SANYO LA76835NM_07

Ordering number : EN7962
Monolithic Linear IC
LA76835NM
For PAL/NTSC Color Television Sets
VIF/SIF/Y/C/Deflection
Implemented in a Single Chip
Overview
The LA76835NM is VIF/SIF/Y/C/Deflection implemented in a single chip for PAL/NTSC color television sets
Functions
• VIF/SIF/Y/C/Deflection implemented in a single chip.
• I2C bus control.
Specifications
Maximum Ratings at Ta = 25°C
Parameter
Maximum supply voltage
Maximum supply current
Symbol
Conditions
Unit
7.0
V
V32 max
7.0
V
V53 max
7.0
V
V74 max
9.3
V
I17 max
25
mA
35
mA
I29 max
Allowable power dissipation
Ratings
V5 max
Pd max
Ta ≤ 65°C *
1.5
W
Operating temperature
Topr
-10 to +65
°C
Storage temperature
Tstg
-55 to +150
°C
* Mounted on a board: 114.3×76.1×1.6mm3 glass epoxy board
Any and all SANYO Semiconductor products described or contained herein do not have specifications
that can handle applications that require extremely high levels of reliability, such as life-support systems,
aircraft's control systems, or other applications whose failure can be reasonably expected to result in
serious physical and/or material damage. Consult with your SANYO Semiconductor representative
nearest you before using any SANYO Semiconductor products described or contained herein in such
applications.
SANYO Semiconductor assumes no responsibility for equipment failures that result from using products
at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition
ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor
products described or contained herein.
D2006 MS PC B8-7038 No.7962-1/50
LA76835NM
Operating Conditions at Ta = 25°C
Parameter
Recommended supply voltage
Symbol
Conditions
Ratings
Unit
V5
5.0
V
V32
V53
5.0
V
5.0
V
V74
9.0
V
Recommended supply current
I17
19
mA
29
mA
Operating supply voltage range
V5 op
4.7 to 5.3
V
V32 op
4.7 to 5.3
V
I29
Operating supply current range
V53 op
4.7 to 5.3
V
V74 op
8.7 to 9.3
V
I19 op
26 to 32
mA
I26 op
24 to 33
mA
Electrical Characteristics Ta = 25°C, VCC1 = V5 = V53 = 5.0V, VCC2 = V74 = 9.0V, ICC1 = I17 = 19mA,
ICC2 = I29 = 29mA
Parameter
Symbol
Ratings
Conditions
min
typ
Unit
max
Circuit voltage, current
IF supply current
I5
V5 = 5V, V76 = 2.5V
42.0
50.0
58.0
mA
RGB supply voltage
V17
I17 = 19mA
8.0
V
Horizontal supply voltage
V29
I29 = 29mA
5.0
V
Video/Vertical supply current
I53
I53 = 5V
CPU Reset operating voltage
VReset
FM supply current
I74
94.0
mA
3.2
3.6
4.0
V
V74 = 9V
7.0
8.0
9.0
mA
CW = 80dBµ, DAC = 0
8.5
9.0
0.2
VIF block
Maximum RFAGC voltage
Minimum RFAGC voltage
VRFH
CW = 80dBµ, DAC = 63
0.0
RF AGC Delay Pt (@DAC = 0)
RFAGC0
DAC = 0
95
RF AGC Delay Pt (@DAC = 63)
RFAGC63
DAC = 63
Input sensitivity
VRFL
Vdc
dBµ
85
dBµ
45
50
dBµ
VOn
No signal IFAGC = “1”
2.9
3.3
3.7
Vdc
Sync signal tip level
VOtip
CW = 80dBµ
1.4
1.7
2.0
Vdc
80dBµ, AM = 78%, fm = 15kHz
1.3
1.4
1.5
Vp-p
VO
Output-3db
0.7
No-signal video output voltage
Video output amplitude
Vi
Vdc
Video S/N
S/N
CW = 80dBµ
43
47
C-S beat level
IC-S
V3.58MHz/V920kHz
54
60
Differential gain
DG
80dBµ, 87.5% Video MOD
DP
80dBµ, 87.5% Video MOD
Differential phase
3.0
dB
dB
8.0
%
1.0
8.0
deg
Maximum AFT output voltage
VAFTH
CW = 80dBµ, frequency variations
4.3
4.8
5.0
Vdc
Minimum AFT output voltage
VAFTL
CW = 80dBµ, frequency variations
0.0
0.2
0.7
Vdc
AFT detection sensitivity
25.0
35.0
mV/kHz
VAFTS
CW = 80dBµ, frequency variations
15.0
APC pull-in range (U)
fPU
CW = 80dBµ, frequency variations
1.0
MHz
APC pull-in range (L)
fPL
CW = 80dBµ, frequency variations
1.0
MHz
SIF block
FM detection output voltage
FM limiting sensitivity
FM detection output
205
SOADJ
SLS
Output -3dB
SF
fm = 100kHz
260
330
mVrms
48
54
dBµ
-0.5
3.0
6.0
dB
48
57
f characteristics
FM detection output distortion
STHD
FM = ±25kHz
AM rejection ratio
SAMR
AM = 30%
SSN
DIN.Andio
57
62
fm = 2.12kHz
1.5
2.5
SIF S/N
De-emph time constant
SNTC
1.0
%
dB
dB
3.5
dB
Continued on next page.
No.7962-2/50
LA76835NM
Continued from preceding page.
Parameter
Symbol
Ratings
Conditions
min
typ
Unit
max
AUDIO block
Maximum gain
AGMAX
Variable range
ARANGE
Frequency characteristics
Mute
AF
AMUTE
Distortion
ATHD
1kHz, Volume = “127”
1kHz, Volume = “0”
20kHz, Volume = “127”
1kHz, AUDIO MUTE = “1”
-3.0
0.0
60
70
-3.0
0.0
70
75
1kHz, Volume = “127”
3.0
dB
dB
3.0
dB
dB
0.5
%
S/N
ASN
DIN.Audio
60
65
dB
Crosstalk
ACT
1kHz, AUDIO SW = “0”
70
75
dB
Chroma block
ACC amplitude characteristics 1
ACCM1_N
Input: +6dB/0dB 0dB = 40IRE
0.8
1.0
1.2
Ratio
ACC amplitude characteristics 2
ACCM2_N
Input: -14dB/0dB
0.7
1.0
1.1
Ratio
100
130
170
%
Ratio
B-Y/Y amplitude ratio
CLRBY
Color control
1
CLRMN
Color MAX/CEN
1.6
1.8
2.2
characteristics
2
CLRMM
Color MAX/MIN
30
45
70
dB
CLRSE
1
1.4
4
%/bit
10
deg
-50
-40
deg
Color control sensitivity
Tint center
Tint control
TINCEN
-10
0
MAX
TINMAX
40
50
MIN
TINMIN
deg
TINSE
1.4
1.55
1.7
deg
Tint dependence on color L
CLRPL
-3.0
0
3
deg
Tint dependence on color H
CLRPH
-3.0
0
3
0.75
0.85
0.95
Ratio
0.20
0.30
0.40
Ratio
95
105
115
deg
105
115
Tint control sensitivity
Demodulation output ratio
RB
R-Y/B-Y
Demodulation output ratio
R-Y/B-Y_GainBalance_DAC,
deg
R-Y/B-Y_Angle_DAC = Center
GB
G-Y/B-Y
R-Y/B-Y_GainBalance_DAC,
R-Y/B-Y_Angle_DAC = Center
Demodulation angle R-Y/B-Y
ANGRB1
R-Y/B-Y_Angle_DAC = Center
Demodulation angle
ANGRB2
R-Y/B-Y_Angle_DAC = Maximum
ANGRB3
R-Y/B-Y_Angle_DAC = Minimum
Demodulation angle G-Y/B-Y
ANGGB1
R-Y/B-Y_Angle_DAC = Center
Demodulation angle
ANGGB2
G-Y_Angle_DAC = 1
deg
R-Y/B-Y control 1
Demodulation angle
95
105
deg
-128
-118
-108
deg
-117
-107
-97
deg
R-Y/B-Y control 2
G-Y/B-Y control
Killer operating point 2
KILL
0dB = 40IRE, ColorKiller ope. = 2
-31
-25
-21
dB
Killer operating point 4
KILL4
0dB = 40IRE, ColorKiller ope. = 4
-33
-27
-22
dB
Killer operating point difference
D_KILL
0.5
2
5
dB
Chroma VCO free-running
CVCOF
KILL-KILL4
-320
0
320
Hz
APC pull-in range (+)
PLINPO
350
APC pull-in range (-)
PLINNO
-350
Hz
frequency
Hz
Static phase error +
SPER_P
Fsc: +200Hz
-15
-5
0
deg
Static phase error -
SPER_N
Fsc: -200Hz
0
5
15
deg
fsc output amplitude
C_FSC
reference data
300
mVp-p
Residual higher harmonic level B
E_CAR_B
300
mVp-p
Residual higher harmonic level R
E_CAR_R
300
mVp-p
Residual higher harmonic level G
E_CAR_G
300
mVp-p
C-BPF1A (3.08MHz)
CBP308
Reference: 3.48MHz
-5.0
-1.5
0.0
dB
C-BPF1B (3.88/3.28MHz)
CBP03
Reference: 3.28MHz
-2.0
0.0
2.0
dB
C-BPF1C (4.08/3.08MHz)
CBP05
Reference: 3.08MHz
-3
0
3
dB
Continued on next page.
No.7962-3/50
LA76835NM
Continued from preceding page.
Parameter
Symbol
Ratings
Conditions
min
typ
Unit
max
OSD block
OSD Fast SW threshold
FSTH
Digital OSD Red output
ROSDDIG0
0.5
0.8
60
1.1
IRE
V
ROSDDIG3
150
IRE
GOSDDIG0
66
IRE
GOSDDIG3
150
IRE
BOSDDIGI0
60
IRE
BOSDDIGI3
150
IRE
amplitude @OSD Cnt: 0
Digital OSD Red output
amplitude @OSD Cnt: 3
Digital OSD Green output
amplitude @OSD Cnt: 0
Digital OSD Green output
amplitude @OSD Cnt: 3
Digital OSD Blue output
amplitude @OSD Cnt: 0
Digital OSD Blue output
amplitude @OSD Cnt: 3
Analog OSD R output amplitude
RRGB
1.0
1.2
1.4
Ratio
GRGB
1.0
1.2
1.4
Ratio
BRGB
1.0
1.2
1.4
Ratio
BRT64
1.9
2.2
2.5
V
BRT127
35
40
45
IRE
BRT0
-45
-40
-35
IRE
Cutoff control (min)
Vbias0
1.9
2.2
2.5
V
Bias control (max)
Vbias255
2.9
3.2
3.5
V
gain match
Analog OSD G output amplitude
gain match
Analog OSD B output amplitude
gain match
RGB output (cutoff drive) block
Brightness
Normal
control
Hi brightness
Max
Low brightness Min
Resolution
Vbiassns
4
mV/Bit
Sub-bias control resolution
Vsbiassns
8
mV/Bit
Drive adjustment
Rbout64
0.60
0.90
1.20
Vp-p
RBout127
1.05
1.35
1.65
Vp-p
Gout10
0.60
0.90
1.20
Vp-p
Gout15
0.70
1.00
1.30
Vp-p
8
10
12
dB
DrGainG
1.5
3.5
5.5
dB
RGB_DC
0
0.2
V
Video signal input 1DC voltage
VIN1DC
2.2
Video signal input 1AC voltage
VIN1AC
Video signal input 2DC voltage
VIN2DC
Video signal input 2AC voltage
VIN2AC
SVO terminal DC voltage
SVO terminal AC voltage
Normal output (R, B) 50IRE
Drive adjustment
Maximum output (R, B) 50IRE
Drive adjustment
Normal output (G) 50IRE
Drive adjustment
Maximum output (G) 50IRE
Drive adjustment
DrGainRB
Output attenuation (R, B)
Drive adjustment
Output attenuation (G)
RGB output DC difference voltage
Video SW block
2.5
2.8
1
V
Vp-p
2.2
2.5
2.8
SVODC
1.7
2
2.3
V
SVOAC
1.7
2
2.3
Vp-p
1
V
Vp-p
Continued on next page.
No.7962-4/50
LA76835NM
Continued from preceding page.
