STMICROELECTRONICS MTC20455MB-I

MTC20455
QUAD ADSL DMT TRANSCEIVER
■
■
■
■
■
■
Quad DMT modem ATM framer
Supports ANSI T1.413 issue 2, ITU G.992.1,
and G.992.2 standards
Low power consumption (1W for four lines)
Standard Utopia level 2 ATM interface
160 PQFP Package
160 LFBGA Package
PQFP160
LFBGA160
ORDERING NUMBERS:
DESCRIPTION
The MTC20455 is the DMT modem and ATM
Framer of the MTK20450 Quad Rate adaptive
ADSL DynaMiTe chipset. When used in conjunction with the MTC20454 or MTC20154 analog
front-end, the product supports ANSI T1.413 release 2, ITU G.992.1 and G.992.2 (G.Lite) ADSL
specifications through software configuration. It
provides a cell based UTOPIA Level 2 ATM data
interface.
The MTC20455 performs the DMT modulation,
demodulation, Reed-Solomon encoding, bit interleaving and trellis coding for four ADSL modems.
The ATM section provides framing functions for
Part Numbers
Package
Temperature
MTC20455PQ-I
160 pin PQFP
-40 to +85°C
MTC20455MB-I
160 pin LFBGA
-40 to +85°C
Can also be ordered using kit number MTK20450
the generic and ATM Transmission Convergence
(TC) layers. The generic TC consists of data
scrambling and Reed-Solomon error corrections,
with and without interleaving.
The MTC20455 is controlled and configured by the
MTC20136 Transceiver Controller. All programmable coefficients and parameters are loaded by
the Controller. The MTC20136 also controls the
initialisation procedure and performs the monitoring and adaptive functions during operation.
Figure 1. Block Diagram
AFE
Quad or Mux'd AFE Interface
Reset
JTAG
DynaMiTe
Core 0
DynaMiTe
Core 1
Transceiver
Controller
Test
DynaMiTe
Core 2
DynaMiTe
Core 3
Clocks
Interface Module
UTOPIA Interface
February 2004
1/23
MTC20455
VSS
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
VDD
U_TXREFB
U_TXDATA_7
U_TXDATA_6
U_TXDATA_5
U_TXDATA_4
U_TXDATA_3
U_TXDATA_2
U_TXDATA_1
U_TXDATA_0
VSS
COMP_CELL
VDD
U_TXADDR_4
U_TXADDR_3
U_TXADDR_2
U_TXADDR_1
U_TXADDR_0
VSS
U_TXCLAV
U_TXENBB
U_TXCLK
VDDIO
U_TXSOC
AFTXD_3_3
AFTXD_3_2
AFTXD_3_1
AFTXD_3_0
VSSIO
CTRLDATA_3
MCLK_3
CLWD_3
VDD
AFRXD_3_3
AFRXD_3_2
AFRXD_3_1
AFRXD_3_0
PDOWN_3
AFRESET_3
Figure 2. PQF160 package pin out
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
UTOPIA TX
AFE_1
AFE_0
OBC
MTC20455
AFE_2
(PQFP160)
UTOPIA RX
TEST
AFE_3
VDD
TDO
TDI
TMS
TCK
TRSTB
VSS
TESTSE
VSSIO
U_RXDATA_0
U_RXDATA_1
U_RXDATA_2
U_RXDATA_3
U_RXDATA_4
U_RXDATA_5
U_RXDATA_6
U_RXDATA_7
VDDIO
U_RXSOC
U_RXCLK
U_RXENBB
U_RXCLAV
VDD
URXADDR_0
URXADDR_1
URXADDR _2
URXADDR_3
URXADDR_4
