TA1276AFG TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TA1276AFG PAL/NTSC Video Chroma And Deflection IC For CTV (normal scan/double scan mode) TA1276AFG provides Video, Chroma and Deflection (sync, when double scan mode) circuit for a PAL/NTSC Color TV, and suitable for a high picture quality, large screen size, wide and/or double scanning TV. These functions are integrated in a 80 pin QPF plastic package. TA1276AFG provides a high-performance video processor in which a YUV double scanning signal can be applied in Video, PAL/NTSC auto-detection circuit in Chroma and 50/60 Hz auto-detection circuit in Sync. PAL demodulation circuit includes Baseband signal processing system. And this demodulation circuit does not required any adjustment. TA1276AFG includes I2C bus interface, so you can adjust various functions and controls via the bus. Weight: 1.6 g (typ.) Features Video/chroma section • Y delay line • Chroma trap • IQ demodulation for NTSC, UV demodulation for PAL • BEP (back end processor) section • Enable to process a YUV signal independently • Double scanning signal processing capability (Y processing section) • Black stretcher (controlled by I2C bus) • DC restoration circuit (controlled by I2C bus) • Highbright-color circuit • D.L. aperture sharpness circuit + super real transcend circuit (LTI) • DŽ correction (enable to control binary line, gain/start point) • Y noise reduction circuit • Velocity scan modulation output (the first order differential output and phase/amplitude adjustment) (color difference section) • Color detail enhancer • Selectable relative phase and amplitude • Flesh-color restoration • Color DŽ circuit • Baseband tint color (text section) • RGB primary color output • On screen display interface • Linear RGB interface • Fast blanking • Drive control • AKB (only black level) or cut-off bus control • Deflection section • High performance sync. separation circuit • Adjustment free H and V oscillation circuit by countdown system • Horizontal and vertical position adjustment • Sync separation, HD output • Horizontal and vertical pulse output in normal mode. • 1 2002-04-01 TA1276AFG 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 V/I Out 1H DL Cont 4.43 MHz X’tal M PAL X’tal NC 3.58 MHz X’tal APC Filter VCC1 (5 V) NC NC Chroma In Chroma GND Y1 Sync In NC V.Sep. HD Out NC Sync Out DEF GND AFC Filter NC 32fH VCO DEF VCC (9 V) Horizontal Output (SW) Pin Assignment 65 U/Q Out 66 NC 67 Y1 Out Curve odj. 40 (ext CP in) NC 39 FBP In (BLK in) 38 68 NC Digital GND 37 69 SECAM Conto NC 36 70 SCP Out SDA 35 71 NC SCL 34 72 fsc Out NC 33 TA1276AFG 73 Sence In B S/H 32 74 R S/H G S/H 31 75 NC NC 30 76 Color Limiter VP Out 29 77 NC NC 28 78 Y2 In V/I In Black Peak Hold APL Det. NC VSM Out YM In VCC3 (9 V) ABCL In TEXT GND 2 TEXT GND 1 R Out NC G Out NC B Out NC VCC2 (9 V) Analog OSD R In Analog OSD G In Analog OSD B In Ys1 (analog OSD) Analog R In NC Analog G In Ys2 (analog RGB) 27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 79 NC 80 U/Q In 2 NC 26 Analog B In 25 2002-04-01 TA1276AFG Block Diagram fsc Out 72 Cutoff fsc out IK 73 Sense In R S/H Cutoff Hi Bright Color SECAM 69 Control SECAM Control Y1 Out 67 SW Axis G-Y Matrix Color Sys Ident Clamp Color γ Half Tone Color Peak Det CDE Delay Line 76 Color Limiter 78 Y2 In Uni-color U/Q Out 65 74 R S/H SCP out SCP Out 70 Delay Line 80 U/Q In Color TOF Tint V/I Out 64 Delay Line SW IQ → UV Convert IQ/UV Clamp 1 V/I In Flesh Color 2 Black Peak Hold 1H DL 63 Control 1 H DL Control Black Peak Det Y Clamp 3 APL Det. 4.43 MHz 62 X’tal M PAL X’tal 61 Filter Auto Adj. Chroma VCO APC Filter 58 LPF fsc Trap CW Matrix 3.58 MHz 59 X’tal VSM Mute Black Level Cor Chroma Demond. VSM Amp APL Det γ Correction P/N Ident Det APC Det Black Stretch HPF Chroma BLK Sub Color Chroma GND 53 Delay Line Y1/Sync In 52 H.V. Sync Sep. 7 VCC3 (9 V) 8 ABCL In ABCL Amp ACC Det ACC Amp Chroma In 54 6 YM In DL SW DC Restore VCC1 (5 V) 57 5 VSM Out TOF SW Sharpness Delay Line YM SW RGB out SRT Sharpness Control fsc Trap 9 Text GND 2 BLK 10 Text GND 1 R. G. B. S/H SW 11 R Out Y NR Amp IK Cutoff Clamp 13 G Out V-Sep. 50 V Sep HD Out 49 HD out/ BPP in V Sync Sep Sub Cont 100 IRE = 2.3 Vp-p Drive 15 B Out Uni-color 17 VCC2 (9 V) Sync. Out 47 Sync out RGB γ Clamp OSD Amp 18 Analog OSD R In 19 Analog OSD G In 20 Analog OSD B In 21 Ys1 (analog OSD) DEF GND 46 Half Tone AFC Filter 45 Phase Det <AFC-1> 32fH VCO 43 32fH VCO SW ACL Clamp WPS Mode SW DEF 42 VCC (9 V) H Drive H. Out 41 [SW] H Phase Shift H Count Down RGB Matrix V Count Down Internal Clamp Mode or External Clamp Mode SW Ys SW 22 Analog R In Contrast 24 Analog G In Curve Adjust [Ext CP/ 40 BPP In] Phase Det <AFC-2> FBP In 38 [H/V BLK In] H BLK Clamp 25 Analog B In (Ext. VBLK) H parabola VP out Registor D/A Convert RGB Bright Ys SW 27 Ys2 (analog OSD) Digital GND 37 29 VP Out 2 SDA 35 I C Bus Decoder Cutoff G S/H 31 G S/H Cutoff B S/H 32 B S/H SCL 34 • Pin 41 connect to VCC: Double Scan mode Note 1: [ ]: for Double Scan mode only (external clamping pulse input mode) 3 2002-04-01 TA1276AFG Terminal Functions Pin No. Pin Name Function Input/Output Signal Interface Circuit 7 1 V/I input 80 U/Q input When Burst: Chroma = 1:1 360 mVp-p DC: 5.0 V The pin through which R-Y (V)/I and B-Y (U)/Q signals are input. Input via clamp capacitor. 1 80 5V 200 Ω 2 4.25 V 20 kΩ 5 kΩ 20 kΩ 3 None connect PIN. These pins connect to GND. 7 1 kΩ Outputs the Y-signal that routed HPF after it had been subjected to DC VSM output restoration. The output is muted with the switches of pins 32 and 36. DC 1 kΩ 35 kΩ 5 NC 7 200 Ω 5 DC 3.5 V 200 Ω 4 APL detection 200 Ω 3 Connect the filter correcting DC restoration ratio. Opening this pin can monitor the Y-signal that was subjected to black stretching. DC 1 kΩ 1 kΩ Black peak hold 1 kΩ 2 Connect the filter controlling the black stretching gain of the black stretching circuit. The black stretching gain varies depending on the voltage at this pin. 4 kΩ 1 kΩ 7 4 2002-04-01 TA1276AFG Pin No. Pin Name Function Input/Output Signal Interface Circuit 17 Soft AKB 7.0 V 6 YM input 300 Ω The half-tone switch for internal RGB signal. When the voltage at this pin is set to 7.0 V or more, the RGB output voltage. 6 Half Tone 0.75 V 15 kΩ TV 5 kΩ GND The VCC pin of picture quality and color difference blocks. Connect 9 V (typ.). 7 VCC3 (9 V) 8 Used to control the external uni-color, brightness, and dynamic ABL. Use this pin when using ABCL input ABL or ACL. The sensitivity and starting point of the ABL and dynamic ABL can be set by using bus. 9 TEXT GND The GND pin of TEXT 2 block. 10 TEXT GND The GND pin of TEXT 1 block. 17 5 kΩ ABCL OFF: 6 V or more 30 kΩ 30 kΩ 8 13 G output Outputs RGB. 200 Ω 100 IRE: 2.3 Vp-p 2.5 V 10 kΩ 100 kΩ 15 B output 11 13 15 100 kΩ 11 R output 1 kΩ 100 Ω 17 GND At Cont max BRT Cent. 12 NC None connect PIN. These pins connect to GND. 14 NC None connect PIN. These pins connect to GND. 16 NC None connect PIN. These pins connect to GND. 17 VCC2 (9 V) The VCC pin of the text block. Connect 9 V (typ.). 5 2002-04-01 TA1276AFG Pin No. Pin Name Function The pin through which the OSD signal or analog RGB is input. 18 Analog OSD R input 19 Analog OSD G input 20 Analog OSD B input (1) When inputting an OSD signal, input the ODS signal with a voltage of 0 to 5 V (4.1 V or more). (2) When inputting an analog RGB, input the RGB signal via clamp capacitor. ACL works on this input signal only when the entire screen is YS1-HI (the entire screen: OSD). Input/Output Signal Interface Circuit 17 (1) 5V 1 kΩ 18 19 20 0V 1 kΩ (2) 100 IRE: 0.5 Vp-p DC: 3.6 V 17 OSD VSM Mute 0.75 V 1.3 kΩ 21 TV 50 kΩ 21 YS1 2.25 V Switches between the internal RGB signal and OSD/analog RGB (pin 18, 19, 20). When this switch is on, the VSM output is muted. GND 17 22 Analog R input 24 Analog G input 25 Analog B input 100 IRE: 0.5 Vp-p 1 kΩ The pin through which the analog RGB is input. Input the RGB signal via clamp capacitor. 22 24 25 1 kΩ 3.5 V GND 23 NC None connect PIN. These pins connect to GND. 26 NC None connect PIN. These pins connect to GND. 17 28 NC A. BGB 0.75 V 1.3 kΩ TV 27 GND 50 kΩ 27 YS2 Switches between the internal RGB signal and analog RGB (pin 33, 34, 35) signal. When this switch is on, the VSM output is muted. None connect PIN. These pins connect to GND. 6 2002-04-01 TA1276AFG 31 G S/H 34 SCL 4.25 V 1.5 kΩ 1 kΩ 1 kΩ AKB or Clamp 500 Ω 31 32 74 17 5 kΩ DC R/G/B None connect PIN. These pins connect to GND. Soft AKB (bus) 42 100 µF 33 NC 0V 200 Ω 32 B S/H These pins are to be connected with a capacitor for sampling and holding a bais voltage in the AKB operation, of for clamping to set DC voltage of RGB outputs in the no-AKB mode. 5 kΩ 5 kΩ None connect PIN. These pins connect to GND. 42 5V 5 kΩ 30 NC 200 Ω 29 200 Ω 29 VP output Outputs the vertical pulse. This pin also serves as the external blanking input. When current stronger than 350 µA flows, blanking takes place due to the internal blanking and OR logic circuit. Input/Output Signal Interface Circuit 200 µA Function 200 Ω 50 kΩ Pin Name 5 kΩ Pin No. 2 The SCL pin of I C bus. SDA 20 kΩ 3V 34 42 35 SDA 2 The SDA pin of I C bus. SDA 50 Ω 20 kΩ ACK 36 NC None connect PIN. These pins connect to GND. 7 3V 35 2002-04-01 TA1276AFG Pin No. Pin Name Function Interface Circuit Input/Output Signal 2 37 Digital GND The GND pin of I L block. 3.5 V 3.5 V 1.0 V 8.25 V (1) (2) 42 45 kΩ AFC-2 (2) Double scan mode This pin is to input external CP (clamping pulse) and BPP (black peak detection stopping pulse). DC 4.5 V Ext. Clamp Pulse 5V 40 1.5 µs 45 kΩ 45 kΩ Curve correction 40 (ext. CP/BPP input) FBP None connect PIN. These pins connect to GND. (1) Used to correct distortion of picture in the case of high-tension fluctuation. Input the AC component of high-tension fluctuation. To disactivate the distortion correction feature, connect a capacitor of 0.01 µF between this pin and GND. 3.5 V (AFC-2) 1.0 V (H BLK) 200 Ω 45 kΩ 39 NC 38 9V 2.5 V 38 FBP input The pin through which FBP is input to generate pulses for horizontal AFC2, Y smoothing, and horizontal blanking. When double SCAM mode, input H blanking pulse (5 V or over). 2.25 V 42 Ext. CP TH: 3.6 V Ext BPP 0V Ext BPP TH: 1.0 V 42 15 kΩ DEF VCC (9 V) The VCC of DEF block. Connect 9 V (typ.) to this pin. 8 7.5 V 41 30 kΩ 42 HIGH: 3.2 V LOW: 0.2 V 1.5 V 5 kΩ 30 kΩ 50 kΩ Produces the horizontal output. Horizontal Connecting the DEF VCC to this pin can swich 41 output (mode SW) Double Scan mode. In this case, the horizontal output is not produced. 2002-04-01 TA1276AFG Pin No. Pin Name Function Input/Output Signal Interface Circuit 43 32fH VCO Connect the ceramic oscillator for horizontal oscillation. The oscillator to be used is CSBLA503KECZF30, made by Murata electronics. 10 kΩ 42 130 mVp-p 47 kΩ 10 kΩ 1 kΩ 43 DC: 5.9 V 1 kΩ 3 kΩ 44 NC None connect PIN. These pins connect to GND. 42 The GND pin of DEF block. SYNC. 47 output Output the synchronizing signal that was separated in the synchronous separation circuit. This pin is of the open collector system. Connect the pull-up resistor. 49 HD output 7.5 V 42 5V 200 Ω 47 GND None connect PIN. These pins connect to GND. (1) When BUS HD-OUT =0 Output the HD pulse (pulse duration: 1 µs) together with AFC. This pin also serves as the external input pin that accepts BPP (black peak detection stopping pulse) signal. DC (1) 42 1 kΩ 48 NC 30 kΩ 200 Ω HD 5V 1 µs Ext BPP Ext. BPP 6.5 V 46 DEF GND 300 Ω 45 0V BPP TH: 1.0 V 49 5 kΩ 45 AFC filter Connect the filter for horizontal AFC. The frequency of the horizontal output varies depending on the voltage at this pin. (2) When BUS HD-OUT =1 When AKB mode is ON, the pulse which covers AKB reference period is output. HD (2) 5V 0V 9 2002-04-01 TA1276AFG Pin No. Pin Name Function Input/Output Signal Interface Circuit 42 500 Ω 50 V-Sep. Connect the filter separating the vertical synchronization. 51 NC None connect PIN. These pins connect to GND. 50 DC6.4 V 57 The pin through which the composite video signal or Y signal is input. Input via clamp capacitor. 52 2.5 V 1 kΩ 53 Chroma GND The GND pin of the chroma processing block. GND 6 kΩ 18 kΩ Y1/SYNC input 30 kΩ 52 1 kΩ 1 Vp-p Chroma input Burst level: 300 mVp-p 1 kΩ 54 2.5 V 10 kΩ 54 The pin through which the chroma is input. Input the chroma signal that was subjected to Y/C separation. 10 kΩ 57 2.5 V GND 55 NC None connect PIN. These pins connect to GND. 56 NC None connect PIN. These pins connect to GND. 57 VCC1 (5 V) The VCC of the chroma and I2C Bus blocks. Connect 5 V (typ.) 10 2002-04-01 TA1276AFG Pin Name Function Input/Output Signal Interface Circuit 57 600 Ω Pin No. 1 kΩ 60 NC None connect PIN. These pins connect to GND. 3 kΩ DC 58 2 kΩ 58 APC filter Connect APC filter demodulating the chroma. The oscillation frequency of VCXO varies depending on the voltage at this pin. 57 Connect X’tal. In the case of series capacity, the oscillation frequency (f0) can be changed. In the 61 M PAL X’tal case of parallel capacity, the changeable range of 59 3.58 MHz frequency can be X’tal changed. R 62 4.43 MHz X’tal DC 4.0 V 90 mVp-p 500 Ω R Pin 62 1.5 kΩ Pin 61 2.5 kΩ Pin 59 2.5 kΩ 3 kΩ 62 61 59 1H DL control 5 kΩ 42 8.4 V: PAL 4.3 V: SECAM 0 V: NTSC 500 Ω 63 89 kΩ 63 Outputs the result of whether the signal is PAL, SECAM or NTSC. Connect the output to the 1H DL IC. In the case of discrimination between white or black, the voltage just before that is retained. The voltage immediately after turning-on is not fixed. 