Parameter
Symbol
Ratings
Conditions
min
typ
Unit
max
Video block
Video overall gain
CONT127
8.0
10.0
12.0
dB
(Contrast max)
Contrast adjust-
Normal/max
CONT90
-4.5
-3.0
-1.5
dB
ment
Min/max
CONT0
-18.0
-15.0
-12.0
dB
Video frequency
FILTER
BW1
1.4MHz/100kHz
-6.0
-3.0
-1.0
dB
characteristics
SYS = 0
BW2
1.8MHz/100kHz
-6.0
-3.0
-1.0
dB
BW3
3.4MHz/100kHz
-6.0
-3.0
-1.0
dB
Ctrap
SHARPNESS = 0
dB
Characteristics
FILTER
SYS = 2
FILTER
SYS = 4
-38.0
-28.0
-24.0
DC transmission amount 1
ClampG1
DCREST = 00
95.0
100.0
105.0
%
DC transmission amount 2
ClampG2
DCREST = 01
100.0
105.0
110.0
%
DC transmission amount 3
ClampG3
DCREST = 10
104.0
109.0
116.0
%
DC transmission amount 4
ClampG4
DCREST = 11
108.0
113.0
118.0
%
FILTER SYS = 000
530.0
580.0
630.0
ns
Chroma trap amount
Y-DL TIME
TRAP1
TdY1
TRAP2
TdY2
FILTER SYS = 010
350.0
400.0
450.0
ns
TRAP OFF
TdY3
FILTER SYS = 100
300.0
350.0
400.0
ns
Pre-Shoot adjustment 1
PreShoot1
Pre-shoot adj. = 00
0.92
0.97
1.02
Pre-Shoot adjustment 2
PreShoot2
Pre-shoot adj. = 11
1.08
1.13
1.18
Black stretch
Max
BKSTmax
Gain = 10, Start = 01
23.0
28.0
33.0
IRE
gain
Mid
BKSTmid
Gain = 01, Start = 01
15.0
20.0
25.0
IRE
Min
BKSTmin
Gain = 00, Start = 01
8.0
12.0
18.0
IRE
Black stretch
Max
BKSTTHmax
Bain = 01, Start = 10
-8.0
0.0
8.0
IRE
start
(60IRE ∆V)
BKSTTHmid
Bain = 01, Start = 01
-8.0
0.0
8.0
IRE
BKSTTHmin
Bain = 01, Start = 00
-8.0
0.0
8.0
IRE
Mid
(50IRE ∆V)
Min
(40IRE ∆V)
Sharpness
Trap 1 mid
Sharp32T1
F = 2.2MHz, FILTER SYS = 000
5.0
8.0
11.0
dB
variable range 1
Trap 1 max
Sharp63T1
F = 2.2MHz, FILTER SYS = 000
8.5
11.5
13.5
dB
Trap 1 min
Sharp0T1
F = 2.2MHz, FILTER SYS = 000
-6.5
-3.5
-0.5
dB
Sharpness
Trap 2 mid
Sharp32T2
F = 3MHz, FILTER SYS = 010
5.5
8.5
11.5
dB
variable range 2
Trap 2 max
Sharp63T2
F = 3MHz, FILTER SYS = 010
9.5
12.5
15.5
dB
Trap 2 min
Sharp0T2
F = 3MHz, FILTER SYS = 010
-7.0
-4.0
-1.0
dB
Sharpness
Trap off mid
Sharp32T3
F = 5MHz, FILTER SYS = 100
5.0
8.0
11.0
dB
variable range 3
Trap off
Sharp63T3
F = 5MHz, FILTER SYS = 100
8.5
11.5
14.5
dB
Sharp0T3
F = 5MHz, FILTER SYS = 100
max
-5.0
-2.0
1.0
dB
White peak
1
WPL1
APL = 100%, WPL = 0
158.0
168.0
178.0
IRE
limiter
2
WPL2
APL = 100%, WPL = 1
107.0
117.0
127.0
IRE
Trap off min
operating point
3
WPL3
APL = 100%, WPL = 2
81.0
91.0
101.0
IRE
4
WPL4
APL = 100%, WPL = 3
56.0
66.0
76.0
IRE
Continued on next page.
No.7962-5/50
LA76835NM
Continued from preceding page.
Parameter
Symbol
Ratings
Conditions
min
typ
Unit
max
Y gamma
1
YG1
YGAMMA = 01
89.0
93.0
97.0
effective point
2
YG2
YGAMMA = 10
79.0
83.0
87.0
%
3
YG3
YGAMMA = 11
75.0
79.0
83.0
%
GRAY, MODE = 1, CROSS.B/W = 2
11.5
15.0
18.0
IRE
0.1
0.4
0.7
V
fH
15576
15734
15891
Hz
fH PULL
±400
Horizontal output pulse width
Hduty
36.1
37.6
39.1
µs
Horizontal output pulse
V Hsat
0
0.2
0.4
V
GRAY MODE LEVEL
Horizontal/vertical blanking
GRAY
RGBBLK
%
output level
Deflection block
Horizontal free-running
frequency
Horizontal pull-in range
Hz
saturation voltage
Horizontal AFC control current M
HAFCM
AFCGAIN: 0
130
180
230
µA
Horizontal AFC control current H
HAFCH
AFCGAIN: 1
190
240
290
µA
Horizontal AFC control current L
HAFCL
AFCGAIN: 0
50
90
130
µA
9.5
10.5
11.5
µs
Horizontal output pulse phase
HPHCEN
Horizontal position
HPHrange
±2.2
5bit
µs
adjustment range
Horizontal position adjustment
HPHstep
200.0
ns
maximum variability width
Horizontal 2nd pull-in range
HPMIN
0.5
1.0
3.0
µs
HPMAX
15.2
16.0
17.0
µs
VFR60
59.4
60.0
60.6
Hz
Hz
(min)
Horizontal 2nd pull-in range
(max)
Vertical free-running frequency
fV PULL
54.0
60.0
69.0
Horizontal output stop voltage
Hstop
3.30
3.60
3.90
V
Horizontal
left @0
BLKL0
BLKL: 0000
8200
9000
9800
ns
blanking
left @15
BLKL15
BLKL: 1111
15200
16000
16800
ns
right @0
BLKR0
BLKR: 0000
2700
3500
4200
ns
right @15
BLKR15
BLKR: 1111
-1100
-300
500
ns
Vertical pull-in range
Sand castle
H
pulse crest
M1
SANDH
5.3
5.6
5.9
V
SANDM1
3.7
4.0
4.3
V
L
SANDL
0.1
0.4
0.7
V
Burst gate
Width
BGPWD
3.5
4.0
4.5
µs
pulse
Phase
BGPPH
4.9
5.4
5.9
µs
VXRAY
0.64
0.69
0.74
V
value
X-ray protection circuit
operating voltage
Vertical screen size compensation
Vertical ramp
NTSC@64
Vsnt64
VSIZE: 1000000
0.75
0.85
0.95
Vp-p
output ampli-
NTSC @0
Vsnt0
VSIZE: 0000000
0.40
0.50
0.60
Vp-p
Vsnt127
VSIZE: 1111111
1.05
1.20
1.35
Vp-p
VSIZE0.75: 1
0.70
0.80
0.90
ratio
VCOMP: 000
0.83
0.93
0.97
ratio
Vdc
tude
NTSC@127
Vertical size 0.75
VSEZE75
High-voltage dependent vertical size correction
Vertical size correction @0
Vsizecomp
Vertical screen position adjustment/linearity adjustment/S-shaped correction adjustment
Vertical ramp
NTSC@32
Vdcnt32
VDC: 100000
2.25
2.40
2.55
DC voltage
NTSC@0
Vdcpal0
VDC: 000000
1.85
2.00
2.15
Vdc
NTSC@63
Vdcpal63
VDC: 111111
2.65
2.80
2.95
Vdc
Continued on next page.
No.7962-6/50
LA76835NM
Continued from preceding page.
Parameter
Symbol
Ratings
Conditions
min
typ
Unit
max
Vertical
@16
Vlint16
V.LIN_TOP: 10000
0.70
1.00
1.30
ratio
linearity
@0
Vlint00
V.LIN_TOP: 00000
0.40
0.70
1.00
ratio
@31
Vlint31
V.LIN_TOP: 11111
0.90
1.20
1.50
ratio
Vertical linearity
@16
Vlinb16
V.LIN_BOTTOM: 10000
0.70
1.00
1.30
ratio
BOTTOM
@0
Vlinb0
V.LIN_BOTTOM: 00000
0.40
0.70
1.00
ratio
@31
Vlinb31
V.LIN_BOTTOM: 11111
0.90
1.20
1.50
ratio
Vertical
@16
VScor16
VSC: 10000
0.73
0.88
1.03
ratio
S-shaped
@0
VScor0
VSC: 00000
1.12
1.27
1.32
ratio
@31
VScor31
VSC: 11111
0.49
0.64
0.79
ratio
Raster Cut
TOP
RASCUTT
Raster_cut: 1
59
64
69
line
BOTTOM
RASCUTB
218
223
228
line
H Phase BOW
@8
HBOW8
H_Phase_BOW: 1000
-1300
-1000
-700
ns
@0
HBOW0
H_Phase_BOW: 0000
-300
0
300
ns
H_Phase_BOW: 1111
correction
Raster_cut: 1
@15
HBOW15
700
1000
1300
ns
H Phase
@8
HANG8
H_Phase_ANGLE: 1000
-1200
-900
-600
ns
ANGLE
@0
HANG0
H_Phase_ANGLE: 0000
-300
0
300
ns
@15
HANG15
H_Phase_ANGLE: 1111
600
900
1200
ns
11.0
12.0
13.0
µs
HS/VS/VBLK
HS output pulse width
PWHS
VS output pulse width
PWVS
22.0
25.0
28.0
µs
Vertical
@0
VBLK0
V_BLK_Select: 00
20
22
24
H
Blanking period
@1
VBLK1
V_BLK_Select: 01
34
36
28
H
@2
VBLK2
V_BLK_Select: 10
44
46
48
H
@3
VBLK3
V_BLK_Select: 11
51
53
55
H
Horizontal screen size adjustment
East/West DC
@32
EWdc32
EWDC: 100000
1.90
2.30
2.70
Vdc
Voltage
@0
Ewdc0
EWDC: 000000
0.90
1.30
1.70
Vdc
@63
Ewdc63
EWDC: 111111
2.90
3.30
3.70
Vdc
0.1
0.3
0.50
V
High-voltage dependent horizontal size compensation
Horizontal size compensation@0
Hsizecomp
HCOMP: 000
Pincushion correction
East/West
@32
EWamp32
EWAMP: 100000
0.90
1.30
1.70
Vp-p
amplitude
@0
EWamp0
EWAMP: 000000
-0.40
0.00
0.40
Vp-p
@63
EWamp63
EWAMP: 111111
2.20
2.60
3.00
Vp-p
@32
Ewtilt32
EWTILT: 100000
-0.40
0.00
0.40
V
@0
EWtilt0
EWTILT: 000000
-1.40
-1.00
-0.6
V
@63
EWtilt63
EWTILT: 111111
0.60
1.00
1.40
V
Tilt Correction
East/West tilt
Corner Correction
East/West
top
EWcorTOP
CORTOP: 1111-0000
0.30
0.70
1.10
V
corner
bottom
EWcorBOT
CORBOTTOM: 1111-0000
0.30
0.70
1.10
V
Continued on next page.
No.7962-7/50
LA76835NM
Package Dimensions
unit : mm
3174A
64
0.8
23.2
20.0
41
65
80
17.2
14.0
40
25
24
1
0.8
0.35
0.15
0.1 (2.7)
3.0max
(0.8)
SANYO : QIP80E(14X20)
No.7962-8/50
LA76835NM
Block Diagram and Application Circuit Example
66
67
0.01µF
100µF
0.47µF
600Ω
100kΩ
330Ω
1µF
1000pF
0.01µF
0.01µF 3kΩ
50Ω
10Ω
IFSW1
0.01µF (M)
0.022µF (M)
65
66
67
68
69
70
71
64
NC
72 NC
73
74
75
76
77
63
62
GND
61
VCO
59
SPLL
VIDEO
AMP
A2C
PLL
60
BPF
SW
IF AGC
DC
VOL
RF AGC
5V
NC
57
56
9
AFT
VIDEO
DET
BPF
LIM
ANP
8
BUS
VIF
FM
DET
58
7
54
CLMP
VIDEO
SW
53
TRAP
DELAY
LINE
PEAKING
CORING
BLACK
STRETOH
DC
REST
12
52
13
51
NC
SW
14
50
V/C
GND
49
48
APC1
ACC
KILLER
47
VCO
TINT
TINT
SYNC
SEP
CB.CR
SW
CLMP
DELAY
COLOR
RGB
MATRIX
OSD
SW
17
3.58
18
46
0.47µF
45
CW
KIL
FEP
43
1/256
AFC2
44
5V VCC
44
HOR
C/D
HOR
VCO
10kΩ
20
22
E/W
21
42
41
40
38
GND
37
39
X-RAY
25
26
27
0.1µF
0.1µF 75Ω
75Ω
HOR
GND
4.7kΩ
1kΩ
METAL FILM
±1%
0.01µF
1µF
10µF
3kΩ
0.015µF
0.01µF
(M)
10µF
0.47µF 0.47µF
28 +5V
29
30
31
32
33
34
35
36
VM
AMP
RESET
24
VDD
CPU
RESET
23
GND
VER
RAMP
HOR
VCC
HOR
OUT
PHASE
AFC1 SHIFTER
VER
SEP
VER
C/D
19
DRIVE/OUT-OFF
AUTO
FLESH
HS/VS
16
5V
5V
VCC VCC
15
CONTRAST
BRIGHT
COLOR
CLAMP
DEMO
2ND AMP
BPF
IST AMP
BPF
CLMP
CL AMP
OSD
FIX GAIN
ERIGHT
11
24kΩ
24kΩ
5V VCC
55
ABL
10
1µF
5.6kΩ
1µF
16kΩ
(M)
100Ω
69
71
73
74
75
30kΩ
78
6
40
39
38
37
35
33
32
30
29
28
27
26
25
1kΩ
DELAY
(9US)
+7.6V
+7.6V
1
+7.6V
4
5
6
NC
LC4528B
3
10kΩ
2
1.5kΩ
7
16 15 14 13 12 11 10
2kΩ 10kΩ
WIDTH(12US)
1500pF
2kΩ
20kΩ
2200pF
76
9V
0.01µF
79
5
OFFSW1
0.047µF
20
80 IF GND
4
100µF
16pF
19
1µF
48
75Ω
1µF
20kΩ
17
0.01µF
0.01µF
3
14
GND
2
20kΩ
16
0.01µF
18
50
1kΩ
15
0.01µF
53
0.01µF
52B
52A
1kΩ
1µF
0.01µF
1µF
75Ω
0.01µF
1kΩ
75Ω
54B
54A
100µF
1kΩ
55
10
680kΩ
11A
11B
12A
12B
13A
13B
100kΩ
1µF
100pF
0.47µF
7
56
9
1µF
2kΩ
100pF
CLK
100Ω
8
0.1µF 100Ω
DETA
82kΩ
100kΩ
6
77
79
50Ω
1
5
0.01µF
100µF
27
8
9
NC
OMB06078
No.7962-9/50
LA76835NM
Test Conditions Ta = 25°C, VCC1 = V5 = V53 = 5.0V, VCC2 = V74 = 9.0V, ICC1 = I17 = 19mA, ICC2 = I29 = 29mA
Circuit voltage, current
Parameter
IF supply current (pin 5)
Symbol
Test point
Input signal
No signal
I5
5
Test method
Apply a voltage of 5.0V to pin 5 and measure
Bus conditions
Initial
the incoming DC current [mA].
