat (Black Stretch OFF) mode.
Blk.str.start=11
Calculate BKSTTHmin=50 (BKST8-BKST7)/CNTHB.
Y Filter.sys:10
With the input signal’s continuous wave=2.2MHz, measure the Y Filter.sys:00
output signal’s continuous wave amplitude (F01S32 Vp-p). Sharpness: 100000
Calculate Sharp32T1=20Log (F01S32/PEAKDC).
Y Gamma Start=11
C_Kill.ON=1
(max) Sharp63T1
46
L-CW
With the input signal’s continuous wave=2.2MHz, measure the
Y Filter.sys:00
output signal’s continuous wave amplitude (F01S63 Vpp).
Sharpness: 111111
Calculate Sharp63T1=20Log (F01S63/PEAKDC).
Y Gamma Start=11
C_Kill.ON=1
(min) Sharp0T1
46
L-CW
With the input signal’s continuous wave=2.2MHz, measure the
Y Filter.sys:00
output signal’s continuous wave amplitude (F01S0 Vpp).
Sharpness: 000000
Calculate Sharp0T1=20Log (F01S0/PEAKDC).
Y Gamma Start=11
C_Kill.ON=1
Sharpness variable range Sharp32T2
(PAL)
46
L-CW
With the input signal’s continuous wave=2.7MHz, measure the
Y Filter.sys:01
output signal’s continuous wave amplitude (F02S32 Vpp).
Sharpness: 100000
Calculate Sharp32T3=20Log (F02S32/PEAKDC).
Y Gamma Start=11
With the input signal’s continuous wave=2.7MHz, measure the
Y Filter.sys:01
output signal’s continuous wave amplitude (F02S63 Vpp).
Sharpness: 111111
Calculate harp63T2=20Log (F02S63/PEAKDC).
Y Gamma Start=11
With the input signal’s continuous wave=2.7MHz, measure the
Y Filter.sys:01
output signal’s continuous wave amplitude (F02S0 Vpp).
Sharpness: 000000
Calculate Sharp0T2=20Log (F02S0/PEAKDC).
Y Gamma Start=11
C_Kill.ON=1
(max) Sharp63T2
46
L-CW
C_Kill.ON=1
(min) Sharp0T2
46
L-CW
C_Kill.ON=1
No.A1893-15/41
LV766106F
Parameter
Symbol
Test point
Sharpness variable range Sharp32T4
Input signal
L-CW
46
(6MHz TRAP)
Test method
Bus conditions
With the input signal’s continuous wave=3.0MHz, measure the Y Filter.sys:10
output signal’s continuous wave amplitude (F04S32 Vpp).
Sharpness: 100000
Calculate Sharp32T4=20Log (F04S32/PEAKDC).
Y Gamma Start=11
C_Kill.ON=1
L-CW
(max) Sharp63T4
46
With the input signal’s continuous wave=3.0MHz, measure the Y Filter.sys:10
output signal’s continuous wave amplitude (F04S63 Vpp).
Sharpness: 111111
Calculate Sharp63T4=20Log (F04S63/PEAKDC).
Y Gamma Start=11
C_Kill.ON=1
(min) Sharp0T4
L-CW
46
With the input signal’s continuous wave=3.0MHz, measure the Y Filter.sys:10
output signal’s continuous wave amplitude (F04S0 Vpp).
Sharpness: 000000
Calculate Sharp0T4=20Log (F04S0/PEAKDC).
Y Gamma Start=11
C_Kill.ON=1
White peak limiter
WPL1
L-100
46
operating point 1
Measure the ampritude(from pedestal to white) of the output signal WPL=00
with WPL=00. (PIN 45: 5V) Bigger the input signal and measure Y Gamma Start=11
the amplitude (from pedestal to white) of the output signal at which
the output signal is clipped. (WP1) WPL1=WP1/CNTCB1*100
White peak limiter
WPL2
L-100
46
operating point 2
Bigger the input signal and measure the amplitude(from pedestal to WPL=01
white) of the output signal at which the output signal is clipped
with WPL=01. (WP2)
White peak limiter
WPL3
L-100
46
operating point 3
Bigger the input signal and measure the amplitude(from pedestal to WPL=10
white) of the output signal at which the output signal is clipped
with WPL=10. (WP3)
White peak limiter
WPL4
operating point 4
46
L-100
point1
46
white) of the output signal at which the output signal is clipped
L-100
L-50
Y Gamma Start=11
WPL3=WP3/CNTCB1*100
Bigger the input signal and measure the amplitude(from pedestal to WPL=11
with WPL=11. (WP4)
Y gamma start effective YGST1
Y Gamma Start=11
WPL2=WP2/CNTCB1*100
Y Gamma Start=11
WPL4=WP4/CNTCB1*100
Measure the amplitude of the output signal (0 to 100IRE) with Y
Y Gamma GAIN=00
GAMMA START=3.Y GAMMA GAIN=0. (GAM0)
Y Gamma Start=11
Next measure the amplitude the output signal (0 to 50IRE) with Y Y Gamma GAIN=01
GAMMA START=1. Y GAMMA GAIN=1(GAM1) and calculate Y Gamma Start=00
YGS1= GAM1/GAM0*100
Y gamma start effective YGST2
point12
46
L-50
Measure the amplitude of the output signal (0 to 50IRE) with Y
Y Gamma GAIN=01
GAMMA START=1. Y GAMMA GAIN=1 (GAM2) and calculate Y Gamma Start=01
YGS2= GAM2/GAM0*100
Y gamma start effective YGST3
point1
Y gamma gain 1
YGGA1
46
L-50
Measure the amplitude of the output signal (0 to 50IRE) (GAM3)
Y Gamma GAIN=01
and calculate YGS3= GAM3/GAM0*100
46
L-50
Measure the amplitude of the output signal (0 to 50IRE).(GGAM1) Y Gamma Start =01
Y Gamma Start=10
L-100
Measure the amplitude of the output signal (0 to
Y Gamma GAIN=00
100IRE).(GGAM2)
Calculate YGG1=100*GGAM1/(GGAM2-GGAM1)
Y gamma gain 2
YGGA2
46
L-50
Measure the amplitude of the output signal (0 to 50IRE).(GGAM3) Y Gamma Start =01
L-100
Measure the amplitude of the output signal (0 to
Y Gamma GAIN=01
100IRE).(GGAM4)
Calculate YGG2=100*GGAM3/(GGAM4-GGAM3)
Y gamma gain 3
YGGA3
46
L-50
L-100
Measure the amplitude of the output signal (0 to
Y Gamma Start =01
50IRE) .(GGAM5)
Y Gamma GAIN=10
Measure the amplitude of the output signal (0 to
100IRE).(GGAM6)
Calculate YGG3=100*GGAM5/(GGAM6-GGAM5)
GRAY MODE LEVEL GRAY
Horizontal/vertical
RGBBLK
blanking output
46
46
L-100
Measure the DC level(deviation from pedestal)of pin46, and
CROSS B/W:10
transfer IRE.
GRAY MODE:1
Measure the DC level (RGBBLK V) for the
output signal’s blanking period.
level
Pre-shoot adjust1
Pre-shoot adjust2
PreShoot1
PreShoot2
46
46
L-100
L-100
Measure the pre-shoot width (Tpre) and over-shoot width (Tover)
Pre-shoot adj.=00
at rise of 100IRE amplitude of the output signal, and calculate
Y Filter.sys:00
PreShoot = Tpre / Tover.
Sharpness=111111
With Pre-shoot adj. = 11, carry out the same measurement as for the
Pre-shoot adj.=11
case of Pre-Shoot 1.
Y Filter.sys:00
Sharpness=111111
No.A1893-16/41
LV766106F
Parameter
Over-shoot adjust
[RGB output block]
(Cutoff, drive block)
Brightness control
(normal)
Symbol
OverShoot
BRT64
Test point
46
48
Input
Test method
signal
L-100
L-0
47
Bus conditions
With Over-shoot adj. = 11Measure the pre-shoot width (Tpre) and Over-shoot adj.=11
over-shoot width (Tover) at rise of 100IRE amplitude of the
Y Filter.sys:00
output signal, and calculate OverShoot = Tover/Tpre
Sharpness=111111
Bus control bit conditions: Contrast=127
Contrast:1111111
Measure the 0IRE DC levels of the respective output signals of R Bright: 1000000
output (48), G output (47), and B output (46).
Assign the measured values to BRTPCR,
BRTPCG, and BRTPCB V, respectively.