30 kΩ 64 400 µF 1 kΩ 64 V/I output Outputs R-Y (V) or Q signal. It includes LPF that can remove carrier. The chroma signal that routed ACC and TOF circuits (before demo input) can be monitored by pulling up this pin at 10 kΩ. 1 kΩ 57 11 DC 2.5 V Rainbow color bar : 360 mVp-p 2002-04-01 TA1276AFG Pin No. Pin Name Function Interface Circuit Input/Output Signal 1 kΩ 57 None connect PIN. These pins connect to GND. 30 kΩ 66 NC DC 2.5 V 65 Rainbow color bar : 360 mVp-p 400 µF 1 kΩ 65 U/Q output Outputs B-Y (U) or I signal. It includes LPF that can remove carrier. 57 1 Vp-p 68 NC 300 Ω 67 2V 1 mA 67 Y1 output Outputs the Y signal that routed the fsc TRAP (TRAP can be turned on or off with bus.) and the Y delay line circuit. None connect PIN. These pins connect to GND. GND SECAM control When PAL/NTSC 4.0 V 500 Ω When SECAM 0.75 V 69 71 NC 42 8.3 V 4.8 V 200 Ω 2.5 V 70 8 kΩ Outputs SCP (sand castle pulse). The output signal consists of clamp pulse, horizontal 70 SCP output blanking pulse, and vertical blanking. The minimum load resistance is 3 kΩ. 200 Ω 10 kΩ 69 The input/output pin that is used to control the SECAM demodulation IC. When current stronger than 250 µA flows from this pin, that is recognized as SECAM. 2 kΩ 42 None connect PIN. These pins connect to GND. 12 GND 2002-04-01 TA1276AFG 72 fsc output Function Outputs oscillation waveform of VCXO. When 3.58 NTSC killer-off this pin voltage sets 3.2 V. When B/W or other systems killer-off, this pin voltage sets 1.4 V. Input/Output Signal Interface Circuit 57 200 Ω Pin Name DC 3.58 NTSC : 3.2 V B/W or Others system : 1.4 V 200 Ω 72 1 mA Pin No. AC 0.6 Vp-p 17 SENSE 73 input This pin is to sense IK voltage feed-back from a CRT Drive circuit. 74 R S/H The same as pin 31 and 32. 75 NC None connect PIN. These pins connect to GND. SENSE R G B 1.5 V 500 Ω 73 The same as pin 31 and 32. DC 7 10 kΩ 77 NC Color the filter detecting the color limit. 76 None connect PIN. These pins connect to GND. DC 2 kΩ Color limiter 5 V 30 kΩ 76 5 kΩ 78 Y2 input The pin through which B-Y (V)/I and R-Y (U)/Q signals are input. Input via clamp capacitor. 5 kΩ 5 kΩ 7 1 Vp-p (both signals) 1 kΩ 1 kΩ 78 6.3 V GND 79 NC None connect PIN. These pins connect to GND. 13 2002-04-01 TA1276AFG Bus Control Map Write Mode Slave Address: 88H (10001000) Sub Address D7 MSB 00 P-MUTE D6 D5 D4 D3 D2 D1 D0 LSB UNI-COLOR 01 BRIGHTNESS Preset MSB LSB 1000 0000 1000 0000 02 COLOR Y-MUTE 1000 0000 03 TINT YM-SW 1000 0000 04 SHARPNESS YNR 1000 0000 05 RGB BRIGHTNESS WPS L 1000 0000 1000 0000 06 HI BRT RGB CONTRAST 07 SUB COLOR COLOR γ CLT 1000 0000 08 SUB CONTRAST Y-γ CURVE FLESH 1000 0000 09 G (R) DRIVE DR-SW 1000 0000 0A B DRIVE CDE 1000 0000 H-BLK 1000 0000 0B HORIZONTAL POSITION HV-SepL V-OFF 0C R CUT OFF 1000 0000 0D G CUT OFF 1000 0000 0E B CUT OFF 1000 0000 0000 0000 TX-ACL 0000 0000 VSM-PB 0000 0000 0F R-Y PHASE 10 11 R/B GAIN COLOR SYSTEM P/N-ID VSM PHASE DC RESTORATION POINT 13 BLACK STRETCH POINT SHR-TRACKING BB SW VSM GAIN 12 14 G/B GAIN TEST G-Y PHASE OSD-SL OS-ACL APACON PEAK f0 DC RESTORATION RATE APL VS BSP RGB-γ B.L.C. Y-γ PNT B.S.G. DC REST. LIMIT 0000 0000 VSM-H.PB FREQ 0000 0000 B.D.L. 0000 0000 BS-ARE 15 DYNAMIC ABL POINT DYNAMIC ABL GAIN AKB MODE 0000 0000 16 ABL POINT ABL GAIN RGB OUT MODE 0000 0000 17 HD-OUT V-BLK VERTICAL FREQUENCY VERTICAL POSITION 0000 0000 18 Y-DL C-TRAP TOF f0 TOF-Q 0000 0000 Read Mode Slave Address: 89H (10001001) D7 0 PORSET 1 N-DET D6 D5 D4 COLOR SYSTEM RGBOUT Y1-IN D3 X’tal IQ-IN Y2-IN 14 D2 D1 D0 V-FREQ V-STD H-LOCK H-OUT VP-OUT IK-IN 2002-04-01 TA1276AFG Bus Control Feature Write Mode Item Explain Preset P-MUTE Picture mute SW; (0): OFF, (1): ON ON UNI-COLOR Uni-color adjustment; −18dB to 0dB Center BRIGHTNESS Brightness adjustment (including sub adjustment); −40 IRE to +40 IRE Center COLOR Color adjustment; −20dB (color mute) to +4dB 0dB Y-MUTE Y mute SW; (0): ON, (1): OFF ON TINT Hue adjustment; −32° to +32° 0° TM-SW Half-tone SW (YUV input); (0): OFF, (1): ON OFF SHARPNESS Sharpness adjustment; −20dB to +14dB +8dB YNR Y Noise Reduction SW; (0): OFF, (1): ON OFF RGB BRIGHTNESS RGB Brightness Adjustment; −20 IRE to +20 IRE 0 IRE WPS L White Peak Suppression Level; (0): 130 IRE, (1): 110 IRE HI BRT High-bright color; (0): OFF, (1): ON RGB CONTRAST RGB Contrast; −18dB to 0dB SUB COLOR Sub-color; −4dB to 0dB to +3dB 0dB COLOR γ Color γ correction point; (00): OFF, (01): 0.2 Vp-p, (10): 0.4 Vp-p, (11): 0.6 Vp-p OFF CLT Color Limiter Level; (0): 1.8 Vp-p, (11): 2.2 Vp-p SUB CONTRAST Sub-contrast adjustment; −3dB to +3dB 0dB Y-γ CURVE Y-γ curve switching; (00): OFF, (01): −2.5dB, (10): −5.6dB, (11): −7dB OFF FLESH Flesh color; (0): OFF, (1): ON OFF G (R)/B DRIVE R (G)/B drive gain adjustment; −5dB to 0dB to +3dB DG-SW Drive gain base axis switching; (0): G, (1): R CDE Color Detail Enhancer; (0): ON (foced OFF when sharpness go through), (1): OFF ON HORIZONTAL POSITION Horizontal position adjustment; −3 µs to +3 µs 0 µs HV-SepL Sync separation level; (from SYNC TIP) (0): 35%, (1): 40% 35% V-OFF Vertical output SW; (0): ON, (1): OFF ON H-BLK Horizontal blanking SW; (0): ON, (1): OFF ON R/G/B CUTOFF R/G/B cut-off adjustment; • When AKB-OFF: RGB output 2 V to 2.5 V to 3 V • When AKB-ON: SENS input 1 Vp-p to 1.5 Vp-p to 2 Vp-p (±5 IRE) R-Y PHASE R-Y relative phase switching; (00): 90°, (01): 92°, (10): 94°, (11): 112° 90° R/B GAIN R/B relative amplitude switching; (00): 0.56, (01): 0.68, (10): 0.79, (11): 0.86 0.56 G/B GAIN G/B relative amplitude switching; (00): 0.3, (01): 0.34, (10): 0.4, (11): 0.45 0.3 G-Y PHASE G-Y relative phase switching; (00): 236°, (01): 240°, (10): 244°, (11): 253° 15 130 IRE OFF −18dB 1.8 Vp-p 0dB (40h) G Center (80h) 236° 2002-04-01 TA1276AFG Item Explain Preset Color system; System COLOR SYSTEM (000): NTSC (001): NTSC (010): NTSC (011): PAL (100): PAL (101): SECAM (110): MULTI (111): Trinorma X’tal Color difference mute Color difference input TINI control 3.58 3.58 4.43 4.43 (N) M 4.43 3.58/4.43 3.58/M/N Forced OFF Forced OFF Forced OFF Forced OFF Forced OFF Forced OFF Forced OFF Forced OFF I/Q U/V U/V U/V U/V U/V U/V U/V Enable Enable Enable Enable Enable Enable Enable Enable NTSC (000) P/N ID PAL/NTSC ident sensitivity switching; (0): LOW (when digital comb filter used), (1): Normal LOW BB SW Blue Back SW; (0): OFF, (1): ON OFF OSD-SL OSD peak suppressing level switching; (0): 96 IRE, (1): 76 IRE OS-ACL OSD ACL SW; (0): ON, (1): OFF TX-ACL RGB ACL SW; (0): Gain 1/2, (1): Normal Gain1/2 VSM PHASE VSM output phase switching; (00): −40 ns, (01): −20 ns, (10): 0 ns, (11) +20 ns −40 ns VSM GAIN VSM output gain switching; (00): 0dB, (01): −6dB, (10): −9dB, (11): OFF 0dB APACON PEAK f0 Apacon peak frequency switching; (000): Through (apacon off), (001): 4.0 MHz, (010): 3.3 MHz, (011): 2.5 MHz, (100): Through (apacon off), (101): 13 MHz, (110): 10 MHz, (111): 8 MHz (000) Through VSM PB VSM output horizontal parabolic modulation SW; (0): Parabolic modulation OFF, (1): ON (nearby sharpness −3dB) DC RESTORATION POINT DC restoration start point; (000): 0% to (111): 42% DC RESTORATION RATE DC restoration rate; (000): 100% to (111): 130% 100% DC REST. LIMIT DC restoration limit point; (APL) (00): 100%, (01): 87%, (10): 73%, (11): 60% 100% BLACK STRETCH POINT (BSP) Black stretcher start point; When APL 0% (000): 22 IRE to (111): 56 IRE 22 IRE APL VS BSP (AVS) APL level vs. black stretcher start point; (00): 0dB to (11): 1.5dB, BSP + APL × BSP × AVS Y-γ PNT Y-γ point switching; (0): 100 IRE, (1): 95 IRE VSM-H. PB FREQ VSM output horizontal parabolic frequency; (00): 15.7 kHz, (01): 24.8 kHz, (10): 31.5 kHz, (11): 33.75 kHz SHR-TRACKING Sharpness tracking; (00): HIGH, (11): LOW TEST Test mode; (0): NORMAL (1): Test mode (for factory test) Switched by sub-address 17H <during gate-pulse> D2 (0): during V-BLK, (1): NORMAL Y/RGB smoothing OFF, Monitor of DAC at HD output 96 IRE ON Parabolic modulation OFF 0% 0dB 100 IRE HIGH NORMAL RGB-γ RGB-γ SW; (0): OFF, (1): ON OFF B.L.C. Block level automatic correction (priority over black stretcher); max 7.5 IRE (0): OFF, (1): ON OFF B.S.G. Black stretcher gain SW; (0) ON, (1): OFF ON B.D.L. Black detection SW; (0): 3 IRE, (1): 0 IRE 3 IRE BS-ARE Black area reinforcement SW; For wide TV (when using time axis compression IC) (0): ON, (1): OFF ON DYNAMIC ABL POINT Dynamic ABL detection voltage; (000): min to (111): max min 16 2002-04-01 TA1276AFG Item Explain Preset DYNAMIC ABL GAIN Dynamic ABL sensitivity; (000): min to (111): max AKB MODE AKB MODE; Only black level (00): AKB OFF + S/H LOW, (01): AKB OFF + Cutoff BUS (10): AKB ON + I-DET NORMAL, (11): AKB ON + I-DET × 3 ABL POINT ABL detect voltage; (000): min to (111): max min ABL GAIN ABL GAIN; (000): min to (111): max min RGB OUT MODE RGB output mode SW; (00): NORMAL, (01): Only R, (10): Only G, (11): Only B NORMAL HD-OUT HD output SW; (0): HD output, (1): AKB period pulse HD output V-BLK Vertical Blanking SW; (0): ON, (1): OFF VERTICAL FREQUENCY Vertical Frequency; (000): AUTO (50, 60 Hz), (001): AUTO (50, 60 Hz/V MASK OFF), (010): 60 Hz, (011): 60 Hz (V MASK OFF), (100): Forced 262.5H, (101): Forced 263H, (110): Forced 312.5H, (111): Forced 313H, When (100), (101), (110), (111): AFC Free-run VERTICAL POSITION Vertical position; (000): 0H to (111): 7H (1H STEP) Y-DL Y-DL SW; (0) OFF, (1): ON (+80 ns) OFF C-TRAP Chroma Trap SW; (0): OFF, (1): ON OFF TOF-f0 Selectable TOF Peak Frequency; (000): 0.8fsc + TOF OFF to (111): 1.5fsc TOF-Q Selectable TOF Q; (000): 0.6 to (111): 1.2 17 min (00) AKB OFF + S/H LOW ON (000) AUTO 0H TOF OFF 0.6 2002-04-01 TA1276AFG Delay Time From Y1 Input (PIN 52) to Y1 Output (PIN 67) Color Trap Y-DL Delay Time B/W OFF ON 295 ns 375 ns OFF OFF OFF ON ON 295 ns (4.43) 295 ns (3.58/M/N) 375 ns (4.43) 375 ns (3.58/M/N) ON OFF OFF ON ON 295 ns (4.43) 310 ns (3.58/M/N) 375 ns (4.43) 390 ns (3.58/M/N) OFF ON 495 ns 575 ns PAL/NTSC SECAM Read Mode Characteristic Explain PORSET Power On Reset; (0): RESISTER PRESET, (1): NORMAL COLOR SYSTEM Color system; Receiving system (judgement of ID ON/OFF) (00): B/W, (01): SECAM, (10): PAL, (11): NTSC X’tal X’tal Mode; (00): , (01): 4.43 (N), (10): M, (11): 3.58 V-FREQ Vertical frequency; (0): 50 Hz, (1): 60 Hz V-STD Vertical Standard ident; (0) NON-STANDARD, (1): STANDARD H-LOCK Horizontal Lock ident; (0): LOCK, (1): UN-LOCK N-DET Noise ident result; (0): FEW, (1): MANY RGBOUT, Y1-IN, IQ-IN, Y2-IN, H-OUT, VP-OUT Self-ident result; (0): NG, (1): OK IK IN IK input ident result; (0): NG, (1): OK 18 2002-04-01 TA1276AFG 2 I C Bus Transmission/Receiving Slave Address: 88H A6 A5 A4 A3 A2 A1 A0 W/R 1 0 0 0 1 0 0 0/1 Start/Stop Condition SDA SCL S P Start condition Stop condition Bit Transmission SDA SCL SDA is not allowed to changed. SDA is not allowed to changed. Confirmation Response SDA from Transmitter High impedance at 9th bit SDA from Receiver SCL from Master High impedance S 1 Low impedance only at 9th bit 8 19 9 2002-04-01 TA1276AFG Data Transmit Format 1 S Slave address 0 A Sub address 7 bit A Transmit data 8 bit MSB S: Start condition A P 8 bit MSB A: Acknowledge MSB P: Stop condition Data Transmit Format 2 S Slave address 0 A Sub address A ------ A Transmit data 1 Sub address A A ------ Transmit data n A P Data Receive Format S Slave address 1 A Receive data 01 7 bit A Transmit data 02 A P 8 bit MSB MSB At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave. The STOP condition is generated by the master. Optional Data Transmit Format: Automatic Increment Mode S Slave address 0 A 1 7 bit MSB Sub address A Transmit data 1 7 bit MSB ------ 8 bit MSB Transmit data n A P 8 bit MSB In this transmission method, data is set on automatically incremented sub-address from the specified sub-address. Purchase of TOSHIBA I2C components conveys a license under the Phillips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C standard Specification as defined by Phillips. 