(IF AGC (76pin) 2.5V)
RGB supply voltage
Horizontal supply voltage
Video/vertical supply current
CPU Reset operation voltage
Apply a current of 19mA to pin 17 and
V17
17
measure the voltage at pin 17.
29
measure the voltage at pin 29.
53
measure the incoming DC current [mA].
35
through pin 32 and measure the pin 32
V29
Apply a current of 29mA to pin 29 and
I53
Apply a voltage of 5.0V to pin 53 and
Vreset
Allow the current to flow slightly at a time
Initial
Initial
Initial
Initial
voltage at a time when the pin 35 voltage
rises.
32
IF supply current (pin 74)
No signal
I74
74
Apply a voltage of 9.0V to pin 74 and
Initial
measure the incoming DC current [mA].
No.7962-10/50
LA76835NM
VIF Block Input Signals and Test Conditions
1. Input signals must all be input to the PIF IN (pin 79) in the Test Circuit.
2. All input signal voltage values are the levels at the VIF IN (pin 79) in the Test Circuit.
3. Pin 34 = 5V
4. Signal contents and signal levels.
Input signal
Waveform
Conditions
SG1
45.75MHz
CW
42.17MHz
SG2
CW
41.25MHz
SG3
CW
SG4
Frequency variable
CW
45.75MHz
SG5
87.5% Video Mod.
10-stairstep wave
(Subcarrier: 3.58MHz)
45.75MHz
SG6
fm = 15kHz, AM = 78%
5. Before measurement, adjust the DAC as follows.
Parameter
Test point
Video
Level DAC
Input signal
SG6, 80dBµ
Adjustment
Set the output level at pin 56 as close to 1.4Vp-p as possible.
56
No.7962-11/50
LA76835NM
VIF Block Test Conditions
Input signal
Maximum RF AGC
Symbol
Test point
77
voltage
Minimum RF AGC
VRFL
RF AGC
(@DAC
Delay Pt
= 0)
(@DAC
77
Measure the DC voltage at pin 77.
RF.AGC = "111111"
Obtain the input level at which the DC voltage at
RF.AGC = "000000"
pin 77 becomes 4.5V.
Obtain the input level at which the DC voltage at
RFAGC63
RF.AGC = "111111"
pin 77 becomes 4.5V.
= 63)
Input sensitivity
Bus conditions
RF.AGC = "000000"
80dBµ
SG1
RFAGC0
Test method
Measure the DC voltage at pin 77.
80dBµ
SG1
77
voltage
Input signal
SG1
VRFH
SG6
Vi
56
Using an oscilloscope, observe the level at pin 56
and obtain the input level at which the waveform's
p-p value becomes 1.0Vp-p.
No-signal
Von
56
video output voltage
Sync signal tip level
No signal
56
Video output
Vo
56
amplitude
Video S/N
S/N
56
IF.AGC = “1”
pin 56.
SG1
Votip
Set IF AGC = “1” and measure the DC voltage at
Measure the DC voltage at pin 56.
80dBµ
SG6
Using an oscilloscope, observe the level at pin 56
80dBµ
and measure the waveform’s p-p value.
SG1
Measure the noise voltage at pin 56 with an RMS
80dBµ
voltmeter through a 10kHz to 4.2MHz band-pass
filter. ···· Vsn
20Log (1.0/Vsn)
C-S beat level
IC-S
56
SG1
Input a 80dBµ SG1 signal and measure the DC
SG2
voltage (V76) at pin 76. Mix SG1 = 74dBµ, SG2 =
SG3
69dBµ, and SG3 = 49dBµ to enter the mixture in
the VIF IN. Apply V76 to pin 76 from an external
DC power supply. Using a spectrum analyzer,
measure the difference between pin 56’s 3.58MHz
component and 920kHz component.
Differential gain
SG5
DG
56
Differential phase
DP
Maximum AFT
VAFTH
7
output voltage
Minimum AFT
VAFTL
7
output voltage
AFT detection sensitiv-
VAFTS
7
ity
80dBµ
SG5
56
Using a vector scope, measure the level at pin 56.
Using a vector scope, measure the level at pin 56.
80dBµ
SG4
Set and input the SG4 frequency to 44.75MHz.
80dBµ
Measure the DC voltage at pin 7 at that moment.
SG4
Set and input the SG4 frequency to 46.75MHz.
80dBµz
Measure the DC voltage at pin 7 at that moment.
SG4
Adjust the SG4 frequency and measure frequency
80dBµz
deviation ∆f when the DC voltage at pin 7 changes
from 1.5V to 3.5V.
VAFTS = 2000/∆f [mV/kHz]
APC pull-in
range (U), (L)
fPU, fPL
56
SG4
Connect an oscilloscope to pin 56 and adjust the
80dBµ
SG4 frequency to a frequency higher than
45.75MHz to bring the PLL into unlocked mode.
(A beat signal appears.) Lower the SG4 frequency
and measure the frequency at which the PLL locks
again. In the same manner, adjust the SG4 frequency to a lower frequency to bring the PLL into
unlocked mode. Higher the SG4 frequency and
measure the frequency at which the PLL locks
again.
No.7962-12/50
LA76835NM
SIF Block (FM block) Input Signals and Test Conditions
Unless otherwise specified, the following conditions apply when each measurement is made.
1. Bus control condition: IF.AGC. = "1", FM.MUTE = "0"
2. IFSW1 = "ON", pin 34 = 5V
3. Input signals are input to pin 69 and the carrier frequency is 4.5MHz.
Parameter
FM detection
Symbol
Test point
SOADJ
75
output voltage
Input signal
Test method
90dBµ,
Measure the FM detection output (400Hz com-
fm = 400Hz,
ponent) of pin 75.
Bus conditions
FM = ±25kHz
FM limiting
SLS
75
sensitivity
fm = 400Hz,
Measure the input level (dBµ) at which the 400Hz
FM = ±25kHz
component of the FM detection output at pin 75
becomes -3dB relative to SV1.
FM detection
SF
75
output f characteristics
(fm = 100kHz)
90dBµ,
Set IFSW1 = "OFF".
fm = 100kHz
Measure the FM detection output of pin 75.
FM = ±25kHz
···· [mVrms]
SF = 20Log (SV1/SV2) [dB]
FM detection output
STHD
75
distortion
90dBµ,
Measure the distortion factor of the 400Hz com-
fm = 400Hz,
ponent of the FM detection output at pin 75.
FM = ±25kHz
AM rejection ratio
SAMR
75
90dBµ,
Measure the 400kHz component of the FM detec-
fm = 400Hz,
tion output at pin 75.
AM = 30%
···· SV3 [mVrms]
Assign the measured value to SV3.
SAMR = 20Log (SV1/SV2) [dB]
SIF.S/N
90dBµ,
SSN
75
CW
Measure the noise level (DIN AUDIO) at pin 75.
···· SV4 [mVrms]
SSN = 20Log(SV1/SV4) [dB]
de-emphtime constant
SNTC
75
90dBµ,
Measure the 2.12kHz component of the FM
fm = 2.12kHz
detection output at pin 75.
FM = ±25kHz
···· SV5 [mVrms]
SNTC = 20Log (SV1/SV5) [dB]
No.7962-13/50
LA76835NM
Audio Block Input Signals and Test Conditions
Unless otherwise specified, the following conditions apply when each measurement is made.
1. Bus control condition:
AUDIO.MUTE = "0", AUDIO.SW = "1", VOL.FIL = "0", IF.AGC. = "1"
2. Input 4.5MHz, 90dBµ and CW at pin 69.
3. Pin 34 = 5V
4. Enter an input signal from pin 66.
Parameter
Maximum gain
Symbol
Test point
AGMAX
73
Input signal
Test method
1kHz, CW
Measure the 1kHz component at the pin 73.
500mVrms
···· V1 [mVrms]
Bus conditions
VOLUME = "1111111"
AGMAX = 20Log (V1/500) [dB]
Variable range
ARANGE
73
1kHz, CW
Measure the 1kHz component at the pin 73.
500mVrms
···· V2 [mVrms]
VOLUME = "0000000"
ARANGE = 20Log (V1/V2) [dB]
Frequency
AF
73
characteristics
20kHz, CW
Measure the 20kHz component at the pin 73.
500mVrms
····V3 [mVrms]
VOLUME = "1111111"
AF = 20Log (V3/V1) [dB]
Mute
AMUTE
73
1kHz, CW
Measure the 20kHz component at the pin 73.
VOLUME = "1111111"
500mVrms
····V4 [mVrms]
AUDIO.MUTE = ”1”
AMUTE = 20Log (V1/V4) [dB]
Distortion
ATHD
73
S/N
1kHz, CW
Measure the distortion of the 1kHz component at
500mVrms
the pin 73.
No signal
ASN
73
Measure the noise level (DIN AUDIO) at the pin
VOLUME = "1111111"
VOLUME = "1111111"
73.
····V5 [mVrms]
ASN = 20Log (V1/V5) [dB]
Crosstalk
ACT
73
1kHz, CW
Measure the 1kHz component at the pin 73.
VOLUME = "1111111"
500mVrms
····V6 [mVrms]
AUDIO.SW = "0"
ACT = 20Log (V1/V6) [dB]
No.7962-14/50
LA76835NM
Chroma Block Input Signals and Test Conditions
Unless otherwise specified, the following conditions apply when each measurement is made.
1. VIF, SIF blocks: No signal
2. Y input to pin 52:
Unless otherwise specified, the deflector must be locked to the synchronous signal when the 0 (IRE) signal and the
horizontal/vertical composite signal are entered.
3. C input: C IN (pin 54) input
4. Bus control conditions:
Set red and blue drives to DAC at which the Y-signal level of pins 18, 19 and 20 becomes as close to R = G = B as
possible. Assume here that Gamma Def. is 1 (default), Video SW=”1”, and C.Ext=”1”. Set the following conditions
unless otherwise specified.
5. Adjust an external X-tal of pin 46 so that the series capacity and resistor impedance (Z) become as follows:
Z=0deg @3.579545MHz±10Hz
-40±[email protected]
6. How to calculate the demodulation ratio and angle as follows:
R-Y axis
B-Y axis angle = tan-1(B(0)/B(270))+270°
R-Y axis angle = tan-1(R(180)/R( 90))+90°
G-Y axis angle = tan-1(G(270)/G(180))+180°
90°
R(90)
R(180)
B(270)
0°
180°
B(0)
B-Y axis
G(180)
G(270)
G-Y axis
270°
No.7962-15/50
LA76835NM
Chroma input signal:
C-1
40IRE
Burst
0° 90° 180° 270°
3.58MHz
77IRE signal (L-77)
77 IRE
0 IRE
C-2
40IRE
Burst
62.5IRE
3.58MHz 346°
C-3
40IRE
Burst
3.48MHz
CW
(If a frequency is specified, use the specified frequency.)