Calculate BRT63=(BRTPCR+BRTPCG+BRTPCB)/3
46
Brightness control
(normal-H)
BRT64H
46
L-0
Brightness control
(max)
BRT127
46
L-0
Brightness control
(min)
BRT0
46
L-0
Bias (cutoff) control
(min)
Vbias0
48
L-50
47
Measure the 0IRE DC level of the output signal of B output (46) Bright: 1000000
and assign the measured value to BRTPCBH.
B.BIAS: 11111111
Sub Bias: 1111111
Measure the 0IRE DC level of the output signal of B output (46) Bright: 1111111
and assign the measured value to BRTPHB.
B.BIAS: 11111111
Sub Bias: 1111111
Calculate BRT127=50×(BRTPHBH-BRTPCB)/CNTHB.
Measure the 0IRE DC level of the output signal of B output (46) Bright: 0000000
and assign the measured value to BRTPLB.
B.BIAS: 11111111
Calculate BRT0=50 (BRTPLB-BRTPCBH)/CNTHB.
Sub Bias: 1111111
Measure the 0IRE DC levels (Vbias0χV)of
Sub.Bias: 1111111
the respective output signals of R output
(48), G output (47), and B output (46).
(χ: R, G, and B)
46
Bias (cutoff) control
(max)
Vbias255
48
L-50
47
Measure the 0IRE DC levels
(Vbias255χV)of the respective output
signals of R output (48), G output (47),
and B output (46). (χ: R, G, and B)
Sub.Bias: 1111111
R/G/B.BIAS:11111111
Measure the 0IRE DC levels (BAS80χV) of the respective output
signals of R output (48), G output (47), and B output (46). (χ: R,
G, and B)
Measure the 0IRE DC levels (BAS48χV)of
the respective output signals of R output
(48), G output (47), and B output (46).
Calculate Vbiassnsχ= (BAS80χ-BAS48χ)/32
R/G/B.BIAS:01010000
Sub.Bias: 1111111
R/G/B.BIAS:00110000
Sub.Bias: 1111111
Set Sub.Bias 64 and measure the 0IRE DC levels (SB64χV) of
the respective output signals of R output (48),G output(47), and
B output(46).and next,set Sub.Bias 42,then measure the same as
before.
Calculate Vsbiassnsχ-(SB64χ-SB42χ)/22
Sub.Bias:
1000000/0101010
Contrast: 0111111
R/G/B.BIAS:11111111
Measure the 100IRE amplitudes
(DRVHχVp-p)of the respective output
signals of R output (48),G output(47)
and B output (46). (χ: R, G and B)
Bright: 0000000
R/G/B DRIVE: 1111111
Contrast: 1000000
46
Bias (cutoff) control
resolution
Vbiassns
48
L-50
47
46
Sub-bias control
resolution
Vsbiassns
48
L-50
47
46
Drive adjustment
maximum output
RGBout127
48
L-100
47
46
Output attenuation
RGBout0
48
47
L-100
Measure the 100IRE amplitudes (DRVLχVp-p) of the respective Bright: 0000000
output signals of R output (48), G output (47), and B output (46). R/G/B DRIVE: 0000000
(χ: R, G and B)
Contrast: 1000000
Calculate RGBout0χ=20log(DRVHχ/DRVLχ)
46
No.A1893-17/41
LV766106F
Parameter
Symbol
Test point
Input
Test method
signal
Bus conditions
[VIDEO SW [Block]
Video signal input
VIN1DC
5
VIN1AC
5
VIN2DC
3
VIN2AC
3
VIN3DC
10
Input signals to pin 10 and measure the voltage of the pedestal. Video SW:10
VIN3AC
10
Pin 10 recommended input level
VIN4DC
7
Input signals to pin 7 and measure the voltage of the pedestal. Video SW:11
VIN4AC
7
Pin 7 recommended input level
1DC voltage
Video signal input
1 AC voltage
Video signal input
2DC voltage
Video signal input
L-100
Input signals to pin 5 and measure the voltage of the pedestal. Video SW:01
Pin 5 recommended input level
L-100
Video SW:01
Input signals to pin 3 and measure the voltage of the pedestal. Video SW:00
Pin 3 recommended input level
Video SW:00
2 AC voltage
Video signal input
3DC voltage
Video signal input
3AC voltage
Video signal input
4DC voltage
Video signal input
4AC voltage
SVO terminal DC
SVODC
voltage
61
L-100
Video SW:10
Video SW:11
Input signals to pin 5 and measure the voltage of the pedestal at Video SW:01
pin 61.
SVO SW:1
YCMIX:0
SVO terminal AC
SVOAC
voltage
61
L-100
The signal is input to 5PIN, and the amplitude of the signal of VIDE0 SW:01
61PIN is measured.
SVO SW:1
YCMIX:0
SVO terminal Ycmix
AC Voltage
SVOYC
61
L-0
Y signal is input to 7PIN, and C signal of 8PIN is input, and the VIDE0 SW:11
L-CW
amplitude of 61PIN (SVO) is measured.
SVO SW:1
YCMIX:1
No.A1893-18/41
LV766106F
•Chroma Block Input Signals and Test Conditions
Unless otherwise specified, the following conditions apply when each measurement is made.
1. VIF, SIF blocks: No signal
2. Deflection Block: Horizontal/vertical composite sync signals are input and the deflection block must be locked into the sync
signals (Refer to the Deflection Block Input Signals and the Test Conditions).
3. Bus control conditions: Set the following conditions unless otherwise specified.
Y Input is 7 Pin (YC-Y),
C Input is 8 Pin (YC-C)
(Video SW=3, C. Ext=1)
Other DAC except the above-mentioned conditions is all initial conditions.
4. Y Input condition: No signal unless otherwise specified.
(Sync is necessary to obtain synchronization).
5. How to calculate the demodulation ratio and angle:
B-Y axis angle=tan-1(B ( 0) / B (270))+270°
R-Y axis angle=tan-1(R (180) / R ( 90))+90°
G-Y axis angle=tan-1(G (270) / G (180))+180°
B-Y axis amplitude Vb=SQRT(B(0)*B(0)+B(270)*B(270))
R-Y axis amplitude Vr=SQRT(R(180)*R(180)+R(90)*R(90))
G-Y axis amplitude Vg=SQRT(G(180)*G(180)+G(270)*G(270))
R-Y axis
90°
R(90)
R(180)
180°
B(270)
B(0)
G(180)
0°
B-Y axis
G(270)
G-Y axis
270°
No.A1893-19/41
LV766106F
6. Chroma input signal
As for the PAL signal, the burst swings such as 135° and 225° every horizontal period.
Chroma describes the phase caused when the burst occurs at 135°.
As for the NTSC signal, the burst occurs constantly at 180°.
The figures below are based on the phase of NTSC. When a PAL signal is generated, adjust the phase and then enter
signals.
The item common to both PAL and NTSC is the PAL signal. For those other than this, the measurement must be
performed for each individual signals.
The condition of fsc: Set the following conditions unless otherwise specified.
PAL =4.433619MHz
NTSC =3.579545MHz
C-1
40IRE
Burst
0 º 90 º 180 º 270 º
fsc
X IRE signal (L-X)
C-2
40IRE
Burst
40IRE
fsc 346 deg
C-3
40IRE
Burst
fsc
CW
(Note: fsc±N*fh when the frequency is specified.
N should be a natural number and the nearest value should be used.)
C-4
Burst
B-Y only
C-5
Burst R-Y only
C-6
0.35V
0.35V
*There is no signal for H,
V blanking period.
No.A1893-20/41
LV766106F
Parameter
Symbol
Test
Input
point
signal
Test method
Bus conditions
[Chroma block]: PAL/NTSC common
B-Y/Y amplitude ratio
CLRBY
46
Color control Characteristics 1
CLRMN
46
Color control
Characteristics 2
CLRMM
46
Color control
sensitivity
CLRSE
Residual higher
harmonic level B
E_CAR_B
Residual higher harmonic
level G
E_CAR_G
Residual higher harmonic
level R
E_CAR_R
YIN:L77
Measure the Y system’s output level. V1
CIN: No signal
Input a signal to the CIN (only sync Signal to the YIN) and
C-2
measure the output level to calculate as follows:
CLRBY=100×(V2/V1)
Measure the output amplitude V1 at color Control MAX mode and
C-1
output amplitude V2 at color control CEN mode and, Calculate as
follows: CLRMN=V1/V2
Measure the output amplitude V3 at color Control MIN mode to
C-1
calculate as follows: CLRMM=20log (V1/V3)
C-1
Measure the output amplitude V4 at color Control 90 mode and
output amplitude V5 at color control 38 mode to calculate as
follows: CLRSE=100×(V4− V5)/(V2×52)
46
C-1
Measure the 8.86MHz component output amplitude at pin 46.