20 2002-04-01 TA1276AFG Pin 41 H-out (mode SW) You can select the Double Scan Mode (external CP (clamping pulse) input mode), by connecting Pin 41 to DEF VCC. (the threshold of pin 23: 8.7 V = DEF VCC − 0.3 V) When Double Scan Mode, function of Pin 38 and 40 are changed. • Normal Scan (internal CP) Mode: Pin 41 H-out The function of Pin 40 is curve correction input, that of Pin 38 is FBP (flay back pulse) input. The input signals of Y2, U/I and V/I inputs (pin 1, 2 and 3), Analog OSD inputs (pin 18, 19 and 20), Analog RGB inputs (pin 22, 24 and 25) are clamped of the internal CP based on the Y1/Sync input (pin 52). • Double Scan (external CP input) Mode: Pin 41 H-out The function of Pin 40 is EXT/BPP (Note 2) input, that of Pin 38 is H/V BLK (blanking) input. The input signals of Y2, U/I and V/I inputs (pin 1, 78 and 80), Analog OSD inputs (pin 18, 19 and 20), Analog RGB inputs (pin 22, 24 and 25) are clamped of the external CP based on Pin 40. In case of Double Scan Mode, bus “V-BLK” should be set (1); OFF. Terminal Functions Mode Normal Scan Mode (internal CP) Double Scan Mode (external CP input) Pin 41 H-out DEF VCC (9 V) Pin 40 Curve correction signal input EXT CP/BPP input Pin 38 FBP input (for AFC-2 detection, H BKL) H/V BLK input (for RGB H/V BLK, AKB) Clamping by internal CP (based on pin 52) Clamping by external CP (based on pin 40) Pin No. Pin 1, 78, 80 Pin 18, 19, 20 Pin 22, 24, 25 Pin 52 Normal scan; Y/Sync signal input Pin 49 Normal scan; HD pulse output (based on pin 52) Pin 29 Normal scan; VP output (based on pin 52) Note 2: BPP: Black Peak detection stopping Pulse 21 2002-04-01 TA1276AFG Maximum Ratings (Ta = 25°C) Characteristics Supply voltage Input terminal voltage Symbol Rating Unit VCCmax 12 V einmax 9 Vp-p 2500 mW PD Power dissipation (Note 3) Power dissipation reduction rate 1/θja 20.0 mW/°C Operating temperature Topr −20 to 70 °C Storage temperature Tstg −55 to 150 °C Note 3: Refer to the figure below. (with device mounted on a PCB whose dimensions are 114.3 mm 76.2 mm × 1.6 mm and whose surface is 20% copper. mount the device on a PCB of at least these dimensions and whose surface is at least 20% copper.) Note 4: Short pins 9 and 10 together on the PCB. Power dissipation PD (mW) 2500 1600 25 70 150 Ambient temperature Ta (°C) Figure 1 Power Dissipation Reduction Against Higher Temperature 22 2002-04-01 TA1276AFG Recommended Condition In Use Characteristic Supply Voltage Y1/Sync, Y2 Input Signal Level Description Min Typ. Max Pin 65 4.3 5.0 5.3 Pin 42, Pin 17, Pin 7 8.7 9.0 9.3 White: 100%, including, synchronization (synchronization: minus) 0.9 1.0 1.1 When TOF OFF (burst level) 200 300 400 When TOF ON (burst level) 100 200 300 B:C = 1:1 300 mVp-p When OSD input (DC coupling) 4.2 5.0 V When analog RGB input (AC coupling) 0.4 0.5 0.6 Chroma Input Signal Level I/Q, U/V Input Level OSD/Analog RGB Input Level Analog RGB Input Level 0.4 0.5 0.6 FBP Width 11 12 13 FBP Input Current 1.5 RGB Output Current 1.0 2.0 H. OUT Output Current 3.0 10.0 Pin 47 Input Current 0.5 1.0 Unit V Vp-p mVp-p Vp-p µs mA Electrical Characteristics (VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25°C, unless otherwise specified) Supply Current Symbol Test Circuit VCC1 ICC1 34.0 40.5 50.0 VCC2 ICC2 33.0 40.0 49.0 VCC3 ICC3 32.0 39.5 48.0 DEF VCC ICC4 9.5 12.8 18.0 Pin Name Min 23 Typ. Max Unit mA 2002-04-01 TA1276AFG Terminal Voltage Pin No. Pin Name Symbol Test Circuit Min Typ. Max 1 V/I INPUT V1 4.8 5.0 5.2 2 BLACK PEAK HOLD V2 4.2 4.4 4.6 3 APL DET V3 4.8 5.0 5.2 5 VM OUTPUT V5 3.2 3.5 3.8 8 ABCL INPUT V8 5.85 6.10 6.35 18 OSD/ANALOG R INPUT V18 3.3 3.6 3.9 19 OSD/ANALOG G INPUT V19 3.3 3.6 3.9 20 OSD/ANALOG B INPUT V20 3.3 3.6 3.9 21 Ys1 V21 0 0.1 0.3 22 ANALOG R INPUT V22 3.5 3.8 4.1 24 ANALOG G INPUT V24 3.5 3.8 4.1 25 ANALOG B INPUT V25 3.5 3.8 4.1 27 Ys2 V27 0 0.1 0.3 40 CURVE CORRECTION V40 4.3 4.5 4.7 43 32fH VCO V43 5.4 5.7 6.0 49 SYNC. IN V49 2.60 2.85 3.10 50 V SEP. V50 5.7 6.1 6.5 52 Y1 INPUT V52 2.7 3.0 3.3 54 CHROMA INPUT V54 2.2 2.5 2.8 59 3.58 MHz X’tal V59 3.7 4.0 4.3 61 M PAL X’tal V61 3.7 4.0 4.3 62 4.43 MHz X’tal V62 3.7 4.0 4.3 64 V/I OUTPUT V64 2.2 2.5 2.8 65 U/Q OUTPUT V65 2.2 2.5 2.8 67 Y1 OUTPUT V67 1.7 2.0 2.3 69 SECAM CONT. V69 3.7 4.0 4.3 76 COLOR LIMITER V76 6.6 6.9 7.2 78 Y2 INPUT V78 6.1 6.3 6.5 80 U/Q INPUT V80 4.8 5.0 5.2 24 Unit V 2002-04-01 TA1276AFG AC Characteristic Video Section Characteristics Y2 input dynamic range Black level shift Black stretching amplifier maximum gain Black stretching start point (1) Black stretching start point (2) D.ABL detection voltage D.ABL sensitivity Black level correction Y γ correction point Y γ correction gain Black peak detection level Symbol Test Circuit Test Condition Min Typ. Max Unit DR53 0.7 1.0 1.5 Vp-p VB −5 0 5 VB3 35 42 49 GBS 1.30 1.40 1.50 PBST1 17 22 27 PBST2 51 56 61 PBS1 0 4 PBS2 14 20 26 ∆V001 30 50 70 ∆V010 90 110 130 ∆V100 220 240 260 SDAMIN 0 0.04 SDAMAX 0.280 0.295 0.310 BLC 6.5 7.0 7.5 Pγ0 95 100 105 Pγ100 2 5 8 Gγ01 −3.5 −2.5 −1.5 Gγ10 −5.8 −4.8 −3.8 Gγ11 −7.5 −6.5 −5.5 ∆VBP −15 0 15 ADT100 0.9 1.0 1.1 1.25 1.35 1.45 −3 0 3 42 47 51 59 63 67 71 75 79 83 87 91 DC restoration gain DC restoration start point DC restoration limit point Sharpness peak frequency Sharpness control range Sharpness control center gain (Note V1) (Note V2) (Note V3) (Note V4) (Note V5) (Note V6) (Note V7) mV IRE IRE (Note V8) (Note V9) V/V IRE VDT0 VDT48 PDTL60 PDTL73 PDTL87 PDTL100 95 99 103 FAPL01 3.3 4.2 5.1 FAPL10 2.6 3.3 4.0 FAPL11 2.0 2.5 3.0 FAPH01 11.2 14.5 17.4 FAPH10 9.5 11.9 14.3 FAPH11 6.5 8.1 9.7 GMAXL 11 14 17 GMINL −11 −8 −5 GMAXH 11 14 17 GMINH −9 −6 −3 GCENL 7 10 13 GCENH 7 10 13 (Note V10) (Note V11) dB mV times ADT130 % % MHz (Note V12) 25 mV IRE times dB dB 2002-04-01 TA1276AFG Characteristics YNR characteristic SRT response to 2T pulse input VSM peak frequency VSM gain VSM parabolic modulating gain Threshold voltage of VSM muting Response time for VSM high speed muting Between Y2 input and R output delay time Symbol Test Circuit GYL GYH TSL1 Test Condition (Note V13) TSRTL TSH1 TSRTH FVL When normal mode FVH When double scan mode GVL00 Min Typ. Max −11 −8 −5 −9 −6 −4 100 120 140 40 60 80 160 180 200 20 30 45 7 9 11 12.5 16 19.5 11 13 15 GVL01 −7.5 −6 −4.5 GVL10 −11 −9 −8 GVL11 −∞ −35 −29 GVH00 11 13 15 GVH01 −7.5 −6 −5 GVH10 −11 −9 −7 GVH11 −∞ −32 −26 GVRL −4 −3 −2 GVLL −4 −3 −2 GVRH −4 −3 −2 GVLH VSR36 TVML1 (Note V14) Unit dB ns MHz (Note V15) (Note V16) −4 −3 −2 0.65 0.75 0.85 0 50 100 TVML2 0 50 100 TVML3 0 50 100 TVML4 0 50 100 TVMH1 0 50 100 TVMH2 0 50 100 TVMH3 0 50 100 TVMH4 0 50 100 TY2RD When through 26 36 46 TY2RL When normal mode 200 220 240 TY2RH When double scan mode 85 100 115 Pin 21, Pin 27 (Note V17) 26 dB dB V ns ns 2002-04-01 TA1276AFG Chroma Section Characteristics ACC characteristic Symbol Test Circuit F600 F300 F30 Typ. Max 0.300 0.355 0.410 0.300 0.355 0.410 0.290 0.343 0.400 0.090 0.113 0.135 A 0.90 0.97 1.05 es+ 2.0 3.0 4.0 es− −6.0 −4.3 −2.0 β3 0.70 1.20 1.70 β4 0.70 1.20 1.70 βM 0.70 1.20 1.70 f3PH 250 500 2000 f3HH 250 500 2000 f3PL −2000 −500 −250 f3HL −2000 −500 −250 f4PH 250 500 2000 f4HH 250 500 2000 f4PL −2000 −500 −250 f4HL −2000 −500 −250 fMPH 250 500 2000 fMHH 250 500 2000 fMPL −2000 −500 −250 fMHL −2000 −500 −250 f03 f0 = 3.579545 MHz −200 0 200 f04 f0 = 4.433619 MHz −200 0 200 f0M f0 = 3.575611 MHz −200 0 200 f3c When 3.58 NTSC 0.54 0.78 0.96 f4c When 4.43 PAL 0.52 0.72 0.90 fMc When M-PAL 0.54 0.78 0.96 V1a When 3.58 NTSC 2.80 3.20 3.50 V1b Except for 3.58 NTSC 1.15 1.55 1.75 Q Axis vBN 290 355 415 I Axis vRN 290 355 415 vRN/vBN 0.94 1.00 1.15 Q Axis θBN 29.0 33.0 37.0 I Axis θRN 118.0 123.0 126.0 Relative θBRN 87.0 90.0 93.0 B-Y vBP 290 355 415 R-Y vRP 290 355 415 vRP/vBP 0.94 1.00 1.10 B-Y θBP −5.0 0.0 3.0 R-Y θRP 85.0 90.0 93.0 Relative θBRP 87.0 90.0 93.0 APC frequency control sensitivity APC pull-in/hold range 3.58 MHz/4.43 MHz free run frequency fsc output amplitude fsc output DC level IQ color difference signal output level IQ signal demodulation ratio IQ demodulation angle UV color difference signal output level UV signal demodulation ratio UV demodulation angle UV demodulation angle (Note C1) Min F10 Sub color control characteristic IQ demodulation angle Test Condition (Note C2) (Note C3) Unit Vp-p times dB Hz/mV Hz Hz Vp-p V When B:C = 1:1 signal R-Y/B-Y I-Q When B:C = 1:1 signal R-Y/B-Y 27 mVp-p ° ° mVp-p ° ° 2002-04-01 TA1276AFG Characteristics Residual carrier level Symbol Test Circuit vBNe vRNe vBPe Test Condition fsc level Min Typ. Max 1.90 4.00 1.90 4.00 1.90 4.00 vRPe 1.90 4.00 vBHNe 1.90 4.00 vRHNe 1.90 4.00 vBHPe 1.90 4.00 vRHPe 1.90 4.00 VBN B-Y output 1.80 2.15 2.50 VRN R-Y output 1.90 2.24 2.60 VBP B-Y output 1.80 2.15 2.50 VRP R-Y output 1.90 2.25 2.60 PAL VDLP 8.00 8.30 8.60 NTSC VDLS 4.00 4.30 4.60 SECAM VDLN 0.01 0.50 0.20 CP SCH 7.50 7.80 8.10 HD SCM 3.95 4.20 4.45 VD SCL 2.25 2.50 2.75 SEN 3.70 4.00 4.30 SEP 3.70 4.00 4.30 SES 0.40 0.70 1.00 vNCL 3.80 5.83 7.87 vNCH 2.52 3.88 5.24 vNBL 3.73 5.74 7.75 vNBH 2.44 3.75 5.06 vPCL 4.80 6.83 8.87 vPCH 3.52 4.88 6.24 vPBL 4.73 6.74 8.75 vPBH 3.44 4.75 6.06 GFH3 20.7 22.7 24.7 GFC3 20.2 22.2 24.2 GFL3 18.2 20.2 22.2 GFH4 19.1 21.1 23.1 GFC4 19.4 21.4 23.4 GFL4 18.8 20.8 22.8 Through GYs −1.21 0.00 1.06 Normal GYd −1.21 0.00 1.06 Double GYt −1.21 0.00 1.06 Y1 in to Y1 out frequency bandwidth GfY1 −4.0 −1.0 0.0 3.58 GTC3 −25 −20 4.43 GTC4 −25 −20 3.58 NTSC VD3 1.30 1.60 4.43 PAL VD4 1.30 1.60 Residual higher harmonics level 3.58 NTSC Color difference output DC voltage 4.43 NTSC 1HDL output DC level Sand castle pulse height SECAM output DC level NTSC ident sensitivity PAL ident sensitivity TOF characteristic Y1 in to Y1 out AC gain Trap filter gain Y1 input dynamic range fsc × 2 level Unit mVp-p mVp-p V Output from pin (Note C4) (Note C5) (Note C6) (Note C7) 20 Ɛog (output level/input level) 28 V V V mVp-p mVp-p dB dB dB dB Vp-p 2002-04-01 TA1276AFG Text Section Symbol Test Circuit GR GG GB GG/R GB/R R GfR G GfG B GfB Characteristics AC gain AC gain axial difference Output bandwidth Uni-color control characteristic Brightness control characteristic Brightness control sensitivity Min Typ. Max 2.95 3.30 3.70 2.95 3.30 3.70 2.95 3.30 3.70 0.94 1.00 1.06 0.94 1.00 1.06 25 30 25 30 25 30 vuMAX 0.59 0.66 0.74 vuCNT 0.34 0.39 0.44 vuMIN 0.09 0.11 0.13 ∆vu 14 15 16 VbrMAX 4.1 4.4 4.7 VbrCNT 3.25 3.55 3.85 VbrMIN 2.4 2.7 3.0 Gbr 5.7 6.6 7.5 Vwps1 2.75 2.95 3.15 2.30 2.50 2.70 2.10 2.26 2.42 −58 −49 −58 −49 −58 −49 0.45 0.50 0.55 0.45 0.50 0.55 0.65 0.85 1.05 0.3 0.8 1.3 0.3 0.8 1.3 White peak slice level Black peak slice level R Signal-to-noise ratio of RGB output VBPS N41 at −3dB point (Note T2) (Note T3) (Note T4) (Note T5) (Note T6) N42 B N43 GHT1 GHT2 VHT R VVR G VVG B VVB 0.3 0.8 1.3 R VHR 0.3 0.8 1.3 G VHG 0.3 0.8 1.3 B VHB 0.3 0.8 1.3 tdON 0.1 0.3 tdOFF 0.15 0.3 ∆VSU+ 2.0 2.5 3.0 ∆VSU− −3.8 −3.3 −2.8 V#41 2.25 2.50 2.75 V#42 2.25 2.50 2.75 V#43 2.25 2.50 2.75 ∆Vout 0 150 CUT+ 0.45 0.50 0.55 0.45 0.50 0.55 Half-tone ON voltage H-BLK pulse output level (Note T1) G Half-tone gain V-BLK pulse output level Vwps2 Test Condition Blanking pulse delay time Sub-contrast control range RGB output voltage RGB output voltage triaxial difference Cut-off voltage control range CUT− (Note T7) Pin 6 (Note T8) (Note T9) (Note T10) 29 Unit times MHz Vp-p dB V mV Vp-p V dB times V V V µs dB V mV V 2002-04-01 TA1276AFG Characteristics Drive adjustment control range Symbol Test Circuit DRG+ Min Typ. Max 2.35 2.85 3.35 DRG− −5.75 −5.00 −4.25 DRB+ 2.35 2.85 3.35 DRB− −5.75 −5.00 −4.25 DRR+ 2.35 2.85 3.35 DRR− −5.75 −5.00 −4.25 MURD 2.1 2.26 2.42 2.1 2.26 2.42 2.1 2.26 2.42 2.1 2.26 2.42 1.15 1.30 1.45 −5 −3 −1 −14.5 −13 −11.5 Output voltage of muting Output voltage of blue back MUGD BBR BBG BBB ACL1 ACL characteristic ABL point ABL gain RGB output mode ACB pulse phase/amplitude Test Condition (Note T11) (Note T12) Unit dB V V (Note T13) (Note T14) ACL2 ABLP1 0.12 0.17 0.22 ABLP2 0.04 0.09 0.14 ABLP3 −0.05 0.00 0.05 ABLP4 −0.15 −0.10 −0.05 ABLP5 −0.24 −0.19 −0.14 ABLP6 −0.34 −0.29 −0.24 (Note T15) ABLP7 −0.43 −0.38 −0.33 ABLP8 −0.50 −0.45 −0.40 ABLG1 −0.04 0.00 0.00 ABLG2 −0.09 −0.04 0.00 ABLG3 −0.24 −0.19 −0.14 ABLG4 −0.40 −0.35 −0.30 ABLG5 −0.56 −0.51 −0.46 ABLG6 −0.73 −0.68 −0.63 ABLG7 −0.90 −0.85 −0.80 ABLG8 −0.10 −0.92 −0.87 V43R 2.25 2.5 2.75 V42R 0.3 0.8 1.3 V41R 0.3 0.8 1.3 V43G 0.3 0.8 1.3 V42G 2.25 2.5 2.75 V41G 0.3 0.8 1.3 V43B 0.3 0.8 1.3 V42B 0.3 0.8 1.3 V41B 2.25 2.5 2.75 θACBR 1 θACBG 2 θACBB 3 VACBR 0.1 0.125 0.15 VACBG 0.1 0.125 0.15 VACBB 0.1 0.125 0.15 (Note T16) (Note T17) (Note T18) 30 Vp-p dB V V V H Vp-p 2002-04-01 TA1276AFG Characteristics IKR IKG IKB Typ. Max 1.45 1.65 1.85 1.45 1.65 1.85 1.45 1.65 1.85 γ1R 40 50 60 γ2R 60 70 80 ∆1R 0.75 1.50 2.25 ∆2R −0.75 0.00 0.75 ∆3R −4.05 −3.30 −2.55 γ1G 40 50 60 γ2G 60 70 80 ∆1G 0.75 1.50 2.25 ∆2G −0.75 0.00 0.75 ∆3G −4.05 −3.30 −2.55 γ1B 40 50 60 γ2B 60 70 80 ∆1B 0.75 1.50 2.25 ∆2B −0.75 0.00 0.75 ∆3B −4.05 −3.30 −2.55 GTXR 4.0 4.5 5.0 GTXG 4.0 4.5 5.0 GTXB 4.0 4.5 5.0 GTXG/R 0.94 1.00 1.06 GTXB/R 0.94 1.00 1.06 R GfTXR 25 30 G GfTXG 25 30 B GfTXB 25 30 R DR35 0.6 1.0 1.5 G DR34 0.6 1.0 1.5 B DR33 0.6 1.0 1.5 VTXWPSR 2.30 2.55 2.80 VTXWPSG 2.30 2.55 2.80 VTXWPSB 2.30 2.55 2.80 VBPSR 2.10 2.26 2.42 VBPSG 2.10 2.26 2.42 VBPSB 2.10 2.26 2.42 RGB γ correction characteristic Analog RGB gain Analog RGB gain triaxial difference Analog RGB input dynamic range Test Circuit Min IK input level Analog RGB bandwidth Symbol Analog RGB white peak slice level Analog RGB black peak limiter level Test Condition Pin 73 input level Unit V IRE dB IRE (Note T19) dB IRE (Note T20) at −3dB point (Note T21) (Note T22) 31 dB times dB Vp-p Vp-p V 2002-04-01 TA1276AFG Characteristics Symbol Test Circuit vuTXRMAX Test Condition Min Typ. Max 0.8 0.9 1.0 vuTXGMAX 0.8 0.9 1.0 vuTXBMAX 0.8 0.9 1.0 Unit vuTXRCNT 0.45 0.52 0.59 vuTXGCNT 0.45 0.52 0.59 vuTXBCNT 0.45 0.52 0.59 vuTXRMIN 0.10 0.12 0.14 vuTXGMIN 0.10 0.12 0.14 vuTXBMIN 0.10 0.12 0.14 ∆vuTXR 15.5 17.0 18.5 ∆vuTXG 15.5 17.0 18.5 ∆vuTXB 15.5 17.0 18.5 VbrTXMAX 3.3 3.5 3.7 VbrTXCNT 2.85 3.05 3.25 VbrTXMIN 2.45 2.65 2.85 Analog RGB brightness control sensitivity GbrTX 