C-4
40IRE
28° 73° 118° 163°
C-5
35µs
Burst
3.53MHz
Chroma
No.7962-16/50
LA76835NM
Chroma Block Test Conditions
Parameter
Symbol
1
ACCM1
ACC
Test point
Bout
amplitude
20
characteris-
Input signal
Test method
C-1
Measure the output when 0dB is applied to the
0dB
chroma input and the output amplitude when +6dB
+6dB
is applied to the chroma input and calculate the
tics
Bus conditions
ratio between them.
ACCM1 = 20Log (+6dBdata/0dBdata)
2
ACCM2
C-1
Measure the output when 0dB is applied to the
-14dB
chroma input and the output amplitude when
-14dB is applied to the chroma input and calculate
the ratio between them.
ACCM2 = 20Log (-14dBdata/0dBdata)
CLRBY
B-Y/Y amplitude
20
ratio
YIN: L77
Measure the Y system’s output level.
No signal
···· V1
C-2
Input a signal to the CIN (only sync signal to the
YIN) and measure the output level.
CLRBY = 100×(V2/V1)+15%
Color
1
C-3
CLRMN
20
control
characteris-
Measure the output amplitude V1 at color control
Color: 1111111 (Max)
MAX mode and output amplitude V2 at color con-
Color: 1000000 (NOM)
trol NOM mode.:
tics
CLRMN = V1/V2
2
Measure the output amplitude V3 at color control
CLRMM
Color: 0000000 (Min)
MIN mode.
CLRMM = 20Log (V1/V3)
Color control
CLRSE
C-3
20
sensitivity
Measure the output amplitude V4 at color control
Color: 1011010
90 mode and output amplitude V5 at color control
Color: 0100110
38 mode.
CLRSE = 100×(V4-V5)/(V2×52)
Tint center
C-1
TINCEN
20
Tint control
MAX
C-1
TINMAX
Measure each part of the output waveform and
TINT: 1000000
calculate the B-Y axis angle.
20
Measure each part of the output waveform and
TINT: 1111111
calculate the B-Y axis angle.
TINMAX = B-Y axis angle-TINCEN
MIN
Measure each part of the output waveform and
TINMIN
TINT: 0000000
calculate the B-Y axis angle.
TINMIN = B-Y axis angle-TINCEN
Tint control sensitivity
C-1
TINSE
20
Measure the angle A1 at TINT control 85 mode
TINT: 1010101
and angle A2 at TINT control 42 mode.
TINT: 0101010
TINSE = (A1-A2)/43
Tint
L
C-1
CLRPL
20
dependence
on color
Measure the angle of B-Y axis with Color: 44 and
COLOR: 00101100
determine CLRPL.
CLRPL = B-Y axis angle-TINCEN
H
CLRPH
Measure the angle of B-Y axis with Color: 84 and
COLOR: 01010100
determine CLRPH.
CLRPH = B-Y axis angle-TINCEN
Continued on next page.
No.7962-17/50
LA76835NM
Continued from preceding page.
Parameter
R-Y/B-Y
Symbol
Test point
RB
18
Demodulation
output ratio
Input signal
Test method
Bus conditions
YIN: L77
Input a signal to YIN and adjust DAC in R and B
Color: 1000000
C-1:
drives so that the Y output levels at pins 18 and 20
Adjustment value in
No signal
become as close to the level at 19 as possible. (*1)
B and R drives: *1
After that, input 0 IRE to YIN and C-3 to CIN.
R-Y/B-Y
19
YIN: 0 IRE
Measure BOUT output amplitude Vb and ROUT
C-3
output amplitude Vr and calculate RB=Vr/Vb.
20
Demodulation
GB
C-3
19
output ratio
G-Y/B-Y
Measure GOUT output amplitude Vg and
Color: 1000000
calculate GB = Vg/Vb.
Adjustment value in
For the R/B Drive, the adjustment value: *1
B and R drives: *1
applies.
Demodulation
C-1
ANGRB1
20
angle R-Y/B-Y
Measure each output level of the BOUT and ROUT
and calculate the angles of the B-Y axis and R-Y
axis.
ANGBR1 = (R-Y angle)-(B-Y angle)
18
Demodulation
C-1
ANGRB2
20
angle R-Y/B-Y
With R-Y/B-Y angle set at maximum, carry out the
R-Y/B-Y angle
same measurement as for ANGRB1.
1111
ANGBR2 = (R-Y angle)-(B-Y angle)
Control 1
18
Demodulation
C-1
ANGRB3
20
angle R-Y/B-Y
With R-Y/B-Y angle set at minimum, carry out the
R-Y/B-Y angle
same measurement as for ANGRB1.
0000
ANGBR3 = (R-Y angle)-(B-Y angle)
Control 2
Reset R-Y/B-Y angle to 1000.
18
Demodulation
C-1
ANGGB1
19
angle G-Y/B-Y
Measure each output level of the GOUT and
calculate the angle of the G-Y axis.
ANGBG1 = (G-Y angle)-(B-Y angle)
Demodulation
C-1
ANGGB2
19
angle G-Y/B-Y control
Measure each output level of the GOUT and
G-Y_Angle: 1
calculate the angle of the G-Y axis.
ANGBG2 = (G-Y angle)-(B-Y angle)
Killer operating
20
point 2
Killer operating
C-3
KILL
20
point 4
Killer operating
C-3
KILL
D_KILL
Reduce the input signal until the output level
Filter Sys: 1
becomes 50mVp-p or less. Measure the input level
C. Bypass: 0
at that moment.
ColorKillerope.: 2
Reduce the input signal until the output level
Filter Sys: 1
becomes 50mVp-p or less. Measure the input level
C. Bypass: 0
at that moment.
ColorKillerope.: 4
D_KILL = KILL-KILL4
point difference
Chroma VCO
CVCOF
44
free-running
CIN:
Measure oscillation frequency f.
No signal
CVCOF = f-3579545 (Hz)
frequency
APC pull-in range (+)
C-1
PLINP0
20
Decrease the chroma fsc frequency from
3.579545MHz+1000Hz and measure the frequency
at which the VCO locks.
APC pull-in range (-)
C-1
PLINN0
20
Increase the chroma fsc frequency from
3.579545MHz-1000Hz and measure the
frequency at which the VCO locks.
Static phase error (+)
C-1
SPER_P
20
Set the fsc frequency to 3.579545MHz+200Hz,
measure the B-Y axis angle.
SPER_P = B-Y axis angle-TINCEN
Continued on next page.
No.7962-18/50
LA76835NM
Continued from preceding page.
Parameter
Static phase error (-)
Symbol
Test point
SPER_N
Input signal
C-1
20
Test method
Bus conditions
Set the fsc frequency to 3.579545MHz-200Hz,
measure the B-Y axis angle.
SPER_N = B-Y axis angle-TINCEN
fsc output amplitude
C_FSC
C-1
Measure 3.58MHz CW output amplitude at pin 44.
C-1
Measure the 7.16MHz component output amplitude
Burst only
at pin 20.
44
Residual higher
E_CAR_B
20
harmonic level B
Residual higher
E_CAR_R
Rout
Burst only
harmonic level R
Measure the 7.16MHz component output amplitude
at pin 18.
18
Residual higher
E_CAR_G
Gout
harmonic level G
C-1
Measure the 7.16MHz component output amplitude
Burst only
at pin 19.
19
Chroma BPF Block Test Conditions
Band-pass amplitude
C-3
CBP308
20
characteristic 3.08MHz
Measure V5 output amplitude. Set the chroma
FILTER.SYS: 1
frequency (CW) to 3.08MHz and measure V6
C.BYPASS: 0
output amplitude.
CBE308 = 20Log (V6/V5)
Band-pass amplitude
C-3
CBP03
20
characteristic
Measure V7 output amplitude when the chroma
FILTER.SYS: 1
frequency (CW) is 3.28MHz and V8 output
C.BYPASS : 0
amplitude when it (CW) is 3.88 MHz.
3.88/3.28MHz
CBE = 20Log (V8/V7)
Band-pass amplitude
characteristic
4.08/3.08MHz
C-3
CBP05
20
Set the chroma frequency (CW) to 4.08MHz and
FILTER.SYS: 1
measure V9 output amplitude.
C.BYPASS: 0
CBE05 = 20Log (V9/V6)
No.7962-19/50
LA76835NM
Video Block Input Signals and Test Conditions
Chroma input signal* chroma or burst signal: 40 IRE
Y input signal: 1001RE (714mV)
Bus control bit conditions: Initial test state
0IRE signal (L-0): NTSC standard sync signal
PEDESTAL LEVEL
H SYNC
4.7µs
(H/V SYNC: 40IRE: 286mV)
XIRE signal (L-X)
XIRE (X = 0 to 100)
0IRE
CW signal (L-CW)
20IRE CW signal
50IRE
BLACK STRETCH 0IRE signal (L-BK)
50µs
100IRE
5µs
(Point A)
No.7962-20/50
LA76835NM
R/G/B IN Input signal
RGB Input signal 1 (0-1)
to each 20µs
0.7V
A B
0.0VDC
0.35V
RGB Input signal 2 (0-2)
20µs
30µs
3.0VDC
0.0VDC
First conditions: Pin 10:5V, Pin 11: GND, Pin 12: GND, Pin 13: GND, Pin 14: GND.
No.7962-21/50
LA76835NM
OSD Block Test Conditions
Parameter
OSD
Symbol
20
Fast SW threshold
Digital OSD
Test point
FSTH
Cnt: 0
ROSDDIG0
Input signal
Bus conditions
Apply voltage to pin 14 and measure the voltage at
Pin 13B: O-2
O-2
pin 14 at the point where the output signal
applied
switches to the OSD signal.
HT DEF:1
L-50
18
Red output
Test method
L-0
Measure the output signal’s 50IRE amplitude.
···· CNTCR [Vp-p]
amplitude
L-0
Measure the OSD output amplitude.
Pin 14: 3.5V
@OSD
O-2
····OSDHR [Vp-p]
Pin 11: O-2 applied
Pin 38: 5V
Digital OSD: 1
ROSDDIGI0 = 50×(OSDHR0/CNTCR)
Cnt: 3
ROSDDIG3
L-50
Measure the output signal’s 50IRE amplitude.
···· CNTCR [Vp-p]
L-0
Measure the OSD output amplitude.
Pin 14: 3.5V
O-2
···· OSDHR3 [Vp-p]
Pin 11B: O-2 applied
Pin 38: 5V
Digital OSD: 1
OSD Contrast: 3
ROSDDIGI3 = 50×(OSDHR3/CNTCR)
Digital OSD
Cnt: 0
GOSDDIG0
L-50
19
Green
Measure the output signal’s 50IRE amplitude.
····CNTCG [Vp-p]
output
L-0
Measure the OSD output’s amplitude.
Pin 14: 3.5V
amplitude
O-2
····OSDHG0 [Vp-p]
Pin 12B: O-2 applied
@OSD
Pin 38: 5V
Digital OSD: 1
GOSDDIG0 = 50×(OSDHG0/CNTCG)
Cnt: 3
GOSDDIG3
L-50
Measure the output signal’s 50IRE amplitude.
····CNTCG [Vp-p]
L-0
Measure the OSD output’s amplitude.
Pin 14: 3.5V
O-2
····OSDHG3 [Vp-p]
Pin 12B: O-2 applied
Pin 38: 5V
Digital OSD: 1
OSD Contrast: 3
GOSDDIG3 = 50×(OSDHG3/CNTCG)
Digital OSD
Cnt: 0
BOSDDIG0
L-50
20
Blue output
Measure the output signal’s 50IRE amplitude.
···· CNTCB [Vp-p]
amplitude
L-0
Measure the OSD output’s amplitude.
Pin 14: 3.5V
@OSD
O-2
···· OSDHB0 [Vp-p]
Pin 13B: O-2 applied
With OSD contrast of 3, carry out the similar
Pin 38: 5V
measurement.
Digital OSD: 1
···· OSDHB3 [Vp-p]
BOSDC0 = 50×(OSDHB0/CNTCB)
Cnt: 3
BOSDDIG3
L-50
Measure the output signal’s 50IRE amplitude.
···· CNTCB [Vp-p]
L-0
Measure the OSD output’s amplitude.
Pin 14: 3.5V
O-2
···· OSDHB3 [Vp-p]
Pin 13B: O-2 applied
Pin 38: 5V
Digital OSD: 1
OSD Contrast: 3
BOSDC3 = 50×(OSDHB3/CNTCB)
Analog OSD R
output amplitude gain
match
RRGB
L-100
18
Measure the output signal’s 50IRE amplitude.
···· CNTHR [Vp-p]
L-0
Measure the amplitudes at point B (0.7V portion of
Pin 14: 3.5V
O-1
the input signal 0-1). Assign the measured values
Pin 11A: O-1 applied
to (RGBHR [Vp-p]).
Pin 38: 5V
OSD Contrast: 3
GRGB = RGBHG/CNTHG
Continued on next page.