47
C-1
46
Color:1000000
Color:1111111
Color:1000000
Color:0000000
Color:1011010
Color:0100110
Burst only
Measure the 8.86MHz component output amplitude at pin 47.
Burst only
48
Burst only
Measure the 8.86MHz component output amplitude at pin 48.
46
C-1
0dB
+6dB
Measure the output amplitude when 0dB is applied to the chroma Color:1000000
inputand when +6dB is applied to the chroma input. And calculate
the ratio between them.
ACCM1_P=20log(+6dBdata/0dBdata)
Measure the output amplitude when –20dB is applied to the Color:1000000
chroma input and calculate the ratio between them.
ACCM2_P=20log(-20dBdata/0dBdata)
Refer to 5. and measure Bout output amplitude Vb and ROUT output
Color:1000000
amplitude Vr. And calculate RB_P=Vr/Vb.
[Chroma block]: PAL
ACC amplitude characteristics 1
ACCM1_P
ACC amplitude characteristics 2
ACCM2_P
46
C-1
-20dB
Demodulation output ratio
R-Y/B-Y:PAL
RB_P
46
C-1
48
Demodulation output ratio
G-Y/B-Y:PAL
GB_P
46
C-4
Measure Bout output amplitude Vbp and GOUT output amplitude
Vgbp. And calculate GB_P=Vgbp/Vbp.
Color:1000000
C-5
Measure ROUT output amplitude Vrp and GOUT output amplitude
Vgbp. And calculate GR_P=Vgrp/Vrp.
Color:1000000
C-1
Refer to 5. and measure the B-Y and R-Y demodulation angle and
calculate.
Color:1000000
47
Demodulation output ratio
G-Y/R-Y:PAL
GR_P
47
48
Demodulation angle
R-Y/B-Y:PAL
ANGRB_P
46
48
Killer operating point 0 (PAL)
KILLP0
46
C-1
Reduce the input signal until the output Level becomes 75mVp-p Color Killer
or less. Measure the input level at that moment.
Ope.:00
Killer operating point 3 (PAL)
KILLP3
46
C-1
Reduce the input signal until the output Level becomes 75mVp-p Color Killer
or less. Measure the input level at that moment.
Ope.:11
Difference between two
Killer operating points
(PAL)
APC pull-in range(+)
DKILLP
PULIN+_P
46
C-1
Decrease the chroma fsc frequency from 4.433619MHz+1000Hz and
measure the frequency at which the VCO locks.
APC pull-in range(-)
PULIN-_P
46
C-1
Increase the chroma fsc frequency from 4.433619MHz-1000Hz and
measure the frequency at which the VCO locks.
Calculate as follows,
DKILLP=KILLP0-KILLP3
No.A1893-21/41
LV766106F
Parameter
Symbol
Test
point
Input
signal
Test method
Bus conditions
[Chroma block]: NTSC
ACC amplitude characteristics 1
ACCM1_N
ACC amplitude characteristics 2
ACCM2_N
Demodulation
output ratio
R-Y/B-Y:NTSC
RB_N
Demodulation
output ratio
G-Y/B-Y:NTSC
Demodulation
angle B-Y/R-Y:
NTSC
GB_N
46
46
46
C-1
0dB
+6dB
C-1
-20dB
C-1
Measure the output amplitude
when 0dB is applied to the chroma input
and when +6dB is applied to the chroma input.
And calculate the ratio between them.
ACCM1_N=20log(+6dBdata/0dBdata)
Measure the output amplitude
when 20dB is applied to the chroma input
and calculate the ratio between them.
ACCM2_N=20log(-20dBdata/0dBdata)
Refer to 5. And measure Bout output amplitude Vb and ROUT output
amplitude Vr. And calculate RB_N=Vr/Vb.
Color:1000000
48
ANGBR_N
47
46
C-1
Refer to 5. and measure GOUT output amplitude Vg. And calculate
GB_N=Vg/Vb.
Color:1000000
C-1
Refer to 5. and measure the B-Y and R-Y demodulation angle and
calculate.
Reference: B-Y angle
Color:1000000
C-1
Refer to 5. and measure the B-Y and G-Y demodulation angle and
calculate.
Reference: B-Y angle
Color:1000000
C-1
Reduce the input signal until the output
Level becomes 75mVp-p or less. Measure
the input level at that moment.
Reduce the input signal until the output
Level becomes 75mVp-p or less. Measure
the input level at that moment.
Calculate as follows,
DKILLN=KILLN0-KILLN3
Decrease the chroma fsc frequency from 3.579545MHz+1000Hz and
measure the frequency at which the VCO locks.
Color Killer Ope.:00
48
Demodulation
angle G-Y/B-Y:
NTSC
ANGGB_N
46
47
Killer operating
point 0 (NTSC)
KILLN0
Killer operating
point 3 (NTSC)
KILLN3
Difference between two Killer
operating points (NTSC)
APC pull-in range(+)
DKILLN
APC pull-in range(-)
PULIN-_N
Tint center
TINCEN
Tint variable range (+)
TINT+
Tint variable range (-)
TINT-
Cr output Amplitude
CBCR-R
Cb output Amplitude
CBCR-B
PULIN+_N
46
46
46
46
46
46
46
48
C-1
C-1
Color Killer Ope.:11
C-1
Increase the chroma fsc frequency from 3.579545MHz-1000Hz and
measure the frequency at which the VCO locks.
C-1
Measure each part of the output level and calculate the B-Y axis
angle.
TINT:1000000
C-1
Measure each part of the output level and calculate the B-Y axis
angle.
TINT+ =B-Y axis angle –TINCEN
Measure each part of the output level and calculate the B-Y axis
angle.
TINT- =B-Y axis angle –TINCEN
Measure the output amplitude.
(B-Y IN:no signal)
TINT:1111111
C-1
R-Y IN:C-6
TINT:0000000
CbCr IN: 1
Color Sys:101
Cross B/W: 01
CbCr IN: 1
Color Sys: 101
Cross B/W: 01
B-Y IN:C-6
Measure the output amplitude.
(R-Y IN:no signal)
46
C-3
PAL signal
Set the chroma frequency (CW) to 4.433619MHz-100kHz and measure C.Filter.Sys:10
V0 output amplitude. And then, set the chroma frequency (CW) to
C.BYPASS:0
3.93MHz and measure V1 output amplitude to calculate as follows:
CBPF1A=20log(V1/V0)
46
C-3
PAL signal
Measure V2 output amplitude when the chroma frequency (CW) is
4.13MHz and V3 output amplitude when it (CW) is 4.73MHz to
calculate as follows: CBPF1B =20log(V3/V2)
C.Filter.Sys:10
C.BYPASS:0
46
C-3
PAL signal
Set the chroma frequency (CW) to 4.93MHz and measure V4 output
amplitude to calculate as follows: CBPF1C =20log(V4/V1)
C.Filter.Sys:10
C.BYPASS:0
46
C-3
PAL signal
Set the chroma frequency (CW) to 4.433619MHz-100MHz and
measure V00 output amplitude. And then, set the chroma frequency
(CW) to 3.93MHz and measure V10 output amplitude to calculate as
follows: CBPF2A=20log(V10/V00)
C.Filter.Sys:11
C.BYPASS:0
46
C-3
PAL signal
Measure V20 output amplitude when the chroma frequency (CW) is
4.13MHz and V30 output amplitude when it (CW) is 4.73MHz to
calculate as follows: CBPF2B =20log(V30/V20)
C.Filter.Sys:11
C.BYPASS:0
46
C-3
PAL signal
Set the chroma frequency (CW) to 4.93MHz and measure V40 output
amplitude to calculate as follows: CBPF2C =20log(V40/V10)
C.Filter.Sys:11
C.BYPASS:0
46
[Filter Block]:Chroma BPF Characteristic
C-BPF1A
Peaker amplitude
characteristic
3.93MHz
CBPF1A
C-BPF1B
Peaker amplitude
characteristic
4.73/4.13MHz
C-BPF1C
Peaker amplitude
characteristic
4.93/3.93MHz
C-BPF2A
BandPass amplitude
characteristic
3.93MHz
CBPF1B
C-BPF2B
BandPass amplitude
characteristic
4.73/4.13MHz
C-BPF2C
BandPass amplitude
characteristic
4.93/3.93MHz
CBPF2B
CBPF1C
CBPF2A
CBPF2C
No.A1893-22/41
LV766106F
•Deflection Block Input Signals and Test Conditions
Unless otherwise specified,the following conditions apply when each measurement is made.