6.0 6.8 7.6 mV Analog RGB mode ON voltage VTXON 0.65 0.85 1.05 V TXACL1 −2 −1 −0.05 TXACL2 −6.5 −4.5 −2.5 −6.5 −4.5 −2.5 −16.5 −15.0 −13.5 4.1 4.8 5.4 4.1 4.8 5.4 RGB contrast control characteristic Analog RGB brightness control characteristic Text ACL characteristic Analog OSD gain Analog OSD gain triaxial difference Analog OSD band width Analog OSD white peak slice level Analog OSD black peak limiter level Analog OSD output DC voltage Analog OSD mode ON voltage TXACL3 TXACL4 GOSDR GOSDG (Note T23) (Note T24) (Note T25) Pin 27 (Note T26) (Note T27) GOSDB 4.1 4.8 5.4 GOSDG/R G/R 0.94 1.00 1.06 GOSDB/R B/R 0.94 1.00 1.06 GfOSDR 25 30 GfOSDG 25 30 GfOSDB 25 30 VOSD1R 1.80 2.00 2.20 VOSD1G 1.80 2.00 2.20 VOSD1B 1.80 2.00 2.20 VOSD2R 1.45 1.65 1.85 VOSD2G 1.45 1.65 1.85 VOSD2B 1.45 1.65 1.85 VOSD3R 2.10 2.26 2.42 VOSD3G 2.10 2.26 2.42 VOSD3B 2.10 2.26 2.42 VOSDDCR 2.3 2.5 2.7 VOSDDCG 2.3 2.5 2.7 VOSDDCB 2.3 2.5 2.7 VOSDON 2.05 2.30 2.55 at −3dB point (Note T28) (Note T29) (Note T30) Pin 21 32 Vp-p dB V dB times dB Vp-p V V V 2002-04-01 TA1276AFG Characteristics Symbol Test Circuit OSDACL1 OSDACL2 OSDACL3 OSDACL4 GCT Symbol Test Circuit Test Condition vuCYMAX vuCYCNT vuCYMIN ∆vuCY Min Typ. Max 0 0 −6.5 −4.5 −2.5 −16.5 −15 −13.5 −50 −45 dB Min Typ. Max Unit 1.5 1.8 2.13 0.85 1.0 1.2 0.24 0.29 0.355 14.0 15.5 17.0 vuCYMAX 1.18 1.4 1.68 vuCYCNT 0.73 0.86 1.04 vuCYMIN 0.076 0.090 0.108 ∆vuCY+ 3 4 5 ∆vuCY− −20 −18 −16 00 θR90 88 90 92 01 θR93 90 92 94 10 θR96 92 94 96 11 θ112 109 111 113 00 vR56/vB 0.55 0.58 0.61 01 vR68/vB 0.67 0.7 0.73 10 vR76/vB 0.78 0.81 0.84 11 vR84/vB 0.85 0.88 0.91 00 θG236 234 237 240 01 θG240 238 241 244 10 θG244 242 245 248 11 θG253 251 254 257 00 vG30/vB 0.275 0.300 0.325 01 vG325/vB 0.300 0.325 0.350 10 vG35/vB 0.325 0.350 0.375 11 Gv375/vB 0.350 0.375 0.400 OSD ACL characteristic Crosstalk of RGB inputs Test Condition (Note T31) Unit dB Color Difference Section Characteristics Color difference signal contrast control characteristic Color control characteristic R-Y relative phase R-Y relative amplitude G-Y relative phase G-Y relative amplitude Color difference half-tone gain Color γ characteristic R GHTRY G GHTGY B GHTBY (Note A2) 0.53 0.53 0.47 0.50 0.53 Vγ1 0.09 0.23 0.37 Vγ2 0.23 0.37 0.51 0.38 0.52 0.66 0.65 0.75 0.85 1.45 1.65 1.85 1.8 2.0 2.2 0.02 0.04 0.06 CLT0 CLT1 HBC1 (Note A3) (Note A4) (Note A5) (Note A6) 33 dB times 0.50 ∆γ Vp-p ° 0.50 dB times 0.47 Vγ3 Vp-p ° 0.47 Color limiter characteristic High bright color gain (Note A1) times Vp-p Vp-p times 2002-04-01 TA1276AFG Characteristics Max Base band tint control characteristic Min Flesh color characteristic Color difference signal input dynamic range Symbol Test Circuit θTRMAX θTBMAX θTRMIN Min Typ. Max R 29 33 37 B 29 33 37 R −37 −33 −29 θTBMIN B Fa33 DRR-Y DRB-Y GCD0 Color detail emphasis characteristic Phase shift at IQ → UV conversion Test Condition (Note A7) (Note A8) GCD1 θI → U θQ → V Symbol Test Circuit VVCO VHON23 T23 Pin 41 Unit ° −37 −33 −29 0.38 0.48 0.58 0.9 1.2 1.5 0.9 1.2 1.5 15.0 18.0 21.0 −15.0 0.0 31 33 35 31 33 35 Min Typ. Max Unit 3.1 3.4 3.7 V 4.7 5.0 5.3 V 38.5 40.5 42.5 % Vp-p Vp-p ° DEF Section Characteristics 32fH VCO oscillation start voltage Horizontal output start voltage Horizontal output duty cycle Test Condition DEF VCC Voltage fH050 Vertical freq.; Auto 15475 15625 15775 fH060 Vertical freq.; 60 Hz 15585 15734 15885 fHMIN 14700 15000 15300 fHMAX 16500 16700 16900 βH 180 230 280 VH23 2.7 3.0 3.3 VL23 0.15 0.30 SPH1 11.1 11.3 11.5 SPH2 0.35 0.45 0.55 SPH3 0.11 0.21 0.31 ∆H24 (Note D3) 2.3 2.5 2.7 V ∆HSFT (Note D4) 5.7 6.2 6.7 V CPS 2.8 2.9 3.1 V CPW 1.0 1.2 1.4 V Threshold of external clamp pulse input CPV30 Pin 40 3.3 3.6 3.9 V Threshold of external clamp mode switching CPMV23 Pin 41 8.5 8.7 8.9 V Horizontal output free-run frequency Variable range of horizontal output frequency Horizontal output frequency control sensitivity High level Horizontal output voltage Low level Horizontal output phase Curve correction characteristic Variable range of horizontal picture position Clamp pulse start phase Clamp pulse width Threshold of external black peak hold stopping pulse SPC gate pulse start phase SPC gate pulse width Hz Variable pin 45 voltage (Note D1) Pin 40 (Note D2) (Note D5) Hz Hz/ 0.1 V V V BPv17 Pin 49, at normal scan 0.9 1.1 1.3 BPv24 Pin 40, at doble scan 0.9 1.1 1.3 GPS 1.9 2.1 2.3 µs GPW 1.9 2.1 2.3 µs (Note D6) 34 2002-04-01 TA1276AFG Symbol Test Circuit HPS HPW50 HPW60 HD output start phase Characteristics Min Typ. Max Unit 4.6 4.8 5.0 µs 9.9 10.4 10.9 10.5 11.0 11.5 HDS 0.7 0.9 1.1 µs HD output pulse width HDW 0.7 0.9 1.1 µs HD output voltage VHD 4.5 4.8 5.1 V Threshold of AFC-2 detection VHBLK1 Pin 38, at normal scan 3.2 3.5 3.8 V Threshold of horizontal timing VHBLK2 Pin 38, at doble scan 3.2 3.5 3.8 V Threshold of blanking pulse VHBLK3 Pin 38, H/V blanking 0.8 1.1 1.4 V Vertical blanking pulse start phase VP50S1 46 48 50 µs Vertical blanking pulse stop phase VP50S2 23 H Vertical blanking pulse start phase VP60S1 46 48 50 µs Vertical blanking pulse stop phase VP60S2 21 H External blanking threshold current ABLK Pin 30 input current 150 300 400 µA Vertical output start voltage VON DEF VCC voltage 4.7 5.0 5.3 V Vertical output fV050 Vertical freq.; Auto 40 45 50 Free-run frequency fV060 Vertical freq.; 60 Hz 48 53 58 VVH 4.7 5.0 5.3 VVL 0.0 0.3 SPC horizontal blanking pulse start phase SPC horizontal blanking pulse pulse width Vertical output voltage Test Condition (Note D7) (Note D8) (Note D9) (Note D10) µs Hz Pin 29 V fPL1 224.5 fPH1 353 fPL2 224.5 fPH2 297 Vertical pull-in range (3) f50P 288.5 H Vertical pull-in range (4) f60P 288 H VR50S1 44 46 48 VG50S1 44 46 48 VB50S1 44 46 48 VR50S2 19 VG50S2 19 VB50S2 19 VR60S1 44 46 48 VG60S1 44 46 48 VB60S1 44 46 48 VR60S2 17 VG60S2 17 VB60S2 17 Vertical pull-in range (1) Vertical pull-in range (2) RGB vertical blanking pulse start phase (1) RGB vertical blanking pulse stop phase (1) RGB vertical blanking pulse start phase (2) RGB vertical blanking pulse stop phase (2) (Note D11) (Note D12) (Note D13) 35 H H µs H µs H 2002-04-01 TA1276AFG Test Conditions Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 15 SW 49 SW 50 SW 53 Video block common test conditions 1) SW 13: A, SW 18: ON, SW20: ON, SW 23: ON, SW33: A, SW34: A, SW35: A, SW37: A, SW38: A, SW39: A, SW46: ON, SW 51: B, SW 52: B 2) For testing, see the picture sharpness AC characteristics testing circuit diagram. After using the preset values to transmit the BUS control data, set ACB operation switching to ACB off (01). 3) Ensure the composite signal is always input to pin 52 (Y1/sync input). 1) Set the BUS control data to the preset value. 2) Connect pin 78 to an external power supply (PS) and observe pin 2. 3) Turn the Y mute off (1), turn the black stretch gain off (1), and set the black detect level to 0 IRE (1). 4) Increase the PS voltage from 5 V and measure the DC differential VB of pin 3 where the picture period (high period) of pin 2 goes low. 5) Set the black detect level to 3 IRE (0). 6) As in 4), measure the DC differential VB3 of pin 3. Video Block V1 Black Detect Level Shift C OFF C C Pin 3 VB.VB3 Pin 38 V2 Black Stretch Amp Maximum Gain ↑ ↑ A A 1) Set the BUS control data to the preset value. 2) Set SW50 to A (maximum gain) and input a 500 kHz sine wave to TP78. 3) Use pin 78 to adjust the signal amplitude to 0.1 Vp-p. 4) Turn the Y mute off (1), turn the black stretch gain off (1), and measure the amplitude VA of pin 3. 5) Turn the black stretch gain on (0) and measure the amplitude VB of pin 3. 6) Calculate the GBS using the following formula. GBS = VB ÷ VA 36 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 15 V3 Black Stretch Start Point (1) C SW 49 OFF SW 50 A SW 53 1) Set the BUS control data to the preset value. 2) Set SW50 to A (maximum gain), turn the Y mute off (1), and turn the black stretch gain off. 3) Connect pin 78 to an external power supply (PS), increase the voltage from V53, and plot the resulting change in voltage S1 of pin 3. 4) Next, turn the black stretch gain on (0), set the black stretch point 1 to the minimum (000), increase the PS voltage from V53 as in 3), and plot the resulting change in voltage S2 of pin 3. 5) Set the black stretch point 1 to the maximum (111), increase the PS voltage from V53 as in 3), and plot the change in voltage S3 of pin 3. 6) Use the diagram below to calculate the intersections VBST1 and VBST2 of S1, S2, and S3. Use the following formulas to calculate PBST1 and PBST2. PBST1 [(IRE)] = ((VBST1 [V] − V49 [V] ÷ 1.4 [V]) × 100 [(IRE)] PBST2 [(IRE)] = ((VBST2 [V] − V49 [V] ÷ 1.4 [V]) × 100 [(IRE)] Pin C S3 VBST2 S1 VBST1 S2 (asymptotic line) V49 Pin 37 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 15 V4 Black Stretch Start Point (2) C SW 49 ON SW 50 A SW 53 A 1) Set the BUS control data to the preset value. 2) Turn the black stretch gain off (1), turn the Y mute off (1), and turn the video mute off (0). Input the TG7 linearity to TP53, use pin 78 to adjust the amplitude as in the diagram, set unicolor to the center (1000000), and measure the resulting amplitude (V43) of pin 11 (R OUT). 3) Turn the black stretch gain on (0), connect pin 3 to an external power supply (PS), and measure pin 11 (R OUT). 4) When the black stretch start point 2 data are at the minimum (000), calculate as in the diagram the black stretch start point differential ∆V000 for when P is V49 (APL 0%) and for when P is V49 + 1.0 [V] (APL 100%). 5) Next, when the black stretch start point 2 data are maximum (111), calculate differential ∆V111 in the same way. 6) Calculate the following formulas. PBS1 = (∆V000/V43) × 100 PBS2 = (∆V111/V43) × 100 LINEARITY APL 100% 0.7 Vp-p ∆V*** APL 0% 0.3 Vp-p Pin 78 waveform Pin 11 (R 38 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 15 V5 D.ABL Detect Voltage C SW 49 OFF SW 50 A SW 53 C 1) Set the BUS control data to the preset value. 2) Turn the Y mute off (1), set the ABL sensitivity to the minimum (000), set the D.ABL sensitivity to the maximum (111), and turn the black stretch gain off (1). 3) Connect pin 8 to an external power supply (PS) and decrease the voltage from 6.5 V. 4) Repeat 3) when the D.ABL detect voltage bus data are 000, 001, 010, and 100 respectively. Measure PS voltages V000, V001, V010, and V100 when the picture period of pin 3 changes to low. (enlarge the range before measuring.) 5) Next, calculate the ∆V001, ∆V010, and ∆V100 voltage differentials from V000 and V001, V010, and V100. ∆V*** = V000 − V001 (V010, V100) Pin 3 Undetected Pin 3 Detected Pin 38 39 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 15 SW 49 SW 50 SW 53 1) Set the BUS control data to the preset value. 2) Turn the Y mute off (1), turn the black stretch gain off (1), and connect pin 8 to an external power supply. 3) With the D.ABL detect voltage at the minimum (000), plot the voltage characteristics of pin 3 in relation to the voltage of pin 8 when D.ABL sensitivity is at the minimum (000) and the maximum (111). 4) From the diagram, calculate the SDAMIN and SDAMAX gradients. SDAMIN, SDAMAX = ∆Y/∆X Pin 3 10% V6 D.ABL Sensitivity C ON A C 100% ∆Y 10% Pin 8 ∆X V7 Black Level Compensation ↑ OFF ↑ 1) Set the BUS control data to the preset value. 2) Turn the Y mute off (1), turn the black stretch gain off (1), and observe pin 3. 3) Turn the black level compensation on (1), measure ∆V1 [mV], and calculate the following formula. BLC = (∆V1/1.4 × 103) × 100 (IRE) ↑ Picture period ∆V1 [mV] 40 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 15 V8 V9 Black Peak Detect Level DC Transmission Rate Compensation Gain C ↑ SW 49 ON ↑ SW 50 C B SW 53 C 1) Set the BUS control data to the preset value. 2) Measure the DC voltage V49 of pin 3. 3) Connect pin 78 to an external power supply (PS). 4) Turn the Y mute off (1), the black stretch gain off (1), and set the black detect level shift to 0 IRE (1). 5) Increase the PS from 0 V and measure the voltage VBP of pin 3 where the DC level of the picture period of pin 2 shifts from high to low. 6) Calculate ∆VBP from the following formula. ∆VBP = VBP − V49 1) Set the BUS control data to the preset value. 2) Turn the Y mute off (1), turn the video mute off (0), and connect pin 78 to an external power supply (PS). 3) Measure the amplitude V43 of pin 11, set the PS to V53 + 0.7 V, and adjust V43 to 0.7 Vp-p using unicolor. 4) With the DC transmission rate compensation gain at the minimum (000), measure ∆V1 and ∆V2 as in the diagram below. 5) Next, with the DC transmission rate compensation gain at the maximum (111), measure ∆V3 and ∆V4. 6) Calculate ADT100 and ADT130 from the following formula. ADT100 = (∆V2 [V] − ∆V1 [V]) ÷ 0.1 [V] ADT130 = (∆V4 [V] − ∆V3 [V]) ÷ 0.1 [V] ↑ V53 + 0.1 [V] ∆V1 (∆V3) Picture period V53 + 0.2 [V] ∆V2 (∆V4) Pin 11 waveform 41 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 15 V10 DC Transmission Compensation Start Point C SW 49 ON SW 50 B SW 53 1) Repeat steps 1) and 2) of V21. 2) Measure the amplitude V43 of pin 11, set the PS to V53 + 0.7 V, and adjust V43 to around 1.0 Vp-p using unicolor. 