No.7962-22/50
LA76835NM
Continued from preceding page.
Parameter
Analog OSD G
Symbol
Test point
GRGB
Input signal
L-100
19
output amplitude gain
match
Test method
Bus conditions
Measure the output signal’s 100IRE amplitude.
···· CNTHG [Vp-p]
L-0
Measure the amplitudes at point B (0.7V portion of
Pin 14: 3.5V
O-1
the input signal 0-1). Assign the measured values
Pin 12A: O-1 applied
to (RGBHG [Vp-p]).
Pin 38: 5V
OSD Contrast: 3
GRGB = RGBHG/CNTHG
Analog OSD B
BRGB
L-100
20
output amplitude gain
match
Measure the output signal’s 100IRE amplitude.
···· CNTHB [Vp-p]
L-0
Measure the amplitudes at point B (0.7V portion of
Pin 14: 3.5V
O-1
the input signal 0-1). Assign the measured values
Pin 13A: O-1 applied
to (RGBHB [Vp-p]).
Pin 38: 5V
OSD Contrast: 3
BRGB = RGBHB/CNTHB
[RGB Output Block] (Cutoff, Drive Block) Test Conditions
Brightness
Normal
L-0
BRT64
18
control
Measure the 0IRE DC levels of the respective
Brightness:
output signals of R output (18), G output (19), and
01111111
B output (20). Assign the measured values to
BRTPCR, BRTPCG, and BRTPCB V, respec-
19
tively.
BRT63 = (BRTPCR+BRTPCG+BRTPCB)/3
20
Max
BRT127
20
Measure the 0IRE DC level of the output signal of
Brightness:
B output (20) and assign the measured value to
1111111
BRTPHB.
BRT127 = 50×(BRTPHB-BRTPCB)/CNTCB
Min
BRT0
Measure the 0IRE DC level of the output signal of
Brightness:
B output (20) and assign the measured value to
0000000
BRTPLB.
BRT0 = 50×(BRTPLB-BRTPCB)/CNTCB
Bias
Min
L-50
Vbias0
18
(cutoff)
control
Measure the 0IRE DC levels (Vbias0 [V]) of the
respective output signals of R output (18), G output (19), and B output (20).
*: R, G, and B
Max
Vbias255
19
20
Bias (cutoff) control
resolution
Vbiassns
18
Measure the 0IRE DC levels (Vbias255 [V]) of the
Red/Green/Blue
respective output signals of R output (18), G out-
Bias: 11111111
put (19), and B output (20).
*: R, G, and B
Measure the 0IRE DC levels (BAS80 [V]) of the
Red/Green/Blue
respective output signals of R output (18), G out-
Bias:01010000
put (19), and B output (20).
*: R, G, and B
19
20
Measure the 0IRE DC levels (BAS48 [V]) of the
Red/Green/Blue
respective output signals of R output (18), G out-
Bias: 00110000
put (19), and B output (20).
Vbiassns* = (BAS80*-BAS48*)/32
Continued on next page.
No.7962-23/50
LA76835NM
Continued from preceding page.
Parameter
Sub-bias control
Symbol
Test point
Input signal
L-50
Vsbiassns
18
resolution
Test method
Bus conditions
Measure the 0IRE DC levels (SBTPM [V]) of the
Sub-Brightness:
respective output signals of R output (18), G out-
0101010
put (19), and B output (20).
*: R, G, B
19
Vsbiassns* = (BRTPC*-SBTPM*)
20
Drive adjustment
Rbout64
maximum output
Gout10
L-100
18
Measure the 50IRE amplitudes (DRVM [Vp-p]) of
the respective output signals of R output (18) and
B output (20).
501RE.
*: R and B
19
Measure the 50IRE amplitude of the output signal
of G output (19) and assign the measured value to
(DRVM [Vp-p]).
20
Output attenuation
*: G
DrGainRB
DrGainG
18
Measure the 50IRE amplitudes (DRVL [Vp-p]) of
Red/Blue Drive:
the respective output signals of R output (18), and
0000000
B output (20).
Green Drive: 0000
*: R and B
19
Measure the 50IRE amplitude of the output signal
of G output (19) and assign the measured value to
(DRVL [Vp-p]).
20
*: G
DrGainRB * = 20Log (DRVH*/DRVL*)
DrGainG * = 20Log (DRVH*/DRVL*)
Drive adjustment
Rbout127
maximum output
Gout15
L-100
18
501RE.
Measure the 50IRE amplitudes
Red/Blue Drive:
(DRVH [Vp-p]) of the respective output
1111111
signals of R output (18) and B output (20).
Green Drive: 1111
*: R and B
19
Measure the 500IRE amplitude of the output signal of G output (19) and assign the measured
20
RGB output difference
voltage
value to (DRVH [Vp-p]).
*: G
Measure the 0IRE DC level (*_DC Vdc) of the
RGB_DC
18
output signal of R (18), G (19), and B (20) outputs.
19
20
No.7962-24/50
LA76835NM
VIDEO SW Block Test Conditions
Parameter
Symbol
Video signal input 1DC
VIN1DC
voltage
L-100
54
Input signals to pin 54 and measure the voltage of
VIDEO SW: 0
the pedestal.
VIN2AC
Pin 54 recommended input level.
54
L-100
SVODC
50
voltage
SVO terminal AC
Pin 52 recommended input level.
VIN2DC
voltage
SVO terminal DC
Bus conditions
VIDEO SW: 1
52
voltage
Video signal input 2AC
Test method
Input signals to pin 52 and measure the voltage of
the pedestal.
VIN1AC
voltage
Video signal input 2DC
Input signal
L-100
52
voltage
Video signal input 1AC
Test point
SVOAC
L-100
50
Input signals to pin 52 and measure the voltage of
VIDEO SW: 1
the pedestal at pin 50.
Input signals to pin 52 and measure the voltage of
VIDE0 SW: 1
the pedestal at pin 50.
No.7962-25/50
LA76835NM
Video Block Test Conditions
Parameter
Video overall gain
Symbol
Test point
Input signal
L-50
CONT127
20
(Contrast max)
Test method
Bus conditions
Measure the output signal’s 50IRE amplitude.
CONTRAST:
···· CNTHB [Vp-p]
1111111
CONT127 = 20Log (CNTHB/0.357)
Contrast
Normal/
adjustment
max
CONT90
L-50
20
characteristics
Measure the output signal’s 50IRE amplitude.
···· CNTCB [Vp-p]
CONT63 = 20Log (CNTCB/0.357)
Min/
CONT0
max
Measure the output signal’s 50IRE amplitude.
CONTRAST:
···· CNTLB [Vp-p]
0000000
CONT0 = 20Log (CNTLB/0.357)
With the input signal’s continuous wave = 100kHz,
FILTER SYS: 000
measure the output signal’s continuous wave
SHARPNESS:
Character-
amplitude. ···· PEAKDC [Vp-p]
000000
istics
With the input signal’s continuous wave = 7MHz,
Video fre-
1
L-CW
BW1
20
quency
measure the output signal’s continuous wave
amplitude. ····CW1.4 [Vp-p]
BW1 = 20Log (CW1.4/PEAKDC)
2
BW2
With the input signal’s continuous wave = 1.8MHz,
FILTER SYS: 010
measure the output signal’s continuous wave
SHARPNESS:
amplitude. ····CW1.8 [Vp-p]
000000
BW2 = 20Log (CW1.8/PEAKDC)
3
BW3
With the input signal’s continuous wave = 3.4MHz,
FILTER SYS: 100
measure the output signal’s continuous wave
SHARPNESS:
amplitude. ····CW3.4 [Vp-p]
000000
BW3 = 20Log (CW3.4/PEAKDC)
Chroma trap amount
Ctrap
L-CW
20
With the input signal’s continuous wave =
FILTER SYS: 000
3.58MHz, measure the output signal’s continuous
Sharpness: 000000
wave amplitude.
····F00 [Vp-p]
CtraP = 20Log (F00/PEAKDC)
DC
1
ClampG1
L-0
20
transmis-
Measure the output signal’s 0IRE DC level.
Brightness:
····BRTPL [V]
0000000
sion
CONTRAST:
amount
1111111
L-100
Measure the output signal’s 0IRE DC level
Brightness:
(DRVPH [V]) and 100IRE amplitude (DRVH
0000000
[Vp-p])
CONTRAST:
ClampG = 100×(1+(DRVPH - BRTPL)/DRVH)
1111111
(PIN55: 3V)
DCREST = 00
BLK.ST.DEF = 1
WPL = 0
2
ClampG2
With DCREST = 01, carry out measurement
DC.rest. = 01
similarly to the case of the DC transmission
amount 1. (PIN55: 3V)
3
ClampG3
With DCREST = 10, carry out measurement
DC.rest = 10
similarly to the case of the DC transmission
amount 1. (PIN55: 3V)
4
ClampG4
With DCREST = 11, carry out measurement
DC.rest = 11
similarly to the case of the DC transmission
amount 1. (PIN55: 3V)
Continued on next page.
No.7962-26/50
LA76835NM
Continued from preceding page.
Parameter
Y-DL TIME
TRAP1
Symbol
Test point
TdY1
Input signal
L-50
20
Test method
Obtain the time difference (the delay time) from
Bus conditions
Filter Sys: 000
when the rise of the input signal's 501RE amplitude to the output signal's 501RE amplitude.
TRAP2
TdY2
Obtain the time difference (the delay time) from
Filter Sys: 010
when the rise of the input signal's 501RE amplitude to the output signal's 501RE amplitude.
TRAP
TdY3
Obtain the time difference (the delay time) from
OFF
Filter Sys: 100
when the rise of the input signal's 501RE amplitude to the output signal's 501RE amplitude.
Pre-Shoot
1
PreShoot1
L-100
20
control
Measure the pre-shoot width (Tpre) and
Pre-shoot adj.= 00
over-shoot width (Tover) at rise of 100IRE am-
Filter Sys: 000
plitude of the output signal
Sharpness= 111111
PreShoot = Tpre/Tover.
2
PreShoot2
With Pre-shoot adj. = 11, carry out the same
Pre-shoot adj.= 11
measurement as for the case of Pre-Shoot 1.
Filter Sys: 000
Sharpness= 111111
Black
MAX
BKSTmax
L-BK
20
stretch gain
Measure the 0IRE DC level at point A of the
Blk.str.gain = 10
output signal in the Black Stretch Defeat (Black
Blk.str.start = 01
Stretch OFF) mode. ···· BKST1 [V]
Measure the 0IRE DC level at point A of the
Blk Str def = 0
output signal in the Black Stretch ON mode.
DC.rest = 00
(PIN55: 3V) ····BKST2 [V]
BKSTmax = 50×(BKST1-BKST2)/CNTHB
MID
BKSTmid
With Blk.str.gain = 01, carry out the same meas-
Blk.str.gain = 01
urement as for the case of black stretch gain
Blk.str.start = 01
(MAX). (PIN55: 3V)
Blk Str def = 0
DC.rest = 00
MIN
BKSTmin
With Blk.str.gain = 00, carry out the same meas-
Blk.str.gain = 00
urement as for the case of black stretch gain
Blk.str.start = 01
(max). (PIN55: 3V)
Blk Str def = 0
DC.rest = 00
Black
60IRE
stretch start
∆Black
BSTTHmax
L-60
20
Measure the DC level at 60IRE of the output
Blk.str.gain = 01
signal in the Black Stretch ON mode.
Blk.str.start = 10
(PIN55: 3V) ····BKST3 [V]
Measure the 60IRE DC level of the output signal
Blk Str .def = 0
in the Black Stretch Defeat (Black Stretch OFF)
DC.rest = 00
mode. ····BKST4 [V]
BKSTTHmax = 50×(BKST4-BKST3)/CNTHB
250IRE
BKSTTHmid
L-50
∆Black
Measure the 50IRE DC level of the output signal
Blk.str.gain = 01
in the Black Stretch Defeat ON mode. (PIN55: 3V)
Blk.str.start = 01
····BKST5 [V]
Measure the 50IRE DC level of the output signal
Blk Str .def = 0
in the Black Stretch Defeat (Black Stretch OFF)
DC.rest = 00
mode. ····BKST6 [V]
BKSTTHmid = 50×(BKST6-BKST5)/CNTHB
340IRE
∆Black
BKSTTHmin
L-40
Measure the 40IRE DC level of the output signal
Blk.str.gain = 01
in the Black Stretch Defeat ON mode. (PIN55: 3V)
Blk.str.start = 00
····BKST7 [V]
Measure the 40IRE DC level of the output signal
Blk Str .def = 0
in the Black Stretch Defeat (Black Stretch OFF)
DC.rest = 00
mode. ····BKST8 [V]
BKSTTHmin = 50×(BKST8-BKST7)/CNTHB
Continued on next page.
No.7962-27/50
LA76835NM
Continued from preceding page.