1. VIF, SIF blocks: No signal
2. C input: No. signal
3. Sync input: A horizontal/vertical composite sync signal
PAL: 43IRE, horizontal sync signal (15.625kHz) and vertical sync signal (50kHz)
NTSC: 40IRE, horizontal sync signal (15.734264kHz) and vertical sync signal (59.94kHz)
Note: No burst signal, chroma signal shall exist below the pedestal level.
Signal unsuitable
for Y input
Signal suitable for
Y input
Chroma signal
Burst signal
4. Bus control conditions: Initial conditions unless otherwise specified.
5. The delay time from the rise of the horizontal output (pin 22 output) to the fall of the FBP IN (pin 23 input) is 7μs.
6. Pin 15 (vertical size correction circuit input terminal) is connected to VCC (5.0V).
Parameter
Symbol
Test point
Input signal
Test method
Bus conditions
[Deflection block]
Horizontal free-running
frequency
fH
Horizontal pull-in range
fH PULL
22
22
5
Horizontal output
pulse length
Hduty
Horizontal output pulse saturation
voltage
V Hsat
Vertical free-running
period 50(PAL)
Vertical free-running
period 60(NTSC)
VFR50
VFR60
22
22
17
YIN:
No signal
Connect a frequency counter to the output of pin 22 (H out)
and measure the horizontal free-running frequency.
YIN: Horizontal
/vertical sync
signal
PAL
Using an oscilloscope, monitor the horizontal sync signal
which is input to the Y IN (pin 5) and the pin 22 output (H
out) and vary the horizontal signal frequency to measure
the pull-in range.
YIN: Horizontal
/vertical sync
signal
PAL
YIN: Horizontal
/vertical sync
signal
PAL
YIN:
No signal
Measure the voltage for the pin 22 horizontal output
pulse’s
low-level period.
Measure the voltage for the pin 22 horizontal output
pulse’s
low-level period.
Measure the vertical output period T at pin 17.
T × 15.625kHz (PAL)
T × 15.734kHz (NTSC)
Vertical ramp output
CDMODE:001
(PAL)
CDMODE:010
(NTSC)
2.5V
T
Horizontal output pulse
(PAL)(NTSC)
HPHCEN
(PAL)
(NTSC)
22
5
Y IN:
Horizontal
/vertical sync
signal
PAL
NTSC
Measure the delay time from to the rise of the pin 22
horizontal output pulse to the fall of the Y IN
horizontal sync signal.
Measuring
HPHCEN
20IRE
2.5V
Horizontal output
No.A1893-23/41
LV766106F
Parameter
Horizontal position
adjustment range
Symbol
HPHrange
Test point
22
5
Input signal
Y IN:
Horizontal
/vertical sync
signal
PAL
Test method
Bus conditions
With H.PHASE: 0 and 31, measure the delay time from the H.PHASE:00000
rise of the pin 22 horizontal output pulse to the fall of the Y
to
IN horizontal sync
H.PHASE:11111
signal and calculate the difference from H PHCEN.
Measuring
HPHCEN
20IRE
2.5V
Horizontal output
Horizontal position
adjustment maximum
variable width
HPHstep
22
5
Y IN:
Horizontal
/vertical sync
signal
PAL
With H.PHASE: 0 to 31 varied, measure the delay time
H.PHASE:00000
from to the rise of the pin 22 horizontal output pulse to the
to
fall of the Y IN horizontal sync signal and calculate the
H.PHASE:11111
variation at each step. Retrieve data for maximum
variation.
Measuring
HPHCEN
20IRE
2.5V
Horizontal position
adjustment maximum
variable width
HPHstep
22
5
Y IN:
Horizontal
/vertical sync
signal
PAL
Horizontal output
With H.PHASE: 0 to 31 varied, measure the delay time
H.PHASE:00000
from to the rise of the pin 22 horizontal output pulse to the
to
fall of the Y IN horizontal sync signal and calculate the
H.PHASE:11111
variation at each step. Retrieve data for maximum
variation.
Measuring
HPH CEN
20IRE
Horizontal blanking
left variable range@0
BLKL0
46
5
Y IN:
Horizontal
/vertical sync
signal
PAL
Horizontal output
Measure the time T from the left end of Hsync at pin 5 Y
IN to the right end of blanking period at pin 46 BlueOUT
with H.BLK.L = 000.
Y IN
Hsync
H.BLK.L:000
T
Blue
Horizontal blanking
left variable range@7
BLKL7
46
5
Y IN:
Horizontal
/vertical sync
signal
PAL
Measure the time T from the left end of Hsync at pin 5 Y IN H.BLK.L:111
to the right end of blanking period at pin 46 BlueOUT with
H.BLK.L = 111.
Y IN
Hsync
T
Blue
No.A1893-24/41
LV766106F
Parameter
Horizontal blanking
right variable range@0
Symbol
Test point
BLKR0
46
5
Input signal
Test method
Y IN:
Horizontal
/vertical sync
signal
PAL
Measure the time T from the left end of Hsync at pin 5 Y IN to
the left end of blanking period at pin 46 BlueOUT with
H.BLK.R = 000.
T
Y IN
Bus conditions
H.BLK.R:000
Hsync
Blue
Horizontal blanking
right variable range@7
BLKR7
46
5
Y IN:
Horizontal
/vertical sync
signal
PAL
Measure the time T from the left end of Hsync at pin 5 Y IN to
the left end of blanking period at pin 46 BlueOUT with
H.BLK.R = 111.
T
Y IN
H.BLK.R:111
Hsync
Blue
Horizontal output stop voltage
Hstop
20
22
H Phase BOW@16
HBOW16
22
Y IN:
Horizontal
/vertical sync
signal
Decrease the current from a source connected to pin 20 and
measure the pin 20 voltage at which HOUT(PIN22) stops.
Y IN:
Horizontal
/vertical sync
signal
Measure the delay time T from the rise of the pin 22 horizontal
output pulse to the fall of the Y IN horizontal sync signal with
line 24(NTSC:22) and 167(NTSC:142).
Caluculat as follow with each value of T is as T1 and T2.
HBOW16=T2-T1
5
T
20IRE
2.5V
Horizontal Out
Horizontal output
H Phase BOW@0
HBOW0
22
5
Y IN:
Horizontal
/vertical sync
signal
Measure the delay time T from the rise of the pin 22 horizontal output
pulse to the fall of the Y IN horizontal sync signal with line
24(NTSC:22) and 167(NTSC:142).
Caluculat as follow with each value of T is as T1 and T2.
HBOW0=T2-T1
H Phase Bow:
00000
T
20IRE
2.5V
Horizontal Out
Horizontal output
H Phase BOW@31
HBOW31
22
5
Y IN:
Horizontal
/vertical sync
signal
Measure the delay time T from the rise of the pin 22 horizontal output
pulse to the fall of the Y IN horizontal sync signal with line
24(NTSC:22) and 167(NTSC:142).
Caluculat as follow with each value of T is as T1 and T2.
HBOW31=T2-T1
H Phase Bow:
11111
T
20IRE
2.5V
Horizontal Out
Horizontal output
No.A1893-25/41
LV766106F
Parameter
H Phase ANGLE@16
Symbol
Test
point
HANG16
22
Input signal
Y IN:
Horizontal
/vertical sync
signal
5
Test method
Bus conditions
Measure the delay time T from the rise of the pin 22 horizontal output pulse to
the fall of the Y IN horizontal sync signal with line 24(NTSC:22) and
167(NTSC:142).Caluculat as follow with each value of T is as T1 and T2.
HANG16=T2-T1
T
20IRE
2.5V
Horizontal Out
Horizontal output
H Phase ANGLE@0
HANG0
22
Y IN:
Horizontal
/vertical sync
signal
Measure the delay time T from the rise of the pin 22 horizontal output pulse to H Phase Angle:
the fall of the Y IN horizontal sync signal with line 24(NTSC:22) and
00000
167(NTSC:142).Caluculat as follow with each value of T is as T1 and T2.
HANG0=T2-T1
T
5
20IRE
2.5V
Horizontal Out
Horizontal output
H Phase ANGLE@31
HANG31
22
5
Y IN:
Horizontal
/vertical sync
signal
Measure the delay time T from the rise of the pin 22 horizontal output pulse to H Phase Angle:
the fall of the Y IN horizontal sync signal with line 24(NTSC:22) and
11111
167(NTSC:142). Caluculat as follow with each value of T is as T1 and T2.