3) With the DC transmission compensation rate at the minimum (000), increase PS from V53 and plot the relationship between the voltages of pins 3 and 11. 4) Next, with the DC transmission compensation rate at the maximum (111), increase PS from V53 and plot the relationship between the voltages of pins 3 and 11. 5) With the DC transmission compensation rate at the maximum (111), increase the PS from V53 when the DC transmission compensation start point reaches the maximum (111) and plot the relationship between the voltages of pins 3 and 11. 6) Calculate VDT0 and VDT42 from the following formula. VDT0 = ((VSP0 − V49)/1 [V]) × 100 [%] VDT42 = ((VSP42 − V49)/1 [V]) × 100 [%] C Pin DC transmission compensation start point DC transmission compensation start point VSP0 DC transmission compensation rate 000 VSP42 VPC 42 Pin 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 15 V11 DC Transmission Compensation Limit Point SW 49 SW 50 SW 53 1) Set the BUS control data to the preset value. 2) Turn the Y mute off (1), turn the video mute off (0), and with the unicolor set at maximum (1111111), connect pin 3 to an external power supply (PS). 3) Set the DC transmission compensation rate to the maximum (111). 4) Increase the PS from 5 V, observe pin 11, and plot the DC transmission compensation rate. 5) Repeat 4) above but change the DC transmission compensation limit point data. Calculate PDTL60, PDTL73, PDTL87, and PDTL100 from the measured data and the following formulas. PDTL60 = ((VL60 − V49)/1.0) × 100 [%] PDTL73 = ((VL73 − V49)/1.0) × 100 [%] PDTL87 = ((VL87 − V49)/1.0) × 100 [%] PDTL100 = ((VL100 − V49)/1.0) × 100 [%] Pin C ON B C 100% (00) 87% (01) 73% (10) 60% (11) Pin VL100 VL60 VL73 43 VL87 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 15 V12 V13 Picture Sharpness Control Range YNR Characteristics C ↑ SW 49 OFF ↑ SW 50 B ↑ SW 53 A 1) Set the BUS control data to the preset value. 2) Input a sine wave to TP78. 3) Set the amplitude of pin 78 to 20 mVp-p. 4) Set the unicolor to the maximum (1111111), set SHR tracking to SRT-gain low (11), and set the aperture compensator peak frequency to 4.2M (001). 5) Turn the Y mute off (1), the video mute off (0), connect TP11 and TP15b, and observe TP15a. 6) Set the picture sharpness to the maximum (1111111). When the frequencies are 100 kHz and FAPL01, measure the V100 and VL amplitudes respectively and calculate GMAXL by the formula shown below. 7) Next, set the picture sharpness to the minimum (0000000). As in 6), when the frequencies are 100 kHz and 2.4 MHz, measure the V100 and VL amplitudes respectively and calculate GMINL by the formula shown below. 8) Set the aperture compensator peak frequency to 7.7M (111) and the picture sharpness to the maximum (1111111). When the frequencies are 100 kHz and FAPH11, measure the V100 and VH amplitudes respectively and calculate GMAXH by the formula shown below. 9) Next, set the picture sharpness to the minimum (0000000). When the frequencies are 100 kHz and 4 MHz, measure the V100 and VH amplitudes respectively and calculate GMINH by the following formula. G**** [dB] = 20 × Log (VL (H) ÷ V100) 1) Repeat steps 1) to 5) of V12. 2) With YNR on (1) and the picture sharpness at minimum (0000000), measure the TP15a amplitudes V100 and VL when the input signal frequencies are 100 kHz and 2.4 MHz respectively. 3) Next, set the aperture compensator peak frequency to 7.7M (111). When the input signal frequencies are 100 kHz and 4 MHz, measure the V100 and VH amplitudes respectively and calculate GYL and GYH by the following formula. GYL (H) [dB] = 20 × Log (VL (H) ÷ V100) ↑ 44 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 15 V14 2T Pulse Response SRT Control C SW 49 ON SW 50 B SW 53 A 1) Set the BUS control data to the preset value. 2) Input a 2T pulse (STD) signal to TP78, turn the Y mute off (1), turn the video mute off (0), set unicolor to maximum (1111111), and set SHR tracking to SRT-gain low (11). 3) Set the sharpness control to the center (1000000), set the aperture compensator peak frequency to 4.2M (001), connect TP11 and TP15b, and observe TP15a. 4) Measure TSL1 as in the diagram below. 5) Set SHR tracking to SRT-gain high (00) and measure TSL2. 6) Next, set the aperture compensator peak frequency to 7.7M (111) and measure TSH1 and TSH2 as above. 7) Calculate the following formula. TSRTL = TSL1 − TSL2 TSRTH = TSH1 − TSH2 10% 100% 10% TS** 45 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 15 V15 VSM Gain C SW 49 ON SW 50 B SW 53 1) Set the BUS control data to the preset value. 2) Input the frequency FVL sine wave to TP78. 3) Turn the Y mute off (1), turn the video mute off (0), set the aperture compensator peak frequency to 4.2M (001), and set the amplitude of pin 78 to 0.1 Vp-p. 4) Measure the TP5 amplitudes VL00, VL01, VL10, and VL11 in the following cases. VSM gain 0dB (00) → VL (H) 00 −6dB (01) → VL (H) 01 −9dB (10) → VL (H) 10 OFF (11) → VL (H) 11 5) Input the sine wave of frequency FVH to TP78, set the aperture compensator peak frequency to 7.7M (111), and measure the TP5 amplitudes VH00, VH01, VH10, and VH11 as above. 6) Calculate the following formulas. GVL (H) 00 = 20 × Log (VL (H) 00/0.1) [dB] GVL (H) 01 = 20 × Log (VL (H) 01/0.1) [dB] − 20 × Log (VL (H) 00/0.1) [dB] GVL (H) 10 = 20 × Log (VL (H) 10/0.1) [dB] − 20 × Log (VL (H) 00/0.1) [dB] GVL (H) 11 = 20 × Log (VL (H) 00/0.1) [dB] A 46 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 15 SW 49 SW 50 SW 53 1) Repeat steps 1) to 3) of V15. 2) Turn on the VSM output horizontal parabola modulation (1) and set the VSM gain to 0dB (00). 3) As in the diagram, measure the picture period amplitudes VCL, VRL, and VLL of TP5. 4) Next, input the sine wave of frequency FVH to TP78, set the aperture compensator peak frequency to 7.7M (111), set the VSM horizontal parabola frequency to 31.5k (10), and measure the picture period amplitudes VCH, VRH, and VLH of TP5 as above. 5) Calculate GVRL, GVLL, GVRH, and GVLH from the following formulas. GVRL (H) = 20 × Log (VRL (H)/VCL (H)) GVLL (H) = 20 × Log (VLL (H)/VCL (H)) VCL (H) V16 VSM Horizontal Parabola Modulation Gain C ON B A VRL (H) VLL (H) 50% 6) In 3) and 4) above, turn the VSM output horizontal parabola modulation off (0) and check that no parabola modulation is generated on the picture period signal. (VPOFL, VPOFH) 47 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 15 SW 49 SW 50 SW 53 1) Repeat steps 1) to 3) of V15, then observe pin 5. 2) Input a pulse like that shown below to pin 27 and measure the response time TVML1 (2) at that input. 3) Similarly, input the pulse to pin 21 and measure the response time TVML3 (4) at that input. 4) Input the sine wave of frequency FVH to TP78, set the aperture compensator peak frequency to 7.7M (111), and measure the response time TVMH1 (2) as in 2) above. 5) Similarly, input the pulse to pin 21 and measure the response time TVMH3 (4) at the input. Square wave (50 kHz, 2 Vp-p) 2 [V] V17 VSM High-Speed Mute Response Time C ON B A VSR36 [V] Pin 27 (pin) 0 [V] TVML1 (3), TVMH1 (3) TVML2 (4), TVMH2 (4) Pin 5 Waveform Mute time 48 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Subaddress Switching Mode Test Conditions 07 10 17 18 SW 5 SW 6 SW 13 SW 15 Chroma block common test conditions SW 13: B, SW 15: C, SW18: ON, SW20: ON, SW 23: ON, SW24: ON, SW 25: ON, SW 33: A, SW 34: A, SW 35: A, SW37: A, SW38: A, SW 39: A, SW 46: ON Chroma Block C1 C2 C3 C4 ACC Characteristics APC Frequency Control Sensitivity APC Pull-In and Hold Range SECAM Output DC Level Change 80 ↑ ↑ ↑ 00 ↑ ↑ C0 00 ↑ ↑ 00 or 30 or 60 00 ↑ ↑ ↑ OPEN ↑ ↑ ↑ OPEN ↑ ↑ ↑ B A ↑ ↑ 49 A ↑ 1) Input 3.58-NTSC rainbow signal (C-4 signal) burst/chroma signals with the same burst/chroma amplitude to the chroma input pin (TP54). 2) Measure the output amplitudes F10, F30, F300, and F600 of the UQ output pin 65 when the chroma input amplitude levels are set to 10, 30, 300, and 600 mVp-p. 3) Calculate A = F30/F300. 1) Connect SW 13 to A. 2) Switch the color system mode (10) to 3.58 NTSC (00), 4.43 PAL (60), and M-PAL (80) and measure the following for each of those cases. 3) Connect external voltage source (V11) to APC filter pin 58. 4) Vary the voltage of the external voltage source (V11) and observe the fsc output pin 72 using a frequency counter. 5) Measure the free-run sensitivity β for the V11 + ∆V11 (100 mV) near the fc. (3.5 NTSC = β 3, 4.3; PAL = β4; M-PAL = β M) 1) Input 3.579545 MHz, 4.433619 MHz, and 3.575611 MHz continuous waves (200 mVp-p to the chroma input pin (TP54). 2) Switch the color system mode (10) to 3.58 NTSC (00), 4.43 PAL (60), and M-PAL (80), and measure the following for each of those cases. 3) Vary the input signal frequency in 10 Hz-steps within a range of ±3 kHz. 4) Clamp B/W → color mode (f*P*). While holding color → B/W mode (f*H*), measure the ± deviations from the frequency at each continuous wave input. ↑ ↑ 1) Connect SW 13 to A. 2) Measure the output DC level of the SECAM control pin 3 when the color system mode (10) is switched to 3.58 NTSC (00), 4.43 PAL (30), and SECAM (60). (3.58 NTSC mode: SEN) (4.43 PAL mode: SEP) (SECAM mode: SES) 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Subaddress Switching Mode Test Conditions 07 C5 C6 C7 NTSC Ident Sensitivity PAL Ident Sensitivity TOF Characteristics 80 ↑ ↑ 10 C0 or D0 ↑ 00 or 60 17 00 ↑ ↑ 18 00 ↑ 38 SW 5 OPEN ↑ ↑ SW 6 OPEN ↑ ↑ SW 13 B ↑ ↑ 50 SW 15 A ↑ ↑ 1) Input a 3.58-NTSC rainbow (C-4 signal) burst/chroma signal with the same burst/chroma amplitudes to the chroma input pin (TP54). 2) Observe the BUS READ mode (5th and 6th bits of the 1st byte). 3) Switch the Indent sensitivity (set the subaddress (10) data low (C0) and high (D0)) and perform the following measurements. 4) Increase the input signal amplitude from 0 and measure the input signal amplitude at the switch to 3.58 NTSC mode. (LOW (C0): vNCL, High (D0): vNCH) 5) Lower the input signal amplitude from 100 mVp-p and measure the input signal amplitude at the deviation from 3.58 NTSC mode. (LOW (C0): vNBL, High (D0): vNBH) 1) Input a 4.43-PAL rainbow (C-4 signal) burst/chroma signal with the same burst/chroma amplitude to the chroma input pin (TP54). 2) Observe the BUS READ mode (5th and 6th bits of the 1st byte). 3) Switch the Indent sensitivity (set the subaddress (10) data low (C0) and high (D0)) and perform the following measurements. 4) Increase the input signal amplitude from 0 and measure the input signal amplitude at the switch to 4.43 PAL mode. (LOW (C0): vPCL, High (D0): vPCH) 5) Lower the input signal amplitude from 100 mVp-p and measure the input signal amplitude at the deviation from 4.43 PAL mode. (LOW (C0): vPBL, High (D0): vPBH) 1) Input the signal C-1 to the chroma input pin (TP54). (signal amplitude = 50 mVp-p). 2) When the subaddress (10) data are f0 = 3.58 MHz (00) and f0 = 4.43 MHz (60), and subaddress (18) data are (38), connect 1.5 kΩ between the VI output pin 6 and the 5 V-VCC and observe the VI output pin 64. 3) Measure the output amplitude when f0 = 3.58 MHz and calculate the gain in decibels from the input (GFC3). 4) Measure the output amplitude when f0 = 3.58 MHz ± 500 kHz and calculate the gain in decibels from the input (+500 kHz: GFH3, −500 kHz: GFL3). 5) Measure the output amplitude when f0 = 4.43 MHz and calculate the gain in decibels from the input (GFC4). 6) Measure the output amplitude when f0 = 4.43 MHz ± 500 kHz and calculate the gain in decibels from the input (+500 kHz: GFH4, −500 kHz: GFL4). 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 SW 34 SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 Text block common test conditions SW 13: A, SW 15: C, SW18: ON, SW20: ON, SW 23: ON, SW24: ON, SW 25: ON Text Block T1 T2 AC Gain Unicolor Adjustment Characteristics A ↑ A ↑ A ↑ A ↑ A ↑ A ↑ B ↑ B ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ T4 Brightness Sensitivity ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ T6 Black Peak Slice Level ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 51 ↑ ↑ 2) Measure the picture period amplitude of pins 15, 13, 11 (V41, V42, and V43). 3) GR = V43/0.2 GG = V42/0.2 GB = V41/0.2 1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 78. 2) Set the unicolor data to maximum (7F), center (40), and minimum (00) and measure the pin 11 picture period amplitudes for each case. (vuMAX, vuCNT, vuMIN) 3) Calculate the unicolor maximum and minimum amplitude ratios using digital conversion. (∆vu) 1) Input signal 2 to pin 78 and adjust the picture period amplitude output of pin 11 to 1 Vp-p. 2) Measure the voltage of pin 11 when the brightness is changed to maximum (FF), center (80), and minimum (00). (VbrMAX, VbrCNT, VbrMIN) 1) Using the results obtained from T3, calculate the brightness sensitivity from the following formula. 2) Gbr = (VbrMAX − VbrMIN)/256 1) Change the bus data and set the sub-contrast to maximum. 2) Connect an external power supply to pin 78 and increase the voltage gradually from 5.8 V. 3) Measure the picture period amplitude voltage of pin 11 when pin 11°s picture period is clipped (Vwps1). 4) Change the subaddress (05) data to (81) and repeat steps 1) to 3) above. (Vwps2) 1) Repeat step 1) of T5. 