Parameter
Sharpness
Trap1
Symbol
Test point
Input signal
L-CW
Sharp32T1
20
variable
range
Test method
Bus conditions
With the input signal’s continuous wave = 2.2MHz,
FILTER SYS: 000
measure the output signal’s continuous wave
Sharpness: 100000
amplitude. ···· F01S32 [Vp-p]
Sharp32T1 = 20Log (F01S32/PEAKDC)
Max
Sharp63T1
With the input signal’s continuous wave = 2.2MHz,
FILTER SYS: 000
measure the output signal’s continuous wave
Sharpness: 111111
amplitude. ···· F01S63 [Vp-p]
Sharp63T1 = 20Log (F01S63/PEAKDC)
Min
Sharp0T1
With the input signal’s continuous wave =2.2MHz,
FILTER SYS: 000
measure the output signal’s continuous wave
Sharpness: 000000
amplitude. ···· F01S0 [Vp-p]
Sharp0T1 = 20Log (F01S0/PEAKDC)
Sharpness
Trap2
L-CW
Sharp32T2
20
variable
range
With the input signal’s continuous wave=3MHz,
Filter Sys: 010
measure the output signal’s continuous wave
Sharpness: 100000
amplitude. ···· F02S32 [Vp-p]
Sharp32T3 = 20Log (F02S32/PEAKDC)
Max
Sharp63T2
With the input signal’s continuous wave=3MHz,
Filter Sys:010
measure the output signal’s continuous wave
Sharpness: 111111
amplitude. ···· F02S63 [Vp-p]
Sharp63T2 = 20Log (F02S63/PEAKDC)
Min
Sharp0T2
With the input signal’s continuous wave = 3MHz,
Filter Sys: 010
measure the output signal’s continuous wave
Sharpness: 000000
amplitude. ···· F02S0 [Vp-p]
Sharp0T2 = 20Log (F02S0/PEAKDC)
Sharpness
Trap3
L-CW
Sharp32T3
20
variable
range
With the input signal’s continuous wave=3MHz,
Filter Sys:100
measure the output signal’s continuous wave
Sharpness: 100000
amplitude. ···· F03S32 [Vp-p]
Sharp32T3 = 20Log (F03S32/PEAKDC)
Max
Sharp63T3
With the input signal’s continuous wave = 3MHz,
Filter Sys: 100
measure the output signal’s continuous wave
Sharpness: 111111
amplitude. ···· F03S63 [Vp-p]
Sharp63T3 = 20Log (F03S63/PEAKDC)
Min
Sharp0T3
With the input signal’s continuous wave = 3MHz,
Filter Sys: 100
measure the output signal’s continuous wave
Sharpness: 000000
amplitude. ···· F03S0 [Vp-p]
Sharp0T3 = 20Log (F03S0/PEAKDC)
White peak
1
L-100
WPL1
20
limiter
operating
Prepare the signal that enables change of APL
WPL = 0
and set APL = 10%. Increase the input signal and
DC.rest = 0
measure the input signal level at which the output
point
is clipped. (PIN55: 2.5V)
2
WPL2
Prepare the signal that enables change of APL
WPL = 1
and set APL = 100%. Increase the input signal
DC.rest = 0
and measure the input signal level at which the
output is clipped. (PIN55: 2.5V)
3
WPL3
Prepare the signal that enables change of APL
WPL = 2
and set APL = 100%. Increase the input signal
DC.rest = 0
and measure the input signal level at which the
output is clipped. (PIN55: 2.5V)
4
WPL4
Prepare the signal that enables change of APL
WPL = 3
and set APL = 100%. Increase the input signal
DC.rest = 0
and measure the input signal level at which the
output is clipped. (PIN55: 2.5V)
Continued on next page.
No.7962-28/50
LA76835NM
Continued from preceding page.
Parameter
Y gamma
1
Symbol
Test point
YG1
Input signal
L-100
20
effective
Test method
Bus conditions
Measure the output amplitude (0 to 100 IR) when
Y GAMMA is 0. After that, set Y GAMMA to 1 and
point
measure the output amplitude (0 to 100 IR). This is
GAM1. Calculate YG1 with the formula YG1 =
GAM1/GAM0 * 100.
2
YG2
Measure the output amplitude (0 to 100 IR) when
Y GAMMA is 0. After that, set Y GAMMA to 2 and
measure the output amplitude (0 to 100 IR). This is
GAM2. Calculate YG1 with the formula YG2 =
GAM2/GAM0 * 100.
3
YG3
Measure the output amplitude (0 to 100 IR) when
Y GAMMA is 0. After that, set Y GAMMA to 3 and
measure the output amplitude (0 to 100 IR). This is
GAM3. Calculate YG3 with the formula YG3 =
GAM3/GAM0 * 100.
GRAY MODE LEVEL
GRAY
20
Horizontal/vertical
blanking output level
L-100
RGBBLK
20
Measure the DC level (deviation from pedestal) of
GRAY.MODE = 1
pin20, and transfer IRE.
CROSS.B/W = 2
Measure the DC level for the output signal’s
blanking period. ···· RGBBLK [V]
No.7962-29/50
LA76835NM
Deflection Block Input Signals and Test Conditions
Unless otherwise specified, the following conditions apply when each measurement is made.
1. VIF, SIF blocks: No signal
2. C input: No. signal
3. Sync input: A horizontal/vertical composite sync signal
NTSC: 40IRE, horizontal sync signal (15.734264kHz) and vertical sync signal (59.94kHz)
Note: No burst signal, chroma signal shall exist below the pedestal level.
Signal unsuitable
for Y input
Signal suitable
for Y input
Chroma signal
Burst signal
4. Bus control conditions: Initial conditions unless otherwise specified.
5. The delay time from the rise of the horizontal output (pin 31 output) to the fall of the FBP IN (pin 33 input) is 9µs.
6. Pin 25 (vertical size correction circuit input terminal) is connected to VCC (5.0V).
No.7962-30/50
LA76835NM
Deflection Block Test Conditions
Parameter
Symbol
Horizontal free-running
fH
Test point
31
frequency
Input signal
Test method
Bus conditions
Y IN:
Connect a frequency counter to the output of pin
No signal
31 (H out) and measure the horizontal free-running
Y IN: Hori-
Using an oscilloscope, monitor the horizontal sync
zontal/
signal which is input to the Y IN (pin 52) and the pin
vertical sync
31 output (H out) and vary the horizontal signal
signal
frequency to measure the pull-in range.
Y IN: Hori-
Measure the voltage for the pin 31 horizontal
zontal/
output pulse’s low-level period.
frequency.
Horizontal pull-in range
fH PULL
52
Horizontal output
Hduty
31
pulse length
vertical sync
signal
Horizontal output pulse
V Hsat
31
saturation voltage
Y IN: Hori-
Measure the voltage for the pin 31 horizontal
zontal/
output pulse’s low-level period.
vertical sync
signal
Horizontal
M
HAFCM
30
AFC control
current
Y IN: Hori-
Measure the current incoming into pin 30 hori-
zontal/
zontal AFC filter.
AFCGAIN: 0
vertical sync
signal
H
HAFCH
Measure the current incoming into pin 30 hori-
AFCGAIN: 1
zontal AFC filter.
L
Horizontal output pulse
HAFCL
HPHCEN
31
Y IN:
Measure the current incoming into pin 30 hori-
No signal
zontal AFC filter.
Y IN: Hori-
Measure the delay time T from the rise of the pin
zontal/
31 horizontal output pulse to the fall of the Y IN
vertical sync
horizontal sync signal.
signal
HPHCEN (ns) = (T-9.0us)×1000
52
AFCGAIN: 0
T
20IRE
2.5V
Horizontal output
Horizontal position
adjustment range
HPHrange
31
52
Y IN: Hori-
With H PHASE set at 0, 16, and 31, measure the
H PHASE: 00000
zontal/
delay time from the rise of the pin 31 horizontal
H PHASE: 11111
vertical sync
output pulse to the fall of the Y IN horizontal sync
signal
signal and measure the adjustment range.
(Determine the difference from HPHASE16.)
Measuring
20IRE
Horizontal output
Continued on next page.
No.7962-31/50
LA76835NM
Continued from preceding page.
Input signal
Horizontal position
Symbol
Test point
HPHstep
31
adjustment maximum
variable width
Input signal
Test method
Bus conditions
Y IN: Hori-
With H PHASE: 0 to 31 varied, measure the delay
H PHASE: 00000
zontal/
time from the rise of the pin 31 horizontal output
to
vertical sync
pulse to the fall of the Y IN horizontal sync signal
H PHASE: 11111
signal
and calculate the variation at each step. Retrieve
52
data for maximum variation.
Measuring
20IRE
2.5V
Horizontal output
Horizontal 2nd AFC
HPMIN
31
pull-in range (min)
Y IN:
Measure the delay time from the rise of the pin 31
Horizontal/
horizontal output pulse to the fall of the Y IN hori-
vertical sync
zontal sync signal. Note that the delay time from
signal
the rise of horizontal output (pin 31 output) to the
52
rise of F.B.P IN (pin 33 input) is assumed to be
0µs.
T
20IRE
2.5V
Horizontal output
Horizontal 2nd AFC
HPMAX
31
pull-in range (max)
Y IN:
Measure the delay time from the rise of the pin 31
Horizontal/
horizontal output pulse to the fall of the Y IN hori-
vertical sync
zontal sync signal. Note that the delay time from
signal
the rise of horizontal output (pin 31 output) to the
52
rise of F.B.P IN (pin 33 input) is assumed to be
20µs.
Vertical free-running
VFR60
27
frequency
YIN:
Measure the cycle T of pin 27 vertical output.
No signal
1/THz
Vertical output
T
Vertical pull-in range
fvPULL
27
2.5V
Y IN:
Using an oscilloscope, monitor the vertical ysnc
Horizontal/
signal which in input to the Y IN (pin 52) and then
vertical sync
pin 27 output (V out) and vary the vertical signal
signal
frequency to measure the pull-in range.
Y IN:
Decrease the current from a source connected to
Horizontal/
pin 29 and measure the pin 29 voltage at which
vertical sync
HOUT stops.
(Horizontal sync frequency: 15734 Hz)
Horizontal output stop
voltage
Hstop
29
signal
31
Continued on next page.
No.7962-32/50
LA76835NM
Continued from preceding page.
Input signal
Horizontal
@0
Symbol
Test point
BLKL0
20
Input signal
Test method
Bus conditions
Y IN:
Measure the time T from the left end of Hsync at
Horizontal/
pin 52 Y IN to the left end of blanking at pin 20 Blue
left variable
vertical sync
OUT with BLKL = 0000.
range
signal
blanking
52
BLKL: 0000
Hsync
Y IN
T
Blue OUT
@15
BLKL15
Measure the time T from the left end of Hsync at
BLKL: 1111
pin 52 Y IN to the left end of blanking at pin 20 Blue
OUT with BLKL = 1111.
Y IN
Hsync
T
Blue OUT
Y IN:
Measure the time T from the left end of Hsync at
Horizontal/
pin 52 Y IN to the left end of blanking at pin 20 Blue
right
vertical sync
OUT with BLKR = 0000.
variable
signal
Horizontal
@0
BLKR0
20
blanking
52
range
Y IN
T
BLKR: 0000
Hsync
Blue OUT
@15
BLKR15
Measure the time T from the left end of Hsync at
BLKR: 1111
pin 52 Y IN to the left end of blanking at pin 20 Blue
OUT with BLKR = 1111.
Y IN
T
Hsync
Blue OUT
Continued on next page.
No.7962-33/50
LA76835NM
Continued from preceding page.
Input signal
Sand castle
H
Symbol
Test point
SANDH
33
pulse crest
value
Input signal
Test method
Measure the supply voltage at point H of the pin 33
Horizontal/
FBP IN wave form for Hsync period.
vertical sync
H
signal
M1
Bus conditions
Y IN:
SANDM1
Measure the supply voltage at point M1 of the pin
33 FBP IN wave form for Hsync period.
M1
L
Measure the supply voltage at point L of the pin 33
SANDL
FBP IN wave form for Hsync period.
L
Burst gate pulse length
BGPWD
33
Y IN:
Measure the BGP width T of the pin 33 FBP IN
Horizontal/
wave form for Hsync period.
vertical sync
T
signal
Burst gate pulse
BGPPH
33
I phase
Y IN:
Measure the time from the left end of Hsync at pin
Horizontal/
52 Y IN to the left end of the pin 33 FBP IN wave
vertical sync
form for Hsync period.
Hsync
signal
Y IN
52
T
FBP IN
X-ray protection
circuit operating
VXRAY
31
voltage
Y IN:
Connect a DC power supply to pin 38 and
Horizontal/
gradually increase the voltage from 0V until the pin
vertical sync
31 horizontal output pulse ceases. Measure the
signal
DC voltage at pin 38 at that moment.