HANG31=T2-T1
T
20IRE
2.5V
Horizontal Out
Horizontal output
<Vertical screen size correction>
vertical ramp output amplitude Vsize64
@64
17
Y IN:
Horizontal
/vertical sync
signal
PAL
NTSC
Monitor the pin 17 vertical ramp output and measure the voltage at line
24 (22:NTSC) and line 310 (262:NTSC). Calculate as
follows:Vsize64=Vline310(262:NTSC)-Vline24(22:NTSC)
Positive vertical ramp output
Line 310
Line 24
vertical ramp output
amplitude @0
Vsize0
17
Y IN:
Horizontal
/vertical sync
signal
PAL
NTSC
Monitor the pin 17 vertical ramp output and measure the voltage at line VSIZE:
24 (22:NTSC) and line 310 (262:NTSC). Calculate as follows:
0000000
Vsize0=Vline310(262:NTSC)-Vline24(22:NTSC)
Positive vertical ramp output
Line 310
Line 24
vertical ramp output amplitude Vsize127
@127
17
Y IN:
Horizontal
/vertical sync
signal
PAL
NTSC
Monitor the pin 17 vertical ramp output and measure the voltage at line VSIZE:
24 (22: NTSC) and line 310 (262:NTSC). Calculate as follows:
1111111
Vsize127=Vline310(262:NTSC)-Vline24(22:NTSC)
Positive vertical ramp output
Line 310
Line 24
No.A1893-26/41
LV766106F
Parameter
Symbol
Test point
Input signal
Test method
Bus conditions
<High-voltage dependent vertical size correction>
Vertical size correction @0 Vsizecomp
17
Y IN:
Horizontal /vertical
sync signal
PAL
Monitor the pin 17 vertical ramp output and measure the
VCOMP:000
voltage at the line 24 and line 310 with VCOMP = 000.
FSCorEHT=1
Calculate as follows: Va=Vline310-Vline24
Apply 4.0V to pin 15 and measure the voltage at the line 24
and line 310 again. Calculate as follows:
Va=Vline310-Vline24
Calculate as follows: Vsizecomp=Vb/Va
Positive vertical ramp output
Line 310
Line 24
<Vertical screen position adjustment>
Vertical ramp DC
voltage @32
Vdc32
17
Y IN:
Monitor the pin 17 vertical ramp output and measure the
Horizontal /vertical voltage at line 167(142: NTSC).
sync signal
PAL
Positive vertical ramp output
NTSC
Line 167
Vertical ramp DC voltage @0 Vdc0
17
Y IN:
Monitor the pin 17 vertical ramp output and measure the
Horizontal /vertical voltage at line 167(142: NTSC).
sync signal
Positive vertical ramp output
PAL
NTSC
VDC:000000
Line 167
Vertical ramp DC voltage
@63
Vdc63
17
Y IN:
Monitor the pin 17 vertical ramp output and measure the
Horizontal /vertical voltage at line 167(142: NTSC).
sync signal
Positive vertical ramp output
PAL
NTSC
VDC:111111
Line 167
Verticalposition @8
Vshift8
17
Y IN:
Measure the time T from the beginning of Vsync at pin 5 Y V.SHIFT:1000
Horizontal /vertical IN to the fall of the pin 17.
sync signal
the beginning of Vsync
5
T
V.out(+):17pin
Vertical position @0
Vshift0
17
Y IN:
Measure the time T from the beginning of Vsync at pin 5 Y V.SHIFT:0000
Horizontal /vertical IN to the fall of the pin 17.
sync signal
the beginning of Vsync
5
T
V.out(+):17pin
Vertical position @15
Vshift15
17
5
Y IN:
Measure the time T from the beginning of Vsync at pin 5 Y V.SHIFT:1111
Horizontal /vertical IN to the Rise of the pin 17.
sync signal
the beginning of Vsync
T
V.out(+):17pin
No.A1893-27/41
LV766106F
Parameter
Vertical linearity@16
Symbol
Test
point
Vlin16
17
Input signal
Y IN:
Horizontal /vertical
sync signal
PAL
Test method
Bus conditions
Monitor the pin 17 vertical ramp output and measure the
voltage at line 24, line 167 and 310. Assign the respective
measured values to Va, Vb and Vc. Calculate as follows:
Vlin16=(Vb-Va)/(Vc-Vb)
Positive vertical ramp output
Line 310
Line 167
Line 24
Vertical linearity@0
Vlin0
17
Y IN:
Horizontal /vertical
sync signal
PAL
Monitor the pin 17 vertical ramp output and measure the VLIN:00000
voltage at line 24, line 167 and 310. Assign the respective
measured values to Va, Vb and Vc. Calculate as follows:
Vlin0=(Vb-Va)/(Vc-Vb)
Positive vertical ramp output
Line 310
Line 167
Line 24
Vertical linearity@31
Vlin31
17
Y IN:
Horizontal /vertical
sync signal
PAL
Monitor the pin 17 vertical ramp output and measure the VLIN:11111
voltage at line 24, line 167 and 310. Assign the respective
measured values to Va, Vb and Vc. Calculate as follows:
Vlin31=(Vb-Va)/(Vc-Vb)
Positive vertical ramp output
Line 310
Line 167
Line 24
Vertical
S-shaped correction
@16
Vscor16
17
Y IN:
Horizontal /vertical
sync signal
PA L
Monitor the pin 17 vertical ramp output and measure the
voltage at line 26, line 70, line 145, line 189, line 264 and
308. Assign the respective measured values to Va, Vb, Vc,
Vd, Ve and Vf. Calculate as follows:
Vscor16=0.5((Vb-Va)+(Vf-Ve))/ (Vd-Vc)
Positive vertical ramp output
Line 308
Line 189
Line 70
Line 264
Line 145
Line 26
Vertical
S-shaped correction
@0
Vscor0
17
Y IN:
Horizontal /vertical
sync signal
PAL
Monitor the pin 17 vertical ramp output and measure the VSC:10000
voltage at line 26, line 70, line 145, line 189, line 264 and
308. Assign the respective measured values to Va, Vb, Vc,
Vd, Ve and Vf. Calculate as follows:
Vscor0=0.5((Vb-Va)+(Vf-Ve))/ (Vd-Vc)
Positive vertical ramp output
Line 308
Line 189
Line 70
Line 264
Line 145
Line 26
Vertical
S-shaped correction
@31
Vscor31
17
Y IN:
Horizontal /vertical
sync signal
PAL
Monitor the pin 17 vertical ramp output and measure the VSC:11111
voltage at line 26, line 70, line 145, line 189, line 284 and
308. Assign the respective measured values to Va, Vb, Vc,
Vd, Ve and Vf. Calculate as follows:
Vscor31=0.5((Vb-Va)+(Vf-Ve))/ (Vd-Vc)
Positive vertical ramp output
Line 308
Line 189
Line 70
Line 264
Line 145
Line 26
No.A1893-28/41
LV766106F
μ-Controller Chip (LC87F3664A)
Internal 64K-byte FROM (ROM/CGROM), 640-byte RAM And 352x9-bit CRT Display RAM 8-bit Single-chip
Microcontroller.
1. Features
■Flash ROM
64K bytes
● 48K-byte program ROM
● 16K-byte character generator ROM
● Runs on a 5V single source and permits onboard programming.
● Block erasable in 128 byte units.
● Permits 100 programming operations.
■Internal RAM
● General-purpose RAM:
640 bytes
● CRT display RAM: 352 × 9 bits
● ROM correction RAM:
128 bytes
■Minimum bus cycle time
● 77 ns (13.0 MHz)
Note: The bus cycle time here refers to the ROM read speed.
■Minimum instruction cycle time
● 231 ns (13.0MHz)
■OSD
● Screen display: 36 characters × 8 lines
● Display RAM : 352 words (1 word=9 bits)
Display area: 36 words × 8 lines
Control area: 8 words × 8 lines
● Font types: 16×32 font, 256 types (including 5 fixed fonts)
An arbitrary number of characters can be generated as 16×17 or 8×9 font characters.
● Display colors: 512 colors (Analog output)
Character text, background, borders, and full background can be displayed.
A maximum 16 colors displayable on a line.
● Display mode specifiable on a line basis.
OSD mode1, OSD mode 2(Quarter size), OSD mode 3(Simplified graphic), caption/text mode
● Vertical display start line and horizontal display start position specifiable on a line basis.
● Shutter function (specifying the display start or stop line) and scroll functions specifiable on a line basis.
● Horizontal character spacing (9 to 16 dots) (*6) and vertical character spacing (1 to 32 dots) specifiable on a line
basis.
● Character size selectable from 10 character sizes on a line basis. (*6)
(Horizontal×Vertical) = (1×1), (1×2), (2×2), (2×4), (1.5×1), (1.5×2), (3×2), (3×4), (0.5×0.5), (0.75×0.5)
● Simplified graphic display (One character (16×16 font) can be painted in 4 or 8 colors.)
● The half tone control of the TV picture in the background of the character is possible.
● Built-in the oscillation circuit for display
(*6)The supported range varies depending on the active display mode. Refer to the user's guide for details.