2) Connect an external power supply to pin 78 and decrease the voltage gradually from 5.8 V. 3) Measure the voltages of pins 11, 13, and 15 when their picture periods are clipped. ↑ Brightness Adjustment Characteristics White Peak Slice Level Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 78. A T3 T5 1) ↑ C 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 T7 Half Tone Characteristics A SW 34 A SW 35 A SW 37 A SW 38 A SW 39 A SW 51 B SW 52 B SW 53 A 1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 78. 2) Measure the picture period amplitude of pin 15 (V41A). 3) Apply 1.5 V from an external power supply to pin 6. 4) Measure the picture period amplitude of pin 15 (V41B). 5) GHT1 = V41B/V41A 6) Halt the voltage applied to pin 6, set the subaddress (03) data to (81), and measure the picture period amplitude of pin 15 (V41C). 7) GHT2 = V41C/V41A 1) Calculate tdON, tdOFF from the signal applied to pin 25 (H.BLK input) (A below) and the output signals from pins 11, 13, and 15 (B below). (A) Signal applied to pin 25 63.5 µs T8 BLK Pulse Delay Time ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ C (B) Output signals from pins 11, 13, 15 tdON tdOFF t T9 T10 RGB Output Voltage Cutoff Voltage Variable Range ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 52 ↑ ↑ ↑ 1) Measure the picture period voltages for pins 11, 13, and 15. 1) Set the subaddress (17) data to (07). 2) Measure the picture period voltage of pin 11 when the cutoff (subaddress 0C) data are changed to maximum (FF), center (80), and minimum (00), and calculate the amount of change of maximum and minimum from the center. (CUT+, CUT−). 3) In steps 1) and 2) above, make the following changes and remeasure: Change the subaddress (0D) data and measure pin 13, Change the subaddress (0E) data and measure pin 15. ↑ 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 T11 Drive Adjustment Variable Range A SW 34 A SW 35 A SW 37 A SW 38 A SW 39 A SW 51 B SW 52 B SW 53 A T12 Output Voltage During Muting ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ C T13 Output Voltage at Blue Back ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ T14 ACL Characteristics ↑ ↑ ↑ ↑ ↑ ↑ ↑ 53 ↑ 1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 78. 2) Measure the picture period amplitude of pin 13 when the drive (subaddress-09) data are changed to maximum (FE), center (80), and minimum (00). 3) Calculate the maximum and minimum amplitude ratios for the drive center using decibel conversion. (DRG+, DRG−) 4) In steps 1) to 3) above, change the subaddress (0A) data, measure pin 15, and repeat the calculations. (DRB+, DRB−) 5) In steps 1) to 3) above, set data of the LSB of subaddress (09) to 1, measure pin 11, and repeat the calculations. (DRR+, DRR−) 1) Set the subaddress (00) data to (FF). 2) Measure the picture period voltages of pins 11, 13, and 15. (MURD, MUGD, MUBD) 1) Set the subaddress (10) data to (08). 2) Measure the picture period voltages of pins 11 and 13 and the picture period amplitude of pin 15. (BBR, BBG, BBB) 1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 78. 2) Measure the picture period amplitude of pin 11 (vACL1). 3) Measure the picture period amplitude of pin 11 when −0.5 V DC is applied to pin 8 from an external power supply. (vACL2) 4) Measure the picture period amplitude of pin 11 when −1 V DC is applied to pin 8 from an external power supply. (vACL3) 5) ACL1 = −20 × Ɛog (vACL2/vACL1) ACL2 = −20 × Ɛog (vACL3/vACL1) A 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 T15 T16 T17 ABL Point ABL Gain RGB Output Mode A ↑ ↑ SW 34 A ↑ ↑ SW 35 A ↑ ↑ SW 37 A ↑ ↑ SW 38 A ↑ ↑ SW 39 A ↑ ↑ SW 51 B ↑ ↑ 54 SW 52 B ↑ ↑ SW 53 C ↑ ↑ 1) Measure the DC voltage of pin 8. (VABL1) 2) Set the subaddress (16) data to (1C). 3) Applying external voltage to pin 8, lower the pin voltage from 6.5 V. Measure the voltage of pin 8 when the voltage of pin 11 starts to change. (VABL2) 4) Change the data of subaddress (16) to (3C), (5C), (7C), (9C), (BC), (DC), and (FC), and repeat step 3) for each of these data. (VABL3, VABL4, VABL5, VABL6, VABL7, VABL8, VABL9) 5) ABLP1 = VABL2 − VABL1, ABLP5 = VABL6 − VABL1 ABLP2 = VABL3 − VABL1, ABLP6 = VABL7 − VABL1 ABLP3 = VABL4 − VABL1, ABLP7 = VABL8 − VABL1 ABLP4 = VABL5 − VABL1, ABLP8 = VABL9 − VABL1 1) Apply 6.5 V from an external power supply to pin 8. 2) Set the subaddress (16) data to (00). Set the brightness to the maximum. 3) Measure the voltage of pin 11. (VABL10) 4) Apply 4.5 V from an external power supply to pin 8. 5) Change the data of subaddress (16) to (00), (04), (08), (0C), (10), (14), (18), and (1C), and repeat step 3) for each of these data.(VABL11, VABL12, VABL13, VABL14, VABL15, VABL16, VABL17, VABL18) 6) ABLG1 = VABL11 − VABL10, ABLG5 = VABL15 − VABL10 ABLG2 = VABL12 − VABL10, ABLG6 = VABL16 − VABL10 ABLG3 = VABL13 − VABL10, ABLG7 = VABL17 − VABL10 ABLG4 = VABL14 − VABL10, ABLG8 = VABL18 − VABL10 1) Adjust the brightness so that the picture period voltage of pin 11 is set to 2.5 V. 2) Set the subaddress (16) data to (01). 3) Measure the picture period voltages of pins 11, 13, and 15. (V43R, V42R, V41R) 4) Change the subaddress (16) data to (02) and repeat step 3). (V43G, V42G, V41G) 5) Change the subaddress (16) data to (03) and repeat step 3). (V43B, V42B, V41B) 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 SW 34 SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 78 2) and adjust the drive adjustment data so that the picture period amplitudes of pins 13 and 15 are equal to that of pin 11. Set SW53 to C. 3) Measure the voltages of pins 31, 32, and 74. From an external power supply, apply the measured voltages to these pins. 4) Set subaddress (15) data to (D2). 5) From pins 11, 13, and 15, calculate the phase of the ACB insertion pulse in accordance with Figure 2 below. Note 5: After the completion of V.BLK, the video period following the falling edge of the FBP input is regarded as 1H and the periods at each completion of H.BLK are counted as 2H, 3H, 4H···. 6) T18 ACB Insertion Pulse Phase and Amplitude A A A A A A B B A or C Measure the ACB insertion pulse amplitude (the level from the picture period amplitude at no input) of pins 11, 13, and 15. ACB insertion pulse amplitude V.BLK period Figure 2 2H 3H 4H RGB Output Figure 3 55 1H FBP Input (No.38) 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 T19 RGB γ Characteristics A SW 34 A SW 35 A SW 37 A SW 38 A SW 39 A SW 51 B SW 52 B SW 53 1) Input a ramp waveform to pin 78 and adjust the input amplitude so that the picture period amplitude of pin 11 is 2.3 Vp-p. 2) Adjust the drive adjustment data so that the picture period amplitudes of pins 13 and 15 are equal to that of pin 11. 3) Set the subaddress (14) data to (10). 4) From pins 13, 15, and 11, calculate the RGB γ start point and its gradient (decibel conversion) in relation to the off point in accordance with Figure 2. Output amplitude 100 IRE ∆ (gradient 3) A γ2 γ1 ∆ (gradient 2) ∆ (gradient 1) 2.5 Vp-p Input amplitude T20 Analog RGB Gain A or B A or B A or B ↑ ↑ ↑ ↑ 56 ↑ ↑ 1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 78 2) and adjust the drive adjustment data so that the picture period amplitudes of pins 13 and 15 are equal to that of pin 11. Apply 5 V from an external power supply to pin 27. 3) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 22. 4) Measure the picture period amplitude of pin 11. (V43R) 5) As in steps 2) and 3) above, input to pin 24 and measure pin 13, then input to pin 25 and measure pin 15. (V42G, V41B) 6) GTXR = V43R/0.2 GTXG = V42G/0.2 GTXB = V41B/0.2 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 T21 T22 T23 Analog RGB White Peak Slice Level Analog RGB Black Peak Limiter Level RGB Contrast Adjustment Characteristics A ↑ A or B SW 34 A ↑ A or B SW 35 A ↑ A or B SW 37 A ↑ ↑ SW 38 A ↑ ↑ SW 39 A ↑ ↑ SW 51 B ↑ ↑ 57 SW 52 B ↑ ↑ SW 53 A ↑ 1) Repeat step 1) of T20. 2) Apply 5 V from an external power supply to pin 27. 3) Set the RGB contrast data to the maximum (7F). 4) Connect an external power supply to pin 22, increase the voltage gradually from 3.0 V, and measure the picture period amplitude voltage when pin 11 is clipped. 5) As in steps 3) and 4) above, input to pin 24 and measure pin 13, then input to pin 25 and measure pin 15. 1) Repeat step 1) of T20. 2) Apply 5 V from an external power supply to pin 27. 3) Set the RGB contrast data to the maximum (7F). 4) Connect an external power supply to pin 22, decrease the voltage gradually from 4.5 V, and measure the voltage when pin 11 is clipped. 5) As in steps 3) and 4) above, input to pin 24 and measure pin 13, then input to pin 25 and measure pin 15. 1) Repeat step 1) of T20. 2) Apply 5 V from an external power supply to pin 27. 3) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 22. 4) Measure the picture period amplitude of pin 11 when the RGB contrast data change to the maximum (7F), the center (40), and the minimum (00). (vuTXRMAX, vuTXRCNT, vuTXRMIN) 5) Calculate the maximum and minimum amplitude ratios using decibel conversion. (DRG+, DRG−) 6) As in steps 3), 4) and 5) above, input to pin 24 and measure pin 13, then input to pin 25 and measure pin 15. ↑ 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 T24 T25 T26 Analog RGB Brightness Adjustment Characteristics Analog RGB Brightness Sensitivity Text ACL Characteristics A or B ↑ A SW 34 A or B ↑ A SW 35 A or B ↑ B SW 37 A ↑ ↑ SW 38 A ↑ ↑ SW 39 A ↑ ↑ SW 51 B ↑ ↑ 58 SW 52 B ↑ ↑ SW 53 A 1) Repeat step 1) of T20. 2) Input signal 2 to pins 22, 24, and 25. 3) Apply 5 V from an external power supply to pin 27. 4) Adjust the signal 2 amplitude A so that the picture period amplitude of pin 11 is 0.5 Vp-p. 5) Measure the picture period voltage of pins 11, 13, and 15 when the RGB brightness change to the maximum (7F), the center (40), and the minimum (00). (VbrTXMAX, VbrTXCNT, VbrTXMIN) 1) Using the results obtained from T24, calculate the RGB brightness sensitivity for pins 11, 13, and 15. ↑ 2) GbrTX = (VbrTXMAX − VbrTXMIN)/128 1) Repeat step 1) of T20. 2) Apply 5 V from an external power supply to pin 27. 3) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 22. 4) Measure the picture period amplitude of pin 11. (vTXACL1) 5) Measure the picture period amplitude of pin 11 when −0.5 V DC is applied to pin 8 from an external source. (vTXACL2) 6) Measure the picture period amplitude of pin 11 when −1 V DC is applied to pin 8 from an external source. (vTXACL3) 7) TXACL1 = −20 × Ɛog (vTXACL2/vTXACL1) TXACL2 = −20 × Ɛog (vTXACL3/vTXACL1) 8) Set the subaddress (10) data to (01) and repeat the calculations in steps 5) and 6). (TXACL3, TXACL4) ↑ 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 T27 T28 T29 T30 Analog OSD Gain Analog OSD White Peak Slice Level Analog OSD Black Peak Limiter Level Analog OSD Output DC Voltage A ↑ ↑ ↑ SW 34 A ↑ ↑ ↑ SW 35 A ↑ ↑ ↑ SW 37 A or B A ↑ ↑ SW 38 A or B A ↑ ↑ SW 39 A or B A ↑ ↑ SW 51 B ↑ ↑ ↑ 59 SW 52 B ↑ ↑ ↑ SW 53 A 1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 78 2) and adjust the drive adjustment data so that the picture period amplitudes of pins 13 and 15 are equal to that of pin 11. Apply 5 V from an external power supply to pin 21. 3) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 18. 4) Measure the picture period amplitude of pin 11. (V43R) 5) As in steps 3) and 4) above, input to pin 19 and measure pin 13, then input to pin 20 and measure pin 15. (V42G, V41B) 6) GOSDR = V43R/0.2 GOSDG = V42G/0.2 GOSDB = V41B/0.2 1) Repeat step 1) of T27. 2) Apply 5 V from an external power supply to pin 21. 3) Apply external voltage to pin 18, increase the voltage gradually from 0.0 V, and measure the picture period amplitude voltage when pin 11 is clipped. (VOSD1R) 4) As in step 3) above, input to pin 19 and measure pin 13. Input to pin 20 and measure pin 15. 5) Set the subaddress (10) data to (04) and repeat the measurements in steps 3) and 4). (VOSD2R, VOSD2G, VOSD2B) 1) Repeat step 1) of T27. 2) Apply 5 V from an external power supply to pin 21. 3) Apply external voltage to pin 18, decrease the voltage gradually from 4.5 V, and measure the voltage when pin 11 is clipped. 4) As in step 3) above, input to pin 19 and measure pin 13. Input to pin 20 and measure pin 15. 1) Repeat step 1) of T27. 2) Apply 5 V from an external power supply to pin 21. 3) Measure the picture period voltages of pins 11, 13, and 15. (VOSDDCR, VOSDDCG, VOSDDCB) ↑ ↑ ↑ 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 T31 OSD ACL Characteristics A SW 34 A SW 35 A SW 37 A SW 38 A SW 39 B SW 51 B 60 SW 52 B SW 53 A 1) Repeat step 1) of T27. Set the subaddress (10) data to (02). 2) Apply 5 V from an external power supply to pin 21. 3) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 18. 4) Measure the picture period amplitude of pin 11. (vOSDACL1) 5) Measure the picture period amplitude of pin 11 when −0.5 V DC is applied to pin 8 from an external source. (vOSDACL2) 6) Measure the picture period amplitude of pin 11 when −1 V DC is applied to pin 8 from an external source. (vOSDACL3) 7) OSDACL1 = −20 × Ɛog (vOSDACL2/vOSDACL1) OSDACL2 = −20 × Ɛog (vOSDACL3/vOSDACL1) 8) Change the subaddress (10) data to (00) and repeat the measurements in steps 1) to 7). (OSDACL3, OSDACL4) 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 SW 34 SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 Color difference block common test conditions SW 13: A, SW 15: C, SW18: ON, SW20: ON, SW 23: ON, SW24: ON, SW 25: ON Color Difference Block A1 A2 Color Difference Contrast Adjustment Characteristics Color Adjustment Characteristics A ↑ A ↑ A ↑ A ↑ A ↑ A ↑ A or B ↑ 61 A or B ↑ C 1) Change the G and B drive data to the value resulting from the adjustment in step 1) of T20. 