38
No.7962-34/50
LA76835NM
Vertical Screen Size Correction
Input signal
Vertical
@64
Symbol
Test point
Vsnt64
27
ramp output
amplitude
Input signal
Test method
Bus conditions
Y IN:
Monitor the pin 27 vertical ramp output and
Horizontal/
measure the voltage at line 22 and line 262.
vertical sync
Vsnt64 = Vline262-Vline22
signal
Vertical ramp output
Line 262
Line 22
@0
Vsnt0
Monitor the pin 27 vertical ramp output and
VSIZE:
measure the voltage at line 22 and line 262.
0000000
Vsnt0 = Vline262-Vline22
Vertical ramp output
Line 262
Line 22
@127
Monitor the pin 27 vertical ramp output and
Vsnt127
VSIZE: 1111111
measure the voltage at line 22 and line 262.
Vsnt127 = Vline262-Vline22
Vertical ramp output
Line 262
Line 22
Vertical size 0.75
VSIZE75
27
Y IN:
Monitor the pin 27 vertical ramp output and
Horizontal/
measure the voltage at line 22, line 262.
vertical sync
VSIZE75 = (Vline262-Vline22)/Vsent64
signal
VSIZE0.75: 1
Vertical ramp output
Line 262
Line 142
Line 22
No.7962-35/50
LA76835NM
High-voltage Dependent Vertical Size Correction
Input signal
Vertical size
Symbol
Test point
Vsizecomp
27
correction @0
Input signal
Test method
Y IN:
Monitor the pin 27 vertical ramp output and
Horizontal/
measure the voltage at the line 22 and line 262
vertical sync
with VCOMP = 000.
signal
Va = Vline262-Vline22
Bus conditions
VCOMP: 000
Apply 4.0V to pin 25 and measure the voltage at
the line 22 and line 262 again.
Vb = Vline262-Vline22
Vsizecomp = Vb/Va
Vertical ramp output
Line 262
Line 22
Vertical Screen Position Adjustment
Input signal
Vertical
@32
Symbol
Test point
Vdcnt32
27
ramp DC
Input signal
Monitor the pin 27 vertical ramp output and
Horizontal/
measure the voltage at line 142.
vertical sync
voltage
Test method
Y IN:
signal
Bus conditions
Vertical ramp output
Line 142
@0
Vdcnt0
Monitor the pin 27 vertical ramp output and
VDC: 000000
measure the voltage at line 142.
Vertical ramp output
Line 142
@63
Vdcnt63
Monitor the pin 27 vertical ramp output and
VDC: 111111
measure the voltage at line 142.
Vertical ramp output
Line 142
Continued on next page.
No.7962-36/50
LA76835NM
Continued from preceding page.
Input signal
Vertical
@16
Symbol
Test point
Vlint16
27
linearity
TOP
Input signal
Test method
Bus conditions
Y IN:
Monitor the pin 27 vertical ramp output and
Horizontal/
measure the voltage at line 22, line 142 and 262.
vertical sync
Assign the respective measured values to Va, Vb
signal
and Vc.
Vlint16 = (Vb-Va)/(Vc-Vb)
Vertical ramp output
Line 262
Line 142
Line 22
@0
Vlint0
Monitor the pin 27 vertical ramp output and
VLIN_TOP: 00000
measure the voltage at line 22, line 142 and 262
with VLIN_TOP = 00000. Assign the respective
measured values to Va, Vb and Vc.
Vlint0 = (Vb-Va)/(Vc-Vb)
Vertical ramp output
Line 262
Line 142
Line 22
@31
Vlint31
Monitor the pin 27 vertical ramp output and
VLIN_TOP: 11111
measure the voltage at line 22, line 142 and 262
with VLIN_TOP = 11111. Assign the respective
measured values to Va, Vb and Vc.
Vlint31 = (Vb-Va)/(Vc-Vb)
Vertical ramp output
Line 262
Line 142
Line 22
Continued on next page.
No.7962-37/50
LA76835NM
Continued from preceding page.
Input signal
Vertical
@16
Symbol
Test point
Vlinb16
27
linearity
BOTTOM
Input signal
Test method
Bus conditions
Y IN:
Monitor the pin 27 vertical ramp output and
Horizontal/
measure the voltage at line 22, line 142, and 262.
vertical sync
Assign the respective measured values to Va, Vb,
signal
and Vc.
Vlinb16 = (Vb-Va)/(Vc-Vb)
Vertical ramp output
Line 262
Line 142
Line 22
@0
Vlinb0
Monitor the pin 27 vertical ramp output and
VLIN_BOTTOM:
measure the voltage at line 22, line 142 and 262
00000
with VLIN_BOTTOM = 00000. Assign the
respective measured values to Va, Vb and Vc.
Vlinb0 = (Vb-Va)/(Vc-Vb)
Vertical ramp output
Line 262
Line 142
Line 22
@31
Vlinb31
Monitor the pin 27 vertical ramp output and
VLIN_BOTTOM:
measure the voltage at line 22, line 142 and 262
11111
with VLIN_BOTTOM = 11111. Assign the
respective measured values to Va, Vb and Vc.
Vlinb31 = (Vb-Va)/(Vc-Vb)
Vertical ramp output
Line 262
Line 142
Line 22
Continued on next page.
No.7962-38/50
LA76835NM
Continued from preceding page.
Input signal
Vertical
@16
Symbol
Test point
VScor16
27
S-shaped
correction
Input signal
Test method
Y IN:
Monitor the pin 27 vertical ramp output and
Horizontal/
measure the voltage at line 32, line 52, line 132,
vertical sync
line 152, line 232 and 252. Assign the respective
signal
measured values to Va, Vb, Vc, Vd, Ve and Vf.
Bus conditions
VS:10000
VScor16 = 0.5((Vb-Va)+(Vf-Ve))/ (Vd-Vc)
Vertical ramp output
Line 252
Line 232
Line 152
Line 132
Line 52
Line 32
@0
VScor0
Monitor the pin 27 vertical ramp output and
measure the voltage at the line 32, line 52, line
132, line 152, line 232 and line 252 with VSC =
000.
Assign the respective measured values to Va, Vb,
Vc, Vd, Ve and Vf.
VScor0 = 0.5((Vb-Va)+(Vf-Ve))/ (Vd-Vc)
Vertical ramp output
Line 252
Line 232
Line 152
Line 132
Line 52
Line 32
@31
VScor31
Monitor the pin 27 vertical ramp output and
measure the voltage at the line 32, line 52, line
132, line 152, line 232 and line 252 with VSC =
000.
Assign the respective measured values to Va, Vb,
Vc, Vd, Ve and Vf.
VScor31 = 0.5((Vb-Va)+(Vf-Ve))/ (Vd-Vc)
Vertical ramp output
VSC: 11111
Line 252
Line 232
Line 152
Line 132
Line 52
Line 32
Continued on next page.
No.7962-39/50
LA76835NM
Continued from preceding page.
Input signal
Raster Cut
TOP
Symbol
Test point
RASCUTT
Input signal
Y IN:
27
Horizontal/
vertical sync
signal
Test method
Bus conditions
Monitor the pin 27 vertical ramp output and
measure the timing with which the changes in the
lower part of the ramp output disappear.
RASTER_CUT: 1
Vertical ramp output
RASCUTT
BOTTOM
Monitor the pin 27 vertical ramp output and
measure the timing with which the changes in the
upper part of the ramp output start.
RASCUTB
RASTER_CUT: 1
Vertical ramp output
RASCUTB
H Phase
@8
HBOW8
Y IN:
31
BOW
Horizontal/
vertical sync
signal
52
Measure the delay times, at lines 22 and 142, from
the rise of the pin 27 horizontal output pulse to the
fall of the YIN horizontal sync signal. Let T1 and T2
be these measured values, respectively, and use
them to calculate the following formula.
HBOW8 = T1-T2
T
20IRE
2.5V
Horizontal output
@0
HBOW0
Measure the delay times, at lines 22 and 142, from
the rise of the pin 27 horizontal output pulse to the
fall of the YIN horizontal sync signal. Let T1 and T2
be these measured values, respectively, and use
them to calculate the following formula.
HBOW0 = T1-T2
H_Phase_BOW:
0000
T
20IRE
2.5V
Horizontal output
@15
HBOW15
Measure the delay times, at lines 22 and 142, from
H_Phase_BOW:
the rise of the pin 27 horizontal output pulse to the
1111
fall of the YIN horizontal sync signal. Let T1 and T2
be these measured values, respectively, and use
them to calculate the following formula.
HBOW15 = T1-T2
T
20IRE
2.5V
Horizontal output
Continued on next page.
No.7962-40/50
LA76835NM
Continued from preceding page.
Input signal
H Phase
@8
Symbol
Test point
HANG8
31
ANGLE
52
Input signal
Test method
Bus conditions
Y IN:
Measure the delay times, at lines 22 and 142, from
Horizontal/
the rise of the pin 27 horizontal output pulse to the
vertical sync
fall of the YIN horizontal sync signal. Let T1 and T2
signal
be these measured values, respectively, and use
them to calculate the following formula.
HANG8 = T1-T2
T
20IRE
2.5V
Horizontal output
@0
HANG0
Measure the delay times, at lines 22 and 142, from
H_Phase_ANGLE:
the rise of the pin 27 horizontal output pulse to the
0000
fall of the YIN horizontal sync signal. Let T1 and T2
be these measured values, respectively, and use
them to calculate the following formula.
HANG0 = T1-T2
T
20IRE
2.5V
Horizontal output
@15
HANG15
Measure the delay times, at lines 22 and 142, from
H_Phase_ANGLE:
the rise of the pin 27 horizontal output pulse to the
1111
fall of the YIN horizontal sync signal. Let T1 and T2
be these measured values, respectively, and use
them to calculate the following formula.
HANG15 = T1-T2
T
20IRE
2.5V
Horizontal output
No.7962-41/50
LA76835NM
HS/VS/VBLK
Input signal
Symbol
HS pulse output phase
PWHS
Test point
15
Input signal
Test method
Y IN:
Monitor the HS output of pin 15 and measure the
Horizontal/
pulse width.
Bus conditions
vertical sync
signal
VS pulse output phase
PWVS
16
Y IN:
Monitor the VS output of pin 16 and measure the
Horizontal/
pulse width.
vertical sync
signal
Vertical
@0
VBLK0
20
blanking
period
@1
@2
VBLK1
Y IN:
Monitor the B output of pin 20 and measure the
Horizontal/
vertical blanking period.
vertical sync
Monitor the B output of pin 20 and measure the
signal
vertical blanking period.
VBLK2
Monitor the B output of pin 20 and measure the
V_BLK_Select: 00
V_BLK_Select: 01
V_BLK_Select: 10
vertical blanking period.
@3
Monitor the B output of pin 20 and measure the
VBLK3
V_BLK_Select: 11
vertical blanking period.
Horizontal Size Adjustment
Input signal
East/Wst
@32
Symbol
Test point
EWdc32
26
DC voltage
Input signal
Monitor the East/West output (parabolic wave
Horizontal,
output) of pin 26 and measure the voltage at line
vertical sync
142.
signal
@0
Test method
Y IN:
EWdc0
East/West output
Bus conditions
Line 142
Monitor the East/West output (parabolic wave
EWDC: 000000
output) of pin 26 and measure the voltage at line
142.
East/West output
@63
EWdc63
Line 142
Monitor the East/West output (parabolic wave
EWDC: 111111
output) of pin 26 and measure the voltage at line
142.
East/West output
Line 142
High-voltage Dependent Horizontal Size Compensation
Input signal
Horizontal size
compensation @0
Symbol
Test point
Hsizecomp
26
Input signal
Test method
Y IN:
Monitor the West/East output of pin 26 and
Horizontal,
measure the voltage (Va) at line 142. Apply 4.0 V
vertical sync
to pin 25 and measure again the voltage (Vb) at
signal
line 142.
Bus conditions
HCOMP: 000
Hsizecomp = Va-Vb
No.7962-42/50
LA76835NM
Pincushion Distortion Compensation
Input signal
East/West
@32
Symbol
Test point
EWamp32
26
parabolic
amplitude
Input signal
Test method
Y IN:
Monitor the East/West output (parabolic wave
Horizontal,
output) of pin 26 and measure the voltage at line
vertical sync
22 (Va) and line 142 (Vb).
signal
EWamp32 = Vb-Va
East/West output
Bus conditions
Line 142
Line 22
@0
EWamp0
Monitor the East/West output (parabolic wave
EWAMP000000
output) of pin 26 and measure the voltage at line
22 (Va) and line 142 (Vb).
EWamp0 = Vb-Va
East/West output
Line 142
Line 22
@63
EWamp63
Monitor the East/West output (parabolic wave
EWAMP111111
output) of pin 26 and measure the voltage at line
22 (Va) and line 142 (Vb).