■Data slicer function(closed caption format)
● Extracts closed caption data and XDS data.
● NTSC/PAL selectable and line specifiable.
■Ports
● Normal withstand voltage I/O ports
Ports whose I/O direction can be designated in 1 bit units: 10 (P1n, P3n)
Ports whose I/O direction can be designated in 4 bit units: 8 (P0n)
*If X’tal oscillator is to be used for time-of-day clock, the number of available Port 0 is 6.
Note: Threee of the available ports are internally connected to the companion signal processing IC.
■Timers
● Timer 0: 16-bit timer/counter with a capture register.
● Timer 1: 16-bit timer/counter that supports PWM/toggle outputs
● Base timer
■SIO
● SIO0: 8-bit synchronous serial interface
● SIO1: 8-bit asynchronous/synchronous serial interface (bus mode 1 system)
Input and output is possible from the terminal of two systems in bus mode.
The two data lines and clock lines can be connected.
■AD converter: 6 bits ×5 channels
Note: One channel is connected internally to the signal processing IC.
■PWM: 14-bit PWM×1 channel
No.A1893-29/41
LV766106F
■Digital AFT
● It supports 38MHz , 38.9MHz , 39.5MHz and 45.75MHz as the IF frequencies.
■Remote controller receiver circuit (sharing with P03 and INT3 pins)
● Noise rejection function (noise filter time constant selectable from 1 Tcyc,32 Tcyc,and 128Tcyc)
■Watchdog timer
● External RC watchdog timer
● Interrupt and reset signals selectable
■High-speed multiplication/division instructions
● 16 bits×8 bits
(Execution time: 5 Tcyc)
● 24 bits×16 bits
(Execution time: 12 Tcyc)
● 16 bits÷8 bits
(Execution time: 8 Tcyc)
● 24 bits÷16 bits
(Execution time: 12 Tcyc)
■Interrupts
● 15 sources, 10 vector addresses
1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control.
Any interrupt requests of the level equal to or lower than the current interrupt are not
accepted.
2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt
of the highest level takes precedence over the other interrupts. For interrupts of the same
level, the interrupt into the smallest vector address takes precedence.
No.
Vector Address
Level
1
2
3
4
5
6
7
8
9
10
00003H
0000BH
00013H
0001BH
00023H
0002BH
00033H
0003BH
00043H
0004BH
X or L
X or L
H or L
H or L
H or L
H or L
H or L
H or L
H or L
H or L
Interrupt Source
INT0
INT1
INT2/T0L
INT3/base timer
T0H
T1L/T1H
SIO0
SIO1/data slicer
vertical sync (VS#)/scan line
Port 0
● Priority levels X > H > L
● If interrupts of the same level, the one with the smallest vector address takes precedence.
■Subroutine stack levels: 320 levels maximum (the stack is allocated in RAM.)
■Oscillation circuits
● RC oscillation circuit (internal): For system clock
● VCO oscillation circuit (internal): For system clock generation and CRT display
● Crystal oscillation circuit:
For base timer
Note:When the base timer count of clock accuracy is necessary , use the port terminal (two ports) as the crystal
oscillation. (See the [12 μ-Controller Chip Crystal Oscillation Circuit and Sample Characteristics] for details.)
■Standby function
● HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
1) Oscillation is not halted automatically.
2) There are three ways of resetting HALT mode.
(1) Setting the reset pin to lower level.
(2) Generation of reset with the watchdog timer.
(3) Setting at least one of the INT0 and INT1 pins to the specified level.
● HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
1) The VCO and RC oscillators automatically stop operation.
2) There are four ways of resetting the HOLD mode.
(1) Setting the reset pin to the lower level.
(2) Generation of reset with the watchdog timer.
(3) Setting at least one of the INT0 and INT1 pins to the specified level.
(4) Having an interrupt source established at port 0.
■ROM correction function
● Executes the correction program on detection of a match with the program counter value.
● Correction program area size: 128 bytes (4 vector addresses)
■Development tools
● Emulater:
TCB87 (Type B or Typ C) (onchip debugger interface board)
+ ECB873600A (evaluation chip board + LC873600EVA)
+ POD36-JCT (connecter between evaluation chip board and POD)
+ POD76600 (POD + LV766xxEVA)
No.A1893-30/41
LV766106F
■Flash Programming Board : W76200D
When using the Flash Programming Board, all of the jumper SW must be set to the OFF position.
If set to the ON position, read/write operations will not perform correctly.
Pin 1 of the conversion board should be located as indicated below.
When viewing from the edge closest to jumper SW, pin 1 is located on the lower right of both the chip
and conversion board.
Pin1
W76200D
■Flash ROM Programmer
Support Version
Maker
Model
Flash Support
AF9708/AF9709/AF9709B
Group,Inc.
(including models manufactured by Ando
(Single)
Electric Co.,Ltd)
(Note)
Rev02.72
Device
LC87F3264A
(3B231)
AF9723(main unit)
Flash Support
Group,Inc.
(Gang)
(including models manufactured by Ando
(*7)
Electric Co.,Ltd)
LC87F3264A
AF9833(unit)
(including models manufactured by Ando
(*7)
Electric Co.,Ltd)
SANYO
SKK/SKK TypeB
Application Version 1.04
Chip Data Version 2.21
LC87F3664
Note: Check for the latest version.
The LC87F3664A does not support a silicon signature feature.
(*7) We have a schedule to request the registration
No.A1893-31/41
LV766106F
2. μ-Controller Chip System Block Diagram
Interrupt control
IR
Standby control
VCO
ROM correct
Clock
generator
RC
PLA
Flash ROM
Reference Clock
PLL
PC
SIO0
Bus interface
SIO1
Port 0
ACC
Port 1
B register
C register
Timer 0
Timer 1
Port 3
ALU
D-AFT
Xtal
PSW
DDS
RAR
Base timer
ADC
PWM
INT0-INT3
noise filter
RAM
Stack pointer
Data slicer
OSD
Contro
l
Circuit
CGROM
Control
Watchdog timer
VRAM
No.A1893-32/41
LV766106F
3. μ-Controller Chip Pin Function Chart
Pin Name
CpuGND
CpuVDD
CpuVDD2
Port 0
I/O
-
- power supply pin
Option
No
-
+ power supply pin
No
-
+ power supply pin
I/O
P00 to P07
Description
No
Rising
Port 1
I/O
P11 to P17
Port 3
I/O
P30 to P32
Rising &
H Level
Falling
INT0
○
○
×
○
INT1
○
○
×
○
INT3
○
○
○
×
The two terminal of P00, P01, P04 and P05 can be used as LED driver.
・7-bit I/O port
・I/O specifiable in 1 bit units
・Pull-up resistors can be turned on and off in 1 bit units.
・Pin functions
P13: TVPWMD output
P14: SIO1 data input/bus I/O
P15: SIO1 clock I/O
P16: SIO1 data input / bus I/O / data output
P17: SIO1 clock I/O /T1PWML output
・3-bit I/O port
(Internal connected terminal)
・I/O specifiable in 1 bit units
・
Pin functions
P30,P31: Internal communication interface terminal:
P32 : INT2 input / timer 0 event input/ timer 0L capture input
Interrupt acknowledge type
Input
Output
-
RESi#
XTIN
CVIN
PEOUT
VS#
HS#
R
G
B
BL1
BL2
DDSOUT
DDSYS
DDSIN
DAFTIN
Input
Input
Input
Output
Input
Input
Output
Output
Output
Output
Output
Output
Input
Input
Input
-
Falling
L Level
○
○
×
Yes
No
Rising
Falling
Rising &
Falling
H Level
L Level
○
○
○
×
×
INT2
RES#
FILT
VDDi1
VDDi2
P00-P03:
No
P04-P07:
Yes
・8-bit I/O port
・I/O specifiable in 4 bit units
・Pull-up resistors can be turned on and off in 4 bit units.