2) Set the brightness to maximum, set the subaddress (0F) data to (30), and set the subaddress (10) data to (20). 3) Input signal 3 (f0 = 100 kHz, picture period amplitude = 0.23 Vp-p) to pin 1. 4) Measure the picture period amplitude of pin 11 when the unicolor data change to the maximum (7F), the center (40), and the minimum (00). (vuCYMAX, vuCYCNT, vuCYMIN) 5) Calculate the unicolor maximum and minimum amplitude ratios using decibel conversion. (∆vuCY) 6) Repeat steps 3), 4), and 5) above, inputting the picture period amplitude 0.2 Vp-p to pin 80 and measuring pin 15. 1) Measure the voltage of pin 1. Set the brightness to maximum, set the subaddress (0F) data to (30), and set the subaddress (10) data to (20). 2) Input signal 3 (f0 = 100 kHz, picture period amplitude = 0.115 Vp-p) to pin 1. 3) Measure the picture period amplitude of pin 11 when the color data are changed to the maximum (7F), the center (40), and the minimum (01). (vcCYMAX, vcCYCNT, vcCYMIN) 4) Calculate the color maximum and minimum amplitude ratios for the center using decibel conversion. (∆vcCY+, ∆vcCY−) 5) Repeat steps 2) to 4) above, inputting the picture period amplitude 0.1 Vp-p to pin 80 and measuring pin 15. ↑ 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 A3 Color Difference Half Tone Characteristics A SW 34 A SW 35 A SW 37 A SW 38 A SW 39 A SW 51 A or B 62 SW 52 A or B SW 53 C 1) Set the subaddress (10) data to (20). 2) Input signal 3 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 1. 3) Measure the picture period amplitude of the waveform output from pin 11. (vHTARY) 4) Apply 1.5 V from an external power supply to pin 6. 5) Measure the picture period amplitude of the waveform output from pin 11. (vHTBRY) 6) GHTRY = vHTBRY/vHTARY 7) Repeat steps 1) to 5) above with pin 13. GHTGY = vHTBGY/vHTAGY 8) Repeat steps 1) to 5) above, inputting signal to pin 80 and measuring pin 15. GHTBY = vHTBBY/vHTABY 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 A4 Color γ Characteristics A SW 34 A SW 35 A SW 37 A SW 38 A SW 39 A SW 51 B SW 52 B SW 53 1) Set the subaddress (10) data to (20). 2) Input signal 2 to pin 1. 3) When the subaddress (07) data are: (80) − γOFF (82) − γ1ON (84) − γ2ON (86) − γ3ON measure the changes in the amplitude level of the pin 43 output signal at an increase the amplitude A of signal 2 and plot the characteristics. 4) Calculate the γON gradient ∆, using Vγ, which represents the point at which the γ characteristics become effective, and the gradient of the linear section with γOFF as (1). C γOFF Vγ γON Pin 1 input 1) A5 Color Limiter Characteristics ↑ ↑ ↑ ↑ ↑ ↑ ↑ 63 A ↑ Measure the voltage of pin 1. 2) Set the subaddress (10) data to (20). 3) Input signal 2 (picture period amplitude = 0.4 Vp-p) to pin 80. 4) Measure the picture period amplitude of the pin 11 output signal when the subaddress (07) data are (80) and (81). (CLT0, CLT1) 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 A6 High-Brightness Color Gain A SW 34 A SW 35 A SW 37 A SW 38 A SW 39 A SW 51 B SW 52 A SW 53 1) Set subaddress (10) data to (20). 2) Input signal 2 (picture period amplitude = 0.2 Vp-p) to pin 80. 3) Adjust the color control so that the picture period amplitude output from pin 15 is 1.2 Vp-p. 4) Measure the picture period amplitude of the pin 15 output signal when the subaddress (06) data are (FF). (V41) 5) HBC1 = (1.2 − V41)/1.2 1) Input IQ demodulated flesh-bar signals (15°-step rainbow signals in the range −30° to +240°) to pin 80 (Q signal) and pin 1 (I signal) as 0.2 Vp-p. Set the brightness to maximum. Set subaddress (10) data to (00). C 2) A7 Flesh Color Characteristics ↑ ↑ ↑ ↑ ↑ ↑ A ↑ 3) Measure the signals output from pins 11 and 15 and switch to subaddress (10) data to (06). Measure the output signals and calculate the variation characteristics of the color vector phase. 4) Draw the vector variation characteristics curve showing the on state from the off state and calculate the gradient in the vicinity of the I axis as Fa33. Subaddress (08) Data (80) off Data (81) on ↑ Color vector phase [°] OFF ON Fa Chroma input phase [°] 64 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 33 A8 Color Detail Emphasis A SW 34 A SW 35 A SW 37 A SW 38 A SW 39 A SW 51 A SW 52 B SW 53 A 1) Connect SG to Y-IN and input a 4 MHz frequency sine wave at 20 mVp-p. 2) Set the subaddress (02) data to (01). 3) Set the subaddress (10) data to (20). 4) Set the subaddress (11) data to (02). 5) Read the 4 MHz amplitude output to pin 11. (VCDE0) 6) Input signal 2 (picture period amplitude = 0.3 Vp-p) to pin 1. 7) Set the subaddress (02) data to (81). 8) Read the 4 MHz amplitude output to pin 11. (VCDE1) (mVp-p) 9) Set the subaddress (0A) data to (81) and read the amplitude of frequency Fp output to pin 11. (VCDE2) (mVp-p) 10) GCD0 = 20 × Ɛog (VCDE1 − VCDE0/20) GCD1 = 20 × Ɛog (VCDE2 − VCDE0/20) 65 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 16 SW 17 SW 18 SW 20 SW 23 SW 25 DEF Block common test conditions SW 13: A, SW 33: A, SW 34: A, SW35: A, SW37: A, SW 38: A, SW 39: A, SW 48: ON, SW49: ON, SW 51: B, SW 52: B, SW 56: ON, BUS Data = power on reset DEF Block D1 Horizontal Oscillation Control Sensitivity D B ON OFF A ON Calculate the pin 41 (H.out) frequency variation rate when the voltage on pin 45 is varied by ±0.05 V with a horizontal oscillation frequency of 15.734 kHz. TP52 52 M ○ Measure the phase difference SPH1 of the pin 41 (H.out) waveform in relation to the pin 49 (HD.out) waveform when a 50 Hz composite video signal is applied to TP52. Measure the phase difference SPH2 of the pin 45 waveform in relation to the center of the input signal’s horizontal sync signal Also, apply a 60 Hz composite video signal to pin 52 and measure SPH3. TG7 (sync input) Pin 52 45 38 Pin 45 (AFC1 filter pin) 63.5 µs Pin 38 (H.BLK input) 4.7 µs Pin 52 Input Signal a D2 Horizontal Sync Phase ↑ C ↑ ON ↑ 0.25 V a/2 SPH2, SPH3 ↑ Pin 45 Waveform 0.8 µs Pin 49 Waveform 41% 59% Pin 41 Signal SPH1 63.5 µs 66 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 16 SW 17 SW 18 SW 20 SW 23 SW 25 Vary the voltage by 1.5 V to 3.5 V, apply a 50 Hz composite video signal to pin TP52, and measure the phase variation of the pin 41 (H.out) waveform. TP52 52 M ○ TG7 (sync input) Pin 52 Pin 49 Waveform 40 D3 Range of Curve Correction D C ON ON A Pin 40 (curve correction pin) ON Pin 40 = 3.5 V 41 Pin 41 (H.OUT) Pin 41 Input Signal ∆H24 Pin 40 = 1.5 V Under the same conditions as those for D3, measure phase variation of the pin 41 (H.out) waveform when subaddress (0B) data D7 to D3 are varied by (00000) to (11111). Pin 49 Waveform D4 Horizontal Screen Phase Adjustment Range ↑ ↑ ↑ ↑ ↑ ↑ When (00000) Pin 41 Input Signal ∆HSFT When (11111) 67 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 16 SW 17 SW 18 SW 20 SW 23 SW 25 SW 35 Apply a 50 Hz composite video signal to TP52, then measure the phase difference CPS and the pulse width CPW of the pin 22 (R in) waveform in relation to the pin 49 (HD.out) waveform. TP52 52 M ○ TG7 (sync input) Pin 52 63.5 µs 49 Pin 49 Pin 52 (HD.OUT) Input Signal 4.7 µs 0.25 V Clamp Pulse Start Phase D5 D C ON ON A ON OPEN Pulse Width of Clamp Pulse 22 Pin 22 (rin) Pin 49 Waveform CPS TP52 M ○ 5.0 V Pin 22 Waveform 5V 52 CPW TG7 ([illegible] input) Pin 52 3.5 V Apply a 50 Hz composite video signal to TP52, then measure the phase difference CPS and the pulse width CPW of the pin 70 (SCP) waveform in relation to the pin 49 (HD.out) waveform. 63.5 µs 49 Gate Pulse Start Phase D6 Pulse Width of Gate Pulse ↑ ↑ ↑ ↑ ↑ ↑ Pin 52 Pin 49 (HD.OUT) Input Signal 4.7 µs 0.25 V 70 Pin 70 (SCP) Pin 49 Waveform CPS CPW 8.3 V Pin 70 Output Waveform 4.5 V 0V 68 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 16 SW 17 SW 18 SW 20 SW 23 SW 25 Under the same conditions as those for D6, measure the phase difference HPS and HPW50 of the horizontal blanking pulse. Also measure HPW60 at 60 Hz. Pin 49 Waveform Horizontal Blanking Pulse Start Phase D7 Pulse Width of Horizontal Blanking Pulse D C ON ON A ON 8.3 V Pin 70 Output Waveform 4.5 V 0V HPS TP52 52 M ○ TG7 ([illegible] input) HPW Apply a 50 Hz composite video signal to TP52, then measure the phase difference HPS and the pulse width HPW /VHD of the pin 49 (HD out) waveform in relation to the pin 45 (AFC1 filter) waveform. Pin 52 45 Pin 45 (AFC1 filter) Pin 52 Input Waveform HD Output Start Phase D8 HD Output Pulse Width HD Output Amplitude ↑ ↑ ↑ ↑ ↑ 63.5 µs ↑ 49 Pin 49 (HD output) 4.7 µs Pin 45 Waveform HPS Pin 49 Output Waveform 69 0.25 V HPW VHD 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Note Parameter Switching Mode Test Conditions SW 16 SW 17 SW 18 SW 20 SW 23 SW 25 TP52 52 M ○ TG7 (sync input) Apply a 50 Hz composite video signal to TP52, then measure the phase difference VP50S1 and the pulse width VP50S2 of the pin 70 (SCP) waveform in relation to the pin 49 (sync input) waveform. Pin 52 Vertical Blanking Pulse Start Phase (1) D9 Vertical Blanking Pulse End Phase (1) Vertical Blanking Pulse Start Phase (2) D10 D11 Vertical Blanking Pulse End Phase (2) D ↑ C ↑ ON ↑ ON ↑ A ↑ ON ↑ 47 Pin 47 (sync input) 70 Pin 70 (SCP) Apply the same conditions as those for D9 except change the input signal to a 60 Hz comp. video signal and measure the phase difference VP60S and pulse width VP60W . Vertical Pull-In Range (1) Input a 50 Hz composite video signal to pin TP52, vary the vertical frequency of this signal in 0.5H-steps, and measure the vertical pull-in range. Vertical Pull-In Range (2) Set D5 to D3 of subaddress (17) to (001), vary the vertical frequency of a 60 Hz composite video signal input to pin TP52 in 0.5H-steps, and measure the vertical pull-in range. Vertical Pull-In Range (3) Vertical Pull-In Range (4) ↑ ↑ ↑ ↑ ↑ ↑ Input a 50 Hz composite video signal to pin TP52, vary the vertical frequency of this signal in 0.5H-steps, and measure the number of Hs when D2 of the 1st byte changes from 0 to 1 in bus read mode. Also check that D1 of the 1st byte is 0 when 1 V = 312.5H, when D1 is 1 in bus read mode, and 1 V < 311.5 or 1 V > 313.5H. Input a 60 Hz composite video signal to pin TP52, vary the vertical frequency of this signal in 0.5H-steps, and measure the number of Hs when D2 of the 1st byte changes from 1 to 0 in bus read mode when. Also check that D1 of the 1st byte is 0 when 1 V = 262.5H, D1 is 1 in bus read mode, and 1 V < 261.5 or 1 V > 263.5H. 70 2002-04-01 TA1276AFG Test Conditions (unless otherwise stated, VCC1 = 5 V, VCC2/VCC3/DEF VCC = 9 V, Ta = 25 ± 3°C) Switching Mode Note Parameter SW 16 SW 17 SW 18 SW 20 SW 23 SW 25 SW 33 SW 34 SW 35 SW 37 SW 38 SW 39 #6 #21 #27 Test Conditions TP52 52 M ○ Pin 52 RGB Output Vertical Blanking Pulse Start Phase (1) D12 D D13 C ON ON A ON A RGB Output Vertical Blanking Pulse End Phase (1) RGB Output Vertical Blanking Pulse Start Phase (2) RGB Output Vertical Blanking Pulse End Phase (2) TG7 (sync input) ↑ ↑ ↑ ↑ ↑ ↑ ↑ 71 Ground ↑ 11 Apply a 50 Hz composite video signal to TP52, then measure the phase difference VR50S1 and the pulse width VR50S2 of the pin 11 (R.out) waveform in relation to the pin 52 (sync input) waveform. Similarly, measure pins 13 and 15. Pin 11 (R output) Apply the same conditions as those for D12 except change the input signal to a 60 Hz comp. video signal and measure the phase difference VP60S1 and pulse width VP60S2. 