EWamp63 = Vb-Va
East/West output
Line 142
Line 22
No.7962-43/50
LA76835NM
Trapezoidal Distortion Compensation
Input signal
East/West
@32
Symbol
Test point
EWtilt32
26
parabolic tilt
Input signal
Test method
Bus conditions
Y IN:
Monitor the East/West output (parabolic wave
Horizontal,
output) of pin 26 and measure the voltage at line
vertical sync
22 (Va) and line 262 (Vb).
signal
EWtilt32 = Va-Vb
East/West output
Line 262
Line 22
@0
EWtilt0
Monitor the East/West output (parabolic wave
EWTILT:000000
output) of pin 26 and measure the voltage at line
22 (Va) and line 262 (Vb).
EWtilt0 = Va-Vb
East/West output
Line 262
Line 22
@63
Monitor the East/West output (parabolic wave
EWtilt63
EWTILT:111111
output) of pin 26 and measure the voltage at line
22 (Va) and line 262 (Vb).
EWtilt63 = Va-Vb
East/West output
Line 262
Line 22
Corner Distortion Compensation
Input signal
East/West
TOP
Symbol
Test point
EWcortop
26
parabolic
corner
Input signal
Test method
Bus conditions
Y IN:
Monitor the East/West output (parabolic wave
CORTOP:
Horizontal,
output) of pin 26 and measure the voltage at line
1111-0000
vertical sync
22 under conditions of CORTOP: 1111 (Va) and
signal
CORTOP: 0000 (Vb).
EWcortop = Va-Vb
East/West output
Line 22
BOTTOM
EWcorbot
Monitor the East/West output (parabolic wave
CORBOTTOM:
output) of pin 26 and measure the voltage at line
1111-0000
262 under conditions of CORBOT: 1111 (Va) and
CORBOT: 0000 (Vb).
EWcorbot = Va-Vb
East/West output
Line 262
Continued on next page.
No.7962-44/50
LA76835NM
Control Register Bit Allocation Map
Sub address
00000000
00001
MSB
Data bits
DA0
DA1
T_Disable
AFC gain&gate
1
0
1
Vtrans
Audio.Mute
Video.Mute
0
0
0
0
00010
Sync.Kill
0
1
00011
VSEPUP
V.KILL
0
0
00100
V.TEST
00101
V.COMP
DA6
DA7
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
H.PAHSE
1
0
V.LIN TOP
0
1
V.LIN BOTTOM
1
1
*
*
*
(0)
(0)
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R.BIAS
01000
G.BIAS
0
0
V.SC
B.BIAS
0
01010
*
01011
Drive.Test
R.DRIVE
(0)
1
*
01101
Blank.Def
0
G.DRIVE
1
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
Sub.Bright
0
1
Bright
(0)
*
0
Half tone Def
B.DRIVE
(0)
*
0
Half tone
0
01100
01111
DA5
(0)
00111
01110
DA4
V.POSI
COUNT.DWN.MOD
1
01001
DA3
H.FREQ
V.SIZE
0
00110
DA2
LSB
1
Contrast
(0)
1
0
Continued on next page.
* Operated on HVCC
No.7962-45/50
LA76835NM
Continued from preceding page.
Sub address
MSB
Data bits
DA0
00010000
DA1
DA2
DA3
*
*
ODS Contrast
(0)
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Tint.Test
0
Sharpness
0
0
1
0
0
1
0
0
10100
Video SW
*
*
*
(0)
(0)
10101
Gray Mode
Tint
0
Color.Test
0
11000
11001
11010
Cross B/W
0
*
(0)
(0)
0
G-Y Angle
Color Killer ope,
0
0
0
0
(0)
(Fsc Csync)
Y.APF
C.BPF Test
(0)
1
0
(0)
Y Gamma Start
0
DC.Rest
1
0
0
Filter.Sys
CbCr_IN
FBPBLK.SW
0
0
0
0
WPL Ope.Point (W/Defeat)
0
Blk.Str.Shart (W/Defeat)
0
0
Blk.Str.Gain
0
0
0
0
1
Auto.Flesh
C.Ext
C.Bypass
C_Kill ON
C_Kill OFF
*
*
*
0
0
1
0
0
(0)
(0)
(0)
Cont.Test
Digital OSD
Brt.Abl.Def
Mid.Stp.Def
*
-
0
0
0
0
(0)
1
0
0
*
*
*
*
(0)
(0)
(0)
(0)
0
0
0
11100
Audio SW
1
11111
Color
*
Cb DC Offset
11110
0
0
11011
11101
DA7
(0)
10010
10111
DA6
0
Coring Gain (W/Defeat)
10110
DA5
OSD Cnt.Test
10001
10011
LSB
DA4
0
0
Bright.Abl.Threshold
R-Y/B-Y Angle
1
Cr DC Offset
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Volume
0
0
*
VOL.FIL
(0)
0
RF.AGC
1
FM.Mute
*
*
0
(0)
(0)
VIDEO.LEVEL
1
1
0
0
VIF.Sys.SW
*
*
*
IF.AGC
(0)
(0)
(0)
(0)
0
*
*
*
*
*
(0)
(0)
(0)
(0)
(0)
Continued on next page.
No.7962-46/50
LA76835NM
Continued from preceding page.
Sub address
00100000
100001
100010
100011
MSB
DA0
DA1
DA2
*
*
East/West DC
(0)
(0)
1
100101
101001
101010
101011
DA7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
(0)
1
0
0
0
1
0
0
*
*
*
*
0
(0)
(0)
(0)
(0)
0
0
1
*
Tint. Through
East/West Tilt
(0)
0
1
0
East/West Amp
0
0
0
0
0
0
0
0
East/West Corner Bottom
EW_Cor.SW
*
0
(0)
East/West Corner TOP
East/West Test
H.Size.Comp
H Phase Bow Correction
0
Pre-Shoot Adjustment
Over-Shoot Adjustment
1
Chroma Trap Fil Test
0
0
0
0
0
1
0
0
VSIZE75
Raster cut
V BLK Select
0
0
0
H BLK K
1
*
H BLK R
Sync Sep Sens.
VM GAIN
*
*
*
*
(0)
(0)
(0)
(0)
R Width
0
1
H Phase Angle Correction
0
1
101000
DA6
*
0
100111
DA5
(0)
1
100110
DA4
*
0
LSB
DA3
(0)
0
100100
Data bits
R Offset
0
Y TH
0
*
0
(0)
Y GAIN
B Width
0
YCMIX_SW
0
0
0
B Offset
0
0
0
BUS Control Register Bit Allocation Map
MSB
2nd Byte
Data bits
LSB
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
X.Ray
*
H.Lock
RF.AGC
KILLER
V.TRI
*
ST/NONST
*
(0)
*
*
*
*
(0)
*
No.7962-47/50
LA76835NM
Initial Conditions
Register
Register
T.Disable
1HEX
Blk.Str.Start
3HEX
AFC.gain&gate
0HEX
Blk.Str.Gain
0HEX
H.FREQ
3FHEX
Auto.Flesh
0HEX
Vtrans
0HEX
C.Ext
0HEX
Audio.Mute
0HEX
C.Bypass
1HEX
Video.Mute
0HEX
C.Kill.ON
0HEX
H.PHASE
10HEX
C.Kill.OFF
0HEX
Sync.kill
0HEX
Cont.Test
0HEX
V.SIZE
40HEX
Digital.OSD
0HEX
V.SEPUP
0HEX
Brt.Abl.Def
0HEX
V.KILL
0HEX
Mid.Stp.def
0HEX
V.POSI
20HEX
Bright.Abl.Threshold
4HEX
V.TEST
0HEX
R-Y/B-y.Angle
8HEX
CD.MODE
0HEX
Cb.DC.Offset
8HEX
V.LIN.TOP
10HEX
Cr.DC.Offset
8HEX
V.COMP
7HEX
Audio.SW
0HEX
V.LIN.BOTTOM
10HEX
Volume
0HEX
V.SC
BHEX
S.TRAP.SW
0HEX
R.BIAS
0HEX
VOL.FIL
0HEX
G.BIAS
0HEX
RF.AGC
20HEX
B.BIAS
0HEX
FM.Mute
0HEX
R.DRIVE
40HEX
VIF.Sys.SW
0HEX
G.DRIVE
AHEX
IF.AGC
0HEX
B.DRIVE
40HEX
VIDEO.LEVEL
4HEX
Drive.Test
0HEX
East/West.DC
20HEX
Half.tone
1HEX
East/West.Amp
20HEX
Half.tone.Def
1HEX
East/West.Tilt
20HEX
Blank.Def
0HEX
Tint.Through
0HEX
Sub.Bias
40HEX
East/West.Corner.Bottom
0HEX
Bright
40HEX
East/West.Corner.TOP
0HEX
Contrast
40HEX
East/West.Corner.SW
0HEX
OSD.Contrast
10HEX
Hlock.Vdet
0HEX
OSD.Cnt.Test
0HEX
East/West.Test
0HEX
Coring.Gain
0HEX
H.Size.Comp
7HEX
Sharpness
0HEX
H.Phase.Bow.Correction
8HEX
Tint
40HEX
H.Phase.Angle.Correction
8HEX
Tint.Test
0HEX
Pre-Shoot.Adjustment
0HEX
Color
40HEX
Over-Shoot.Adjustment
0HEX
Color.Test
0HEX
Chroma.Trap.Fil.Test
4HEX
Video.SW
0HEX
H.BLK.L
8HEX
Filter.SYS
0HEX
H.BLK.R
8HEX
Gray.Mode
0HEX
Sync.Sep.Sence
4HEX
Cross.B/W
0HEX
VM.Gain
4HEX
CbCr.IN
0HEX
YCMIX.SW
0HEX
G-Y.Angle.SW
0HEX
V.SIZE0.75
0HEX
Color.kill.ope
0HEX
Raster.cut
0HEX
FBPBLK.SW
1HEX
V.BLK.Select
0HEX
(fsc.or.Csync)
0HEX
Y.TH
0HEX
Y.APF
0HEX
Y.GAain
0HEX
C.BPF.TEST
2HEX
R.Width
0HEX
WPL.Ope.Point
0HEX
R.Offset
0HEX
Y.Gamma.Start
0HEX
B.Width
0HEX
DC.Rest
0HEX
B.Offset
0HEX
No.7962-48/50
LA76835NM
Pin Assignment
Pin
Function
Pin
Function
1
F.GND
80
IF GND
2
F.GND
79
PIF Input1
3
F.GND
78
PIF Input2
4
F.GND
77
RF AGC Output
5
IF VCC
76
PIF AGC
6
FM Filter
75
FM Output
7
AFT Output
74
FM&VOL VCC
8
Bus Data
73
AUDIO Output
9
Bus Clock
72
NC
10
ABL
71
FM Noise Filter
11
Red Input
70
NC
12
Green Input
69
SIF Input
13
Blue Input
68
SIF APC Filter
14
Fast Blanking Input
67
SIF Output
15
HS
66
Ext. Audio Input
16
VS
65
APC Filter
17
RGB VCC
64
F.GND
18
Red Output
63
F.GND
19
Green Output
62
F.GND
20
Blue Output
61
F.GND
21
F.GND
60
VCO Coil 1
22
F.GND
59
VCO Coil 2
23
F.GND
58
FLL Filter
24
F.GND
57
NC
25
V Size Comp input
56
Video Output
26
E/W Output
55
DC Rest & Black Level Detector
27
Vertical Output
54
Internal Video Input (S-C IN)
28
Ramp ALC Filter
53
Video/Vertical VCC
29
Horizontal/BUS VCC
52
External Video Input (Y IN)
30
Horizontal AFC Filter
51
NC
31
Horizontal Output
50
Selecterd Video Output
32
CPU VCC
49
Video/Chroma/Vertical GND
33
Flyback pulse Input
48
VM Input
34
H VCO I ref
47
Clamp Filter
35
CPU Reset
46
3.58MHz Crystal
36
H.GND
45
Chroma APC Filter
37
VM Output
44
fsc (3.58MHz) Output
38
X-RAY
43
F.GND
39
Cb Input
42
F.GND
40
Cr Input
41
F.GND
No.7962-49/50
LA76835NM
Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the
performance, characteristics, and functions of the described products in the independent state, and are
not guarantees of the performance, characteristics, and functions of the described products as mounted
in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an
independent device, the customer should always evaluate and test devices mounted in the customer's
products or equipment.
SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any
and all semiconductor products fail with some probability. It is possible that these probabilistic failures
could give rise to accidents or events that could endanger human lives, that could give rise to smoke or
fire, or that could cause damage to other property. When designing equipment, adopt safety measures
so that these kinds of accidents or events cannot occur. Such measures include but are not limited to
protective circuits and error prevention circuits for safe design, redundant design, and structural design.
In the event that any or all SANYO Semiconductor products (including technical data,services) described
or contained herein are controlled under any of applicable local export control laws and regulations, such
products must not be exported without obtaining the export license from the authorities concerned in
accordance with the above law.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, or any information storage or retrieval system, or
otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
Any and all information described or contained herein are subject to change without notice due to
product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification"
for the SANYO Semiconductor product that you intend to use.
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not
guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and
reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual
property rights or other rights of third parties.
This catalog provides information as of December, 2006. Specifications and information herein are subject
to change without notice.
PS No.7962-50/50