・HOLD reset input
・Port 0 interrupt input
・Pin functions
P00: INT0 input/HOLD reset input/timer 0L capture input/watchdog
timer output/ SIO0 data output
P01: INT1 input/HOLD reset input/timer 0H capture input/SIO0 data
input/bus I/O
P02: SIO0 clock I/O
P03: INT3 input (with noise filter input)/timer 0 event input/
timer 0H capture input
P04: AD conversion input terminal (AN4)
P05: AD conversion input terminal (AN5)
P06: AD conversion input terminal (AN6)/Output terminal for
32.768kHz crystal oscillation (XT2)
P07: AD conversion input terminal (AN7)/Input terminal for
32.768kHz crystal oscillation (XT1)
Interrupt acknowledge type
Reset pin
Internal PLL filter pin for system clock
+ power supply pin
(Internal connected terminal)
+ power supply pin
(Internal connected terminal)
Reset pin
(Internal connected terminal)
Reference clock input
(Internal connected terminal)
Video input pin
(Internal connected terminal)
Pedestal level output
(Internal connected terminal)
Vertical sync input pin
(Internal connected terminal)
Horizontal sync input pin
(Internal connected terminal)
Red (R) RGB video output pin
(Internal connected terminal)
Green (G) RGB video output pin
(Internal connected terminal)
Blue (B) RGB video output pin
(Internal connected terminal)
Fast blanking 1 control output pin
(Internal connected terminal)
Fast blanking 2 control output pin
(Internal connected terminal)
DDS color sub-carrier output pin
(Internal connected terminal)
DDS color system selection pin
(Internal connected terminal)
DDS clock input pin
(Internal connected terminal)
IF carrier input pin
(Internal connected terminal)
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No.A1893-33/41
LV766106F
4. μ-Controller Chip Port Output Types
The table below lists the types of port outputs and the presence/absence of a pull-up resistor.
Data can be read into any input port even if it is in the output mode.
Port name
Option selected in
units of
Option type
Output type
P00 to P03
-
No
P04 to P07
1 bit
1
CMOS
Programmable (*8)
2
Nch-open drain
No
1
CMOS
Programmable
2
Nch-open drain
Programmable
P11 to P17
1 bit
Nch-open drain
Pull-up resistor
No
P30 to P31
-
No
Nch-open drain
Yes
P32
-
No
Nch-open drain
No
(*8) Programmable pull-up resistors for port 0 are controlled in 4 bit units (P04 to P07).
*Connect the IC as shown below to minimize the noise input to the CpuVDD pin.
LSI
CpuVDD
Power
supply
CpuVDD2
1μF
CpuGND
5. μ-Controller Chip On-board writing system
The LC87F3664A has the On-board writing system. The program is renewable by using SANYO Flash On-board
System after the LSI has been installed on the application board.
This system has to connect the 6 pins (communication (CLK, DATA × 2), power supply (CpuVDD, CpuGND) and RES#, pins)
with the interface board of SANYO Flash On-board System.
It is necessary that the pins to be used for the rewriting system should be able to be separated from the application board
properly.
Please ask to our sales persons before using On-board writing system.
No.A1893-34/41
LV766106F
6. μ-Controller Chip Electrical characteristics/Ta=-10deg to +65deg, VSS=0V
Parameter
Symbol
Pins
High level input
current
IIH(1)
Ports0,1
IIH(2)
RES#
Low level input current
IIL(1)
Ports0,1
Conditions
・Output disable
・Pull-up MOS Tr.OFF
・VIN=VDD
(including the off-leak current
of the output Tr.)
VIN=VDD
・Output disable
・Pull-up MOS Tr.OFF
・VIN=VSS
(including the off-leak current
of the output Tr.)
VIN=VSS
VDD[V]
4.5 to 5.5
min
typ
Limits
max
1
4.5 to 5.5
1
4.5 to 5.5
-1
IIL(2)
RES#
4.5 to 5.5
-1
High level output
voltage
VOH
Ports04-07,
Ports1
IOH=-1.0mA
4.5 to 5.5
VDD-1
Low level output
voltage
VOL(1)
Ports02,03
Ports06,07
Ports1
Ports00,01,
Ports04,05
Ports04-07,1
IOL=10mA
IOL=1.6mA
4.5 to 5.5
1.5
4.5 to 5.5
0.4
IOL=8.0mA
4.5 to 5.5
0.4
VOH=0.9VDD
4.5 to 5.5
4.5 to 5.5
VOL(2)
Pull-up MOS Tr. Resistance
Rpu
Bus terminal short circuit resistance RBS
for internal
communication
Hysteresis voltage
VHIS
・P14-P30
・P15-P31
・P14-P16
・P15-P17
Ports00-03,1
・RES#
unit
µA
V
15
40
130
4.5 to 5.5
70
300
0.35
kΩ
Ω
V
7. μ-Controller Chip SIO0 Characteristics(*9) /Ta=-10deg to +65deg, VSS=0V
Parameter
Symbol
Input Clock
Cycle
tSCK(1)
Low level
pulse-width
High level
Pulse-width
tSCKL(1)
Pins
SCK0(P02)
Conditions
See the figure 4.
Limits
VDD[V]
4.5 to 5.5
Output Clock
Serial Clock
tSCK(2)
tSCKL(2)
SCK0(P02)
Serial Input
tsDI(1)
unit
tCYC
・Continuous data transmitting and
receiving mode
・See the figure 4. (*10)
・At the CMOS output
selection
・See the figure 4.
4
4.5 to 5.5
4/3
1/2
tSCK
1/2
tSCKH(2)
tSCKHA(2a)
Data setup time
max
1
tSCKHA(1a)
Low level
pulse-width
Low level
pulse-width
typ
1
tSCKH(1)
Cycle
min
2
SI0(P01)
SB0(P01)
・At the CMOS output
・Continuous data transmitting and
receiving mode
・See the figure 4.
・Define for rising of
SIOCLK.
・See the figure 4.
tSCKH(2)
+
2tCYC
4.5 to 5.5
tSCKH(2)+
(10/3)tCYC
tCYC
μs
0.03
0.03
thDI(1)
Data hold time
tdDO(1)
tdDO(2)
tdDO(3)
SO0(P00)
SB0(P01)
・Continuous data
transmitting and
receiving mode (*11)
・Synchronous 8-bit
mode (*11)
4.5 to 5.5
(*11)
Output Clock
Serial Outpu
Input Clock
Output delay
time
(1/3)tCYC
+0.05
1tCYC
+0.05
(1/3)tCYC
+0.05
(*9) This limited value is theoretical figure. Be sure to ensure the margin in accordance with use situation.
(*10) When using the serial clock input with continuous data transmitting and receiving mode,
lengthen time from the set of the cereal clock of SI0RUN in the state of "H" to the falling of the first cereal
clock when it begins to send and receive continuous data more than tSCKHA.
(*11) This is defined for falling of SIOCLK and it is defined as time until output change start in open drain output.
(See the figure 4)
No.A1893-35/41
LV766106F
8. μ-Controller Chip SIO1 Characteristics (*11) / Ta=-10deg to +65deg, VSS=0V
Parameter
Symbol
Pins
Conditions
VDD[V]
4.5 to 5.5
min
2
Input Clock
Output Clock
Serial Clock
Cycle
tSCK(3)
Low level
pulse-width
tSCKL(3)
1
High level
pulse-width
tSCKH(3)
1
Cycle
tSCK(4)
Low level
pulse-width
High level
pulse-width
tSCKL(4)
SCK1(P15)
SCK1(P15)
See the figure 4.
・At the CMOS output
selection
・See the figure 4.
4.5 to 5.5
unit
tCYC
2
tSCK
1/2
1/2
tSCKH(4)
Serial Input
tsDI(2)
Data setup
time
Limits
max
typ
SI1(P14)
SB1(P14)
・Define for rising of
SIOCLK.
・See the figure 4.
4.5 to 5.5
μs
0.03
0.03
thDI(2)
Data hold time
Serial Output
Output delay
time
tdDO(4)
SO1(P16)
SB1(P14)
・Define for falling
of SIOCLK.
・Define as time until
output change start
in open drain
output.
・See the figure 4.
4.5 to 5.5
(1/3)tCYC
+0.05
(*12) This limited value is theoretical figure. Be sure to ensure the margin in accordance with use situation.
9. μ-Controller Chip Pulse input conditions / Ta=-10deg to +65deg, VSS=0V
Parameter
High/low level
pulse width
Symbol
Pins
Conditions
tPIH(1)
tPIL(1)
INT0,INT1,INT2
tPIH(2)
tPIL(2)
INT3/P03
(1/1 is selected for noise
rejection clock.)
tPIH(3)
tPIL(3)
INT3/P03
(1/32 is selected for noise
rejection clock.)
tPIH(4)
tPIL(4)
INT3/P03
(1/128 is selected for noise
rejection clock.)
tPIL(5)
RES#
・Interrupt acceptable
・Timer0, 1 event input
enabled
・Interrupt acceptable
・Timer0, 1 event input
enabled
・Interrupt acceptable
・Timer0, 1 event input
enabled
・Interrupt acceptable
・Timer0, 1 event input
enabled
Reset acceptable
VDD[V]
4.5 to 5.5
min
1
4.5 to 5.5
2
4.5 to 5.5
64
4.5 to 5.5
256
4.5 to 5.5
200
typ
Limits
max
unit
tCYC
µs
10. μ-Controller Chip AD converter characteristics / Ta=-10deg to +65deg, VSS=0V
Parameter
Symbol
Resolution
Absolute precision
Conversion time
N
ET
tCAD
Analog input voltage range
VAIN
Analog port input current
IAINH
IAINL
Pins
AN3,
AN4~AN7
(P04-P07)
Conditions
VDD[V]
4.5 to 5.5
min
(*13)
Until result of conversion is ensured
after Vref selection
1 bit conversion time
= 3 × Tcyc
Limits
max
±1
0.636
VSS
VAIN=VDD
VAIN=VSS
typ
6
VDD
1
unit
bit
LSB
µs
V
µA
-1
(*13) Absolute precision does not include quantizing error (1/2LSB).