2002-04-01 TA1276AFG Chroma Test Signals 1) Text/Color Difference Test Signals Input Signal C-1 1) Video Signal VO Frequency f0 sine wave 2) 63.5 µs Input Signal C-2 2) Input Signal 1 Frequency f0 sine wave Amplitude A 3) Input Signal C-3 3) C signal Input Signal 2 Y signal 1 Vp-p Amplitude A Burst signal Input Signal C-4 4) Burst signal 4) 180° 150° 120° 90° 60° 30° Input Signal 3 Frequency f0 sine wave 0° −30° −60° −90° 72 2002-04-01 TA1276AFG Vertical Output Pulse Width/Vertical Output Pulse Phase Variation/Vertical Output Pulse Phase Range 0H 1H 2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 13H 14H 15H 16H 1H 2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 13H 14H 15H 16H 4H 5H 6H 7H 8H 9H 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 50 Hz Video Signal 1st Field 2nd Field 60 Hz Video Signal 1st Field 2nd Field TD Pin 29 Waveform TW VPL1 Pin 29 Waveform VPUN TW VPL1 Pin 29 Waveform VPUN TW VPL1 Pin 29 Waveform VPUN TW VPL1 Pin 29 Waveform VPUN TW VPL1 Pin 29 Waveform VPUN TW VPL1 Pin 29 Waveform VPUN TW VPL1 Pin 29 Waveform VPUN TW VPL1 73 2002-04-01 TA1276AFG RGB Vertical Blanking Pulse Start Phase/End Phase 2nd field 50 Hz 307H 308H 309H 310H 311H 1st field 312H 1H 2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 20H 21H 22H 23H 24H 25H 26H Video Signal VR 50 , VG50 , VB 50 51 51 51 2.1 V Pin 11/13/15 Waveform 0.8 V 1st field 307H 308H 309H 310H 311H 312H 2nd field 313H 1H 2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 20H 21H 22H 23H 24H 25H 26H 7H 8H 9H 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 20H 21H 22H 23H 24H 25H 26H 27H 28H Video Signal VR 50 , VG50 , VB 50 51 51 51 Pin 11/13/15 Waveform 2nd field 60 Hz 258H 259H 260H 261H 1st field 262H 1H 2H 3H 4H 5H 6H Video Signal VR 50 50 50 , VG , VB 51 51 51 Pin 11/13/15 Waveform 1st field 259H 260H 261H 262H 263H 2nd field 1H 2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 20H 21H 22H 23H 24H 25H 26H 27H Video Signal VR 50 , VG50 , VB 50 51 51 51 Pin 11/13/15 Waveform 74 2002-04-01 TA1276AFG TP 43 5.1 kΩ 3.9 kΩ 75 Ω 390 Ω 0.01 µF TP 41 SW 41 Pin 40 A B 10 µF NC 39 Pin 38 A FBP In (BLK in) 38 1 16 Digital GND 37 2 15 NC 36 3 14 B 5.1 kΩ 5 kΩ 5 kΩ 68 NC Pin 69 100 Ω 70 SCP Out SDA 35 Pin 70 71 NC 100 Ω SCL 34 TA1276AFG Pin 72 72 fsc Out 7.5 kΩ 60 kΩ 10 µF NC 33 4 5 TC4538P 10 kΩ 51 kΩ 51 kΩ 69 SECAM Conto 1000 pF 67 Y1 Out Curve odj. 40 (ext CP in) 1200 pF DEF VCC (9 V) 32fH VCO 66 NC Pin 67 7.5 kΩ 2N Pin 43 Pin 42 Pin 41 44 43 42 41 NC AFC Filter 1 kΩ Pin 45 46 45 91 Ω 360 Ω 6.2 kΩ 1 µF 0.012 µF Pin 47 48 47 DEF GND 10 kΩ SW 45 Sync Out TP53b TP 45 SW 47 NC 2.2 µF V.Sep. 49 HD Out NC Pin 50 51 50 NC NC Pin 52 53 52 Y1 Sync In 56 SW 52 Chroma In 57 0.1 µF A BC 0.01 µF B Pin 54 55 54 APC Filter TP 52 Chroma GND 100 µF 0.01 µF A SW 54 VCC1 (5 V) 2200 pF 30 kΩ 0.22 µF 12 pF 10 µF TP 54 Horizontal Output (SW) SW5 Pin 59 Pin 58 60 59 58 3.58 MHz X’tal Pin 65 SW6 M PAL X’tal V/I Out 65 U/Q Out 4.43 MHz X’tal Pin 62 Pin 61 63 62 61 1H DL Cont Pin 64 64 12 pF Pin 63 NC 12 pF VCC = 5 V 2 kΩ Test Circuit 13 12 6 NC 11 7 10 8 NC 9 Pin 32 Pin 73 10 µF 2 kΩ 3.9 kΩ 5.1 kΩ TP78 75 Ω 73 Sence In 2.2 µF B S/H 32 Pin 31 2.2 µF 74 R S/H G S/H 31 2.2 µF Pin 74 75 NC 2.2 µF NC 30 Pin 29 76 Color Limiter VP Out 29 Pin 76 77 NC 0.1 µF 20 kΩ NC 28 A 78 Y2 In Ys2 (analog RGB) 27 B 0.1 µF C Pin 78 79 NC 75 Analog G In 0.1 µF 0.1 µF SW 24 B A 2 kΩ A 2 kΩ SW 22 B Pin 25 2 kΩ A 24 Pin 23 2 kΩ SW 18 SW 19 SW 20 BA BA B NC Analog R In Pin 21 23 0.1 µF 0.1 µF Ys1 (analog OSD) Analog OSD B In Analog OSD G In 0.1 µF 0.1 µF 22 Pin 22 2 kΩ TP15b TP15a A 21 TP18 TP19 TP20 TP22 TP24 TP24 SW 24 B 2 kΩ 2 kΩ 1.2 kΩ 18 19 20 Pin 18 Pin 19 Pin 20 Analog B In 25 2 kΩ TP15 Analog OSD R In VCC2 (9 V) 17 100 µF 15 Pin 15 0.01 µF 16 B Out NC 14 100 Ω 100 Ω NC G Out NC 100 Ω TP13 510 Ω 2 kΩ 330 pF TP73b 13 Pin 13 TP11 2 kΩ 0.01 µF 100 kΩ TP8 12 1.2 kΩ TP5 0.01 µF Pin 6 SW 5 11 Pin 11 510 Ω 10 R Out TEXT GND 1 9 2 kΩ 2 kΩ 8 Pin 8 100 Ω C 20 kΩ 1 µF B TEXT GND 2 VCC3 (9 V) 7 ABCL In YM In 6 SW 3 30 pF 100 kΩ A 1 µF VCC = 9 V 5 Pin 5 100 µF B 0.1 µF 0.033 µF 4 Pin 3 10 µF SW 1 A 3 2 Pin 2 2 kΩ V/I In 1 Pin 1 VSM Out 80 U/Q In 0.1 µF B Pin 80 NC 0.033 µF A APL Det. Black Peak Hold Pin 27 NC 26 2002-04-01 TA1276AFG Application Circuit 1-Normal Scan (3.58 NTSC) CTl WAC FBP In (BLK in) 38 SCL 72 fsc Out 10 kΩ 100 Ω NC 33 73 Sence In B S/H 32 74 R S/H G S/H 31 2.2 kΩ TA1276AFG IK In 2.2 µF 2.2 µF GND 10 µF C In GND 2.2 µF 75 NC 2.2 µF Y In 75 Ω SCL 34 10 µF 75 Ω 71 NC 100 Ω 10 kΩ SDA 35 2.2 kΩ 70 SCP Out 10 kΩ NC 36 SCP GND VCC 5 V SDA Digital GND 37 69 SECAM Conto VCC 9 V FBP 10 kΩ 68 NC 5.1 kΩ Curve NC 39 67 Y1 Out fsc 47 µF 0.01 µF Curve odj. 40 (ext CP in) 0.1 µF Reg. 47 µF 0.01 µF 390 Ω 0.01 µF 66 NC 41 Horizontal Output (SW) 42 620 Ω 100 µF 43 DEF VCC (9 V) 390 Ω 44 32fH VCO 45 5.1 kΩ 3.3 kΩ 2.2 µF 10 kΩ 0.022 µF 46 M : mylar capacitor ○ Horizontal Output NC 47 AFC Filter 48 Sync Out 49 DEF GND HD Out NC 2.2 µF 50 Sync Out HD Out 51 NC M ○ 52 Y1 Sync In 53 V.Sep. 0.1 µF 0.01 µF 54 Chroma GND 55 NC 56 Chroma In 0.01 µF 100 µF 57 VCC1 (5 V) 58 NC 2200 pF 59 APC Filter NC 60 3.58 MHz X’tal 1H DL Cont 61 M PAL X’tal 62 4.43 MHz X’tal V/I Out 65 U/Q Out 63 12 pF converter) 64 M ○ 30 kΩ 0.22 µF (wide aspect NC 30 76 Color Limiter VP Out 29 77 NC VP NC 28 0.1 µF ○ M 78 Y2 In VCC3 (9 V) ABCL In TEXT GND 2 TEXT GND 1 R Out NC G Out NC B Out NC VCC2 (9 V) Analog OSD R In Analog OSD G In Analog OSD B In Ys1 (analog OSD) Analog R In NC Analog G In 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 OSD- OSD- OSDR In G In B In Ys1 R In 0.1 µF Analog B In 25 B In 0.1 µF B Out Ys2 NC 26 0.1 µF G Out 0.01 µF R Out 100 µF 0.01 µF 1 kΩ VSM Out YM 0.01 µF 100 µF 1 µF 0.1 µF M ○ 0.1 µF YM In 5 0.1 µF VSM Out 4 0.1 µF NC 3 0.01 µF APL Det. 2 100 Ω Black Peak Hold 1 79 NC 0.1 µF ○ M 80 U/Q In 4.7 µF V/I In Ys2 (analog RGB) 27 G In ABL 76 2002-04-01 TA1276AFG Application Circuit 2-Normal Scan (4.43 PAL/4.43 NTSC/3.58 NTSC) V.Sep. HD Out NC 3.3 kΩ 2.2 µF 0.01 µF 0.022 µF 10 kΩ 100 µF 43 42 41 66 NC Reg. 0.01 µF Curve odj. 40 (ext CP in) FBP In (BLK in) 38 72 fsc Out B S/H 32 2.2 µF B-Y OUT 29 3 0.1 µF 28 4 R-Y IN 27 5 B-Y IN 26 0.01 µF 47 µF 0.1 µF 2.2 µF 74 R S/H 0.1 µF 2.2 µF 76 Color Limiter VP Out 29 0.1 µF ○ M 78 Y2 In 0.47 µF 13 18 14 17 15 16 0.01 µF 47 µF 1 µF 1 µF WAC (wide aspect converter) VSM Out 75 Ω 10 kΩ VP Ys2 OSD- OSDR In G In OSDB In Analog G In 21 22 23 24 Ys1 R In 0.1 µF Analog B In 25 B In 0.1 µF 20 NC 19 Analog R In 18 NC 26 0.1 µF Analog OSD B In 17 Ys1 (analog OSD) Analog OSD G In 16 0.1 µF Analog OSD R In 15 B Out 0.1 µF VCC2 (9 V) 14 0.1 µF 13 G Out NC 12 B Out 11 R Out NC 10 G Out 9 NC 8 R Out TEXT GND 1 7 0.01 µF CTI 6 YM 100 µF M ○ 1 kΩ TEXT GND 2 5 ABCL In 4 0.01 µF 3 VCC3 (9 V) 2 0.01 µF 1 µF YM In 19 0.47 µF 0.01 µF 100 µF 12 1 0.1 µF ○ M 80 U/Q In 100 Ω 20 VSM Out 21 11 NC 10 APL Det. 22 79 NC 0.47 µF 2.2 µF 0.1 µF 10 µF 1 kΩ 9 23 Ys2 (analog RGB) 27 0.1 µF 0.1 µF 8 TA8772AN 0.1 µF GND 1 kΩ 1 µF 24 C In 1 kΩ 11 kΩ 1 kΩ 7 SCP 10 µF NC 28 Black Peak Hold 25 GND NC 30 V/I In 6 Y In 2.2 µF 75 NC 0.1 µF 10 µF G S/H 31 77 NC 0.1 µF 10 kΩ NC 33 TA1276AFG IK In 73 Sence In 2 100 Ω 10 kΩ SCL 34 2.2 kΩ 71 NC 100 Ω 75 Ω R-Y OUT 30 SDA 35 2.2 kΩ fsc 1 SCL NC 36 70 SCP Out GND VCC 5 V SDA Digital GND 37 69 SECAM Conto VCC 9 V FBP 10 kΩ 68 NC 0.1 µF Curve NC 39 67 Y1 Out 47 µF NC 44 0.01 µF Y1 Sync In 45 0.1 µF Chroma GND 46 5.1 kΩ Chroma In 47 47 µF 48 5.1 kΩ 49 620 Ω 390 Ω 50 Horizontal Output (SW) 51 DEF VCC (9 V) 52 390 Ω 53 32fH VCO 54 NC 55 AFC Filter 56 Sync Out 57 M : mylar capacitor ○ Horizontal Output DEF GND 2.2 µF 0.1 µF 0.01 µF 58 NC 0.01 µF 100 µF 59 NC 2200 pF 30 kΩ 0.22 µF HD Out VCC1 (5 V) NC M ○ APC Filter 60 12 pF 61 M ○ Sync Out 3.58 MHz X’tal 62 M PAL X’tal V/I Out 65 U/Q Out 12 pF 63 3.58 MHz X’tal 4.43 MHz X’tal 64 1H DL Cont 4.43 MHz X’tal G In ABL 1 kΩ 0.47 µF 77 2002-04-01 TA1276AFG Application Circuit 3-Normal Scan (4.43 PAL/4.43 NTSC/3.58 NTSC/SECAM) 82 pF 1000 pF 1 SCP C IN 24 1000 pF 1 kΩ 48 46 45 44 43 42 41 66 NC 15 10 kΩ DAC 11 R-Y OUT 390 Ω 0.01 µF 620 Ω Reg. 0.01 µF Curve odj. 40 (ext CP in) Cuver NC 39 67 Y1 Out 14 FBP In (BLK in) 38 47 µF 390 Ω 100 µF 3.3 kΩ 2.2 µF 10 kΩ 0.022 µF 47 0.01 µF 49 VCC 9 V VCC 5 V 0.1 µF 50 5.1 kΩ 51 47 µF 52 M : mylar capacitor ○ 5.1 kΩ 53 Horizontal Output (SW) 54 DEF VCC (9 V) 65 U/Q Out 55 32fH VCO 56 NC 57 AFC Filter 58 Horizontal Output Sync Out 59 NC 60 HD Out V.Sep. 12 pF 61 M ○ M ○ DEF GND 10 B-Y OUT 62 NC 91 pF 63 VCC1 (5 V) 16 64 APC Filter 9 M 0.022 pF ○ 3.58 MHz X’tal 17 NC 8 M PAL X’tal 2.2 µF 15 pF 4 MHz X’tal (NR18) 12 pF 18 1 kΩ 2.2 µF 510 Ω 4.43 MHz X’tal 7 47 µF 19 V/I Out 6 1H DL Cont TA1229N 91 pF 0.01 µF Sync Out HD Out 3.58 MHz X’tal 0.1 µF 4.43 MHz X’tal 0.68 pF ○ M 2.2 µF Bell NC 20 Y1 Sync In 5 4.7 MΩ 0.02 µF○ M 0.01 µF 4 SCL Chroma GND 22 Bell Moni 21 NC 3 SDA 0.056 µF Chroma In 100 Ω 27 µH 10 µF 100 µF 100 Ω 24 kΩ 23 0.01 µF 2 2200 pF 10 kΩ 30 kΩ 0.22 µF 92 pF SDA FBP SCL 70 SCP Out SDA 35 71 NC SCL 34 TA1276AFG 72 f sc Out 1 R-Y OUT 30 2 B-Y OUT 29 3 28 4 R-Y IN 27 100 Ω B S/H 32 74 R S/H G S/H 31 2.2 µF 0.1 µF 0.01 µF 5 B-Y IN 26 47 µF 0.1 µF 6 25 7 SCP 24 2.2 µF 0.1 µF 2.2 µF 0.1 µF C In NC 30 76 Color Limiter VP Out 29 77 NC 0.1 µF ○ M 1 kΩ 10 µF 2.2 µF 75 NC 0.1 µF Y In 100 Ω NC 33 73 Sence In 10 µF 75 Ω NC 36 75 Ω 69 SECAM Conto 0.1 µF 10 kΩ 0.1 µF 10 kΩ M ○ 10 kΩ 13 10 kΩ 12 R-Y IN 2.2 kΩ 0.1 µF Digital GND 37 2.2 kΩ M ○ 68 NC VP NC 28 78 Y2 In Ys2 (analog RGB) 27 Ys2 17 15 16 47 µF ABCL In TEXT GND 2 TEXT GND 1 R Out NC G Out NC B Out NC VCC2 (9 V) Analog OSD R In Analog OSD G In Analog OSD B In Ys1 (analog OSD) Analog R In NC Analog G In 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 µF 1 µF VSM Out WAC (wide aspect converter) YM R Out G Out B Out OSD- OSD- OSDR In G In B In NC 26 Ys1 R In Analog B In 25 0.1 µF B In 0.1 µF 0.1 µF 0.01 µF 100 Ω M ○ CTI 0.1 µF VCC3 (9 V) 7 0.1 µF YM In 6 0.1 µF VSM Out 5 0.01 µF 14 4 100 µF 18 3 0.01 µF 13 0.01 µF 2 100 µF 0.47 µF 19 1 0.01 µF 1 µF 1 kΩ 12 NC 20 APL Det. 11 0.47 µF 80 U/Q In 1 µF 21 0.1 µF ○ M 0.47 µF 2.2 µF 22 Black Peak Hold 9 10 79 NC 1 kΩ 0.1 µF 10 µF 1 kΩ 23 V/I In 0.1 µF 8 1 kΩ 0.1 µF 0.1 µF TA8772AN 11 kΩ G In ABL 1 kΩ 0.47 µF 78 2002-04-01 TA1276AFG NC Chroma In Chroma GND Y1 Sync In 390 Ω 0.01 µF 620 Ω 45 44 43 42 41 66 NC Reg. 0.01 µF Curve odj. 40 (ext CP in) Cuver NC 39 67 Y1 Out FBP In (BLK in) 38 47 µF 390 Ω 100 µF 3.3 kΩ 2.2 µF 10 kΩ 0.022 µF 46 0.01 µF NC 47 0.1 µF VCC1 (5 V) 48 5.1 kΩ APC Filter 49 47 µF 3.58 MHz X’tal 50 M : mylar capacitor ○ 5.1 kΩ NC 51 Horizontal Output (SW) 52 DEF VCC (9 V) 53 32fH VCO 54 NC 55 AFC Filter 56 Horizontal Output Sync Out 57 M ○ DEF GND 58 NC 59 V.Sep. 60 HD Out HD Out 61 Sync Out NC 62 65 U/Q Out 2.2 µF 0.1 µF 0.01 µF 63 M PAL X’tal 100 µF 2200 pF 30 kΩ 0.22 µF 64 4.43 MHz X’tal M ○ V/I Out 12 pF 12 pF 3.58 MHz X’tal 1H DL Cont 1 pF 12 pF N-PAL M-PAL X’tal X’tal 0.01 µF Application Circuit 4-Normal Scan (3.58 NTSC/M-PAL/N-PAL) VCC 9 V GND VCC 5 V SDA FBP NC 36 71 NC 0.1 µF 1 R-Y OUT 30 2 B-Y OUT 29 3 28 4 R-Y IN 27 IK In SCL 34 TA1276AFG 72 f sc Out NC 33 73 Sence In B S/H 32 74 R S/H G S/H 31 2.2 µF 0.1 µF 0.01 µF 5 B-Y IN 26 6 25 47 µF 0.1 µF 2.2 µF 0.1 µF 2.2 µF 0.1 µF 10 µF C In GND NC 30 76 Color Limiter VP Out 29 77 NC 0.1 µF ○ M 1 kΩ GND 2.2 µF 75 NC 0.1 µF Y In 100 Ω 2.2 kΩ fsc 10 µF 75 Ω SDA 35 10 kΩ 10 kΩ 70 SCP Out 100 Ω 2.2 kΩ 69 SECAM Conto 75 Ω Digital GND 37 10 kΩ 10 kΩ SCL 68 NC VP NC 28 78 Y2 In Ys2 (analog RGB) 27 Ys2 13 18 14 17 15 16 47 µF TEXT GND 2 TEXT GND 1 R Out NC G Out NC B Out NC VCC2 (9 V) Analog OSD R In Analog OSD G In Analog OSD B In Ys1 (analog OSD) Analog R In NC Analog G In 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 µF WAC (wide aspect converter) YM R Out G Out B Out 0.01 µF 1 µF VSM Out OSD- OSDR In G In OSDB In NC 26 Ys1 R In Analog B In 25 0.1 µF B In 0.1 µF 0.1 µF 0.01 µF M ○ CTI 0.1 µF ABCL In 7 0.1 µF VCC3 (9 V) 6 0.1 µF YM In 5 100 µF 0.47 µF 4 0.01 µF 1 µF 1 kΩ 0.01 µF 3 100 µF 19 2 100 Ω 12 1 0.01 µF 20 VSM Out 11 NC 21 APL Det. 10 0.47 µF 80 U/Q In 2.2 µF 22 79 NC 0.1 µF ○ M 0.47 µF 1 µF 9 Black Peak Hold 23 1 kΩ 0.1 µF 10 µF 1 kΩ 24 0.1 µF 0.1 µF 8 TA8772AN 7 SCP 0.1 µF 1 kΩ V/I In 11 kΩ G In ABL 1 kΩ 0.47 µF 79 2002-04-01 TA1276AFG 43 42 41 32fH VCO DEF VCC (9 V) Horizontal Output (SW) 66 NC NC 39 67 Y1 Out FBP In (BLK in) 38 SCL 34 TA1276AFG NC 33 B S/H 32 74 R S/H G S/H 31 VP Out 29 VSM Out YM In VCC3 (9 V) ABCL In TEXT GND 2 TEXT GND 1 R Out NC G Out NC B Out NC VCC2 (9 V) Analog OSD R In Analog OSD G In Analog OSD B In Ys1 (analog OSD) Analog R In NC Analog G In 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 100 µF 0.01 µF 10 µF C In GND VP (1H) OSD- OSD- OSDR In G In B In Ys2 NC 26 Ys1 R In Analog B In 25 0.1 µF B In 0.1 µF 0.1 µF 0.01 µF 0.01 µF 100 Ω YM 100 µF VSM Out 0.01 µF V/I In (2H) 0.1 µF NC 3 0.1 µF APL Det. 2 1 µF M ○ 0.1 µF Black Peak Hold 1 80 U/Q In 1 kΩ 0.1 µF 2.2 µF V/I In Ys2 (analog RGB) 27 0.1 µF M ○ GND NC 28 78 Y2 In 79 NC U/Q In (2H) Y In NC 30 76 Color Limiter 77 NC 0.1 µF 10 µF 2.2 µF 75 NC M ○ 2.2 kΩ 2.2 µF Y2 In (2H) 47 µF 10 kΩ 100 Ω 10 kΩ 72 fsc Out 100 Ω 75 Ω 71 NC 73 Sence In 2.2 µF SDA 75 Ω SDA 35 10 kΩ 70 SCP Out IK In 2.2 µF VCC 5 V SCL NC 36 SCP VCC 9 V GND Digital GND 37 69 SECAM Conto fsc Ext H/V BLK (2H) 10 kΩ 68 NC Reg. 2.2 kΩ Y1 Out (1H) Curve odj. 40 (ext CP in) Ext CP/BPP (2H) 0.1 µF 44 5.1 kΩ 45 47 µF 46 5.1 kΩ 47 0.01 µF 0.01 µF 48 NC 390 Ω 100 µF 3.3 kΩ 2.2 µF 0.022 µF 49 AFC Filter Y1 Sync In 50 DEF GND Chroma In 51 NC 52 Sync Out 53 HD Out 54 V.Sep. 55 M : mylar capacitor ○ NC 56 M ○ 10 kΩ 2.2 µF 0.1 µF 0.01 µF 0.01 µF 100 µF 2200 pF 57 Chroma GND M PAL X’tal 58 NC 4.43 MHz X’tal 59 NC 1H DL Cont 60 VCC1 (5 V) 61 APC Filter 62 NC 63 Sync Out HD Out M ○ 3.58 MHz X’tal 64 V/I Out U/Q Out (1H) 65 U/Q Out 12 pF V/I Out (1H) 30 kΩ 0.22 µF Application Circuit 5-Double Scan (3.58 NTSC) G In ABL R Out G Out B Out 80 2002-04-01 TA1276AFG AKB Application Circuit +B CRT R G CRT CRT B B 20 to 51 kΩ G 51 pF to 330 pF 1 to 2 V R 3.3 V Z Sence In 73 81 2002-04-01 TA1276AFG Package Dimensions Weight: 1.6 g (typ.) 82 2002-04-01 TA1276AFG RESTRICTIONS ON PRODUCT USE 000707EBA • TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. • The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. • The products described in this document are subject to the foreign exchange and foreign trade laws. • The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. • The information contained herein is subject to change without notice. 83 2002-04-01