No.A1893-36/41
LV766106F
11. μ-Controller Chip Sample current dissipation characteristics / Ta=-10deg to +65deg, VSS=0V
The sample current dissipation characteristics is the measurement result of Sanyo provided evaluation board when the
recommended circuit parameters shown in the sample oscillation circuit characteristics are used externally. The currents
through the output transistors and the pull-up MOS transistors are ignored
Parameter
Current
dissipation
during basic
operation
(*14)
(*15)
Current
dissipation in
HALT mode
(*14)
(*15)
Current
dissipation in
HOLD mode
(*15)
Symbol
Pins
IDDOP(1)
CpuVDD
IDDOP(2)
CpuVDD
IDDHALT(1)
CpuVDD
IDDHALT(2)
CpuVDD
IDDHALT(3)
CpuVDD
IDDHOLD
CpuVDD
Conditions
·Reference clock=4.43MHz
crystal oscillation
(Operating mode: BipChip)
System clock: VCO (13.0MHz)
·VCO for OSD operating
·Built-in RC oscillation stops
·At the 1/1 frequency dividing
·OSD, DSL enabled
·Reference clock=4.43MHz
crystal oscillation
(Stanby mode: BipChip)
·System clock: reference clock frequency
dividing (32kHz)
·VCO for the main clock and for OSD stops
·Built-in RC oscillation stops
·At the 1/2 frequency dividing
·HALT mode
·Reference clock=4.43MHz
crystal oscillation
(Stanby mode: BipChip)
·System clock: VCO (13.0MHz)
·VCO for OSD stops
·Built-in RC oscillation stops
·OSD, DSL enabled
·HALT mode
·Reference clock=4.43MHz
crystal oscillation
(Stanby mode: BipChip)
·System clock: Built-in RC oscillation
·VCO for the main clock and for OSD stops
·At the 1/1 frequency dividing
·HALT mode
·Reference clock=4.43MHz
crystal oscillation
(Stanby mode: BipChip)
·System clock: reference clock frequency
dividing (32kHz)
·VCO for the main clock and for OSD stops
·Built-in RC oscillation stops
·At the 1/2 frequency dividing
·HOLD mode
·All oscillation stop
·Reference clock=4.43MHz
crystal oscillation
(Stanby mode:BipChip)
VDD[V]
4.5 to 5.5
min
Limits
typ
max
31
42
unit
mA
4.5 to 5.5
2
2.7
mA
4.5 to 5.5
5
8
mA
4.5 to 5.5
1.7
3.2
mA
4.5 to 5.5
1.3
2
mA
4.5 to 5.5
1.2
1.9
mA
(*14) The currents of the output transistors and the internal pull-up MOS transistors are ignored.
(*15) 4.43MHz crystal oscillation current is contained.
No.A1893-37/41
LV766106F
12. μ-Controller Chip Ccrystal Oscillation Circuit and Sample Characteristics/Ta=-10deg to +65deg, VSS=0V
When the base timer count of clock accuracy is necessary , LC87F3664A can use the port terminal (P06,P07) as the crystal
oscillation (See the Figure 1). The sample oscillation circuit characteristics and recommended oscillation circuit when port
terminal (P06, P07) is used as XTAL oscillation terminal are shown below.
The sample oscillation circuit characteristics in the table below is based on the following conditions:
• Recommended circuit parameters are verified by an oscillator manufacturer using a Sanyo provided oscillation evaluation
board.
• Sample characteristics are the result of the evaluation with the recommended circuit parameters connected externally.
Frequency
Manufacturer
32.768kHz
Epson
TOYOCOM
MC-306
TmsXtal (*16)
Oscillation
stabilizing time
Operating
supply voltage
range
Recommended circuit
parameters
Oscillator
C1
C2
Rf
Rd
18pF
18pF
OPEN
390kΩ
4.5 to 5.5V
Typ
max
1.0S
1.5S
Notes
Applicable
CL value = 12.5pF
SMD-type
(*16) The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the
instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the
oscillation to get stabilized after the HOLD mode is reset (see the Figure 3).
The sample oscillation circuit characteristics may differ applications. For further assistance, please contact with oscillator
manufacturer with the following notes in your mind.
・Since the oscillation frequency precision is affected by wiring capacity of the application board, etc., adjust the oscillation
frequency on the production board.
・The above oscillation frequency and the operating supply voltage range are based on the operating temperature
of -10deg to +65deg. For the use with the temperature outside of the range herein, or in the applications
requiring high reliability such as car products, please consult with oscillator manufacturer
・When using the oscillator which is not shown in the sample oscillation circuit characteristics, please
consult with Sanyo sales personnel.
Since the oscillation circuit characteristics are affected by the noise or wiring capacity because the
circuit is designed with low gain in order to reduce the power dissipation, refer to the following notices.
・ The distance between the clock I/O terminal (P07/XT1 terminal P06/XT2 terminal) and external parts
should be as short as possible.
・ The capacitors’ VSS should be allocated close to the microcontroller’s CpuGND terminal and be away from other GND.
・ The signal lines with rapid state changes or with large current should be allocated away from the
oscillation circuit.
XT1 (P07)
XT2 (P06)
Rf
Rd
C1
C2
X’tal
Figure 1 Recommended oscillation circuit.
0.5VDD
Figure 2
The Point of AC timing measure.
No.A1893-38/41
LV766106F
CpuVDD
Power supply
0V
Reset time
TPIL(5)
RES#
Built-in RC oscillation
tmsVCO
VCO1
tmsXtal
XT1,XT2
XTAL Oscillation enable signal
Indifinite
Reset
Instruction execution
Reset time and oscillation stable time
Invalid the HOLD release signal
Valid the HOLD release signal
Built-in RC oscillation
tmsVCO
VCO1
tmsXtal
XT1,XT2
XTAL oscillation enable signal
Status
H(Enable state)
HOLD
HALT
HOLD release signal and oscillation stable time
Figure 3 Oscillation stable time.
No.A1893-39/41
LV766106F
SIOCLK:
DATAIN:
DI0
DI1
DI2
DI3
DI4
DI5
DI6
DI7
DI8
DATAOUT:
DO0
DO1
DO2
DO3
DO4
DO5
DO6
DO7
DO8
Data RAM
transmission time
(SIO0 only)
tSCK
tSCKL
tSCKH
SIOCLK:
tsDI
thDI
DATAIN:
tdDO
DATAOUT:
Data RAM
transmission
time
(
)
tSCKL
tSCKHA
SIOCLK:
tsDI
thDI
DATAIN:
tdDO
DATAOUT:
Figure 4 Serial I/O wave.
tPIL
tPIH
Figure 5
Pulse input timing wave.
100Ω
FILT
1MΩ
+
2.2μF
33000pF
-
Figure 6 FILT recommended circuit.
(Note) Place FILT parts on board as close to the microcontroller as possible.
No.A1893-40/41
LV766106F
CpuVDD2
+
-
Figure 7
1μF
CpuVDD2 recommended circuit.
(Note) Place CpuVDD2 parts on board as close to the microcontroller as possible.
* Refer to the user’s manual of LC873600 series,when you know the details about μ-Controller.
SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using
products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition
ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd.
products described or contained herein.
SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all
semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or
malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise
to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt
safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not
limited to protective circuits and error prevention circuits for safe design, redundant design, and structural
design.
In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are
controlled under any of applicable local export control laws and regulations, such products may require the
export license from the authorities concerned in accordance with the above law.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise,
without the prior written consent of SANYO Semiconductor Co.,Ltd.
Any and all information described or contained herein are subject to change without notice due to
product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the
SANYO Semiconductor Co.,Ltd. product that you intend to use.
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed
for volume production.
Upon using the technical information or products described herein, neither warranty nor license shall be granted
with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third
party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's
intellctual property rights which has resulted from the use of the technical information and products mentioned
above.
This catalog provides information as of December, 2010. Specifications and information herein are subject
to change without notice.
PS No.A1893-41/41