VSS
AFRESET_0
PDOWN_0
AFRXD_0_0
AFRXD_0_1
AFRXD_0_2
AFRXD_0_3
VSSIO
CLWD_0
MCLK_0
CTRLDATA_0
VDD
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
VSS
AD_00
AD_01
AD_02
AD_03
VDDIO
AD_04
AD_05
AD_06
AD_07
VSSIO
AD_08
AD_09
AD_10
AD_11
VDD
AD_12
AD_13
AD_14
AD_15
VSS
PCLK
BE
ALE
CSB_0
VDD
CSB_1
CSB_2
CSB_3
WR_RDB
VSS
RDYB
OBC_TYPE
INTB_0
INTB_1
VDD
INTB_2
INTB_3
RESETB
VSS
Table 1. I/O types
Type
Function
I
Input
I-PD
Input with internal pull down resistor
I-PU
Input with internal pull up resistor
O
Output
OZ
Tri-state output
B
Bidirectional
G
Ground
P
Power
2/23
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
099
098
097
096
095
094
093
092
091
090
089
088
087
086
085
084
083
082
081
VDD
AFTXD_2_3
AFTXD_2_2
AFTXD_2_1
AFTXD_2_0
VSS
CTRLDATA_2
MCLK_2
CLWD_2
VDD
AFRXD_2_3
AFRXD_2_2
AFRXD_2_1
AFRXD_2_0
VDDIO
PDOWN_2
AFRESET_2
GP_IN
VSS
AFTXD_1_3
AFTXD_1_2
AFTXD_1_1
AFTXD_1_0
VSSIO
CTRLDATA_1
MCLK_1
CLWD_1
VDD
AFRXD_1_3
AFRXD_1_2
AFRXD_1_1
AFRXD_1_0
PDOWN_1
AFRESET_1
VDDIO
AFTXD_0_3
AFTXD_0_2
AFTXD_0_1
AFTXD_0_0
VSS
MTC20455
Table 2. I/O driver function
Driver
Function
BD4STARP_TC
CMOS bi-directional, 4mA, schmitt trigger on input, active slew rate control, 3.3V capable
BD8STARP_TC
CMOS bi-directional, 8mA, schmitt trigger on input, active slew rate control, 3.3V capable
TLCHT_TC
TTL input, 3.3V compatible
TLCHTDQ_TC
TTL input, 3.3V compatible, pull down, IDDq control
TLCHTUQ_TC
TTL input, 3.3V compatible, pull up, IDDq control
Table 3. PQFP 160 pin list
Signal Name
Signal
type
1
VSS
G
2
AD_00
B
BD8STARP_TC
Address/Data Bus
3
AD_01
B
BD8STARP_TC
Address/Data Bus
4
AD_02
B
BD8STARP_TC
Address/Data Bus
5
AD_03
B
BD8STARP_TC
Address/Data Bus
6
VDDIO
P
7
AD_04
B
BD8STARP_TC
Address/Data Bus
8
AD_05
B
BD8STARP_TC
Address/Data Bus
9
AD_06
B
BD8STARP_TC
Address/Data Bus
10
AD_07
B
BD8STARP_TC
Address/Data Bus
11
VSSIO
G
12
AD_08
B
BD8STARP_TC
Address/Data Bus
13
AD_09
B
BD8STARP_TC
Address/Data Bus
14
AD_10
B
BD8STARP_TC
Address/Data Bus
15
AD_11
B
BD8STARP_TC
16
VDD
P
17
AD_12
B
BD8STARP_TC
Address/Data Bus
18
AD_13
B
BD8STARP_TC
Address/Data Bus
19
AD_14
B
BD8STARP_TC
Address/Data Bus
20
AD_15
B
BD8STARP_TC
Address/Data Bus
21
VSS
G
22
PCLK
I
TLCHT_TC
Processor Clock
23
BE
I
TLCHT_TC
Address bit 1
Pin #
Technology
Description
VSSIO+3.3V
Address/Data Bus
VSS+1.8V
24
ALE
I
TLCHT_TC
Address Latch
25
CSB_0
I
TLCHT_TC
Chip select line 0
26
VDD
P
27
CSB_1
I
TLCHT_TC
Chip select line 1
28
CSB_2
I
TLCHT_TC
Chip select line 2
29
CSB_3
I
TLCHT_TC
Chip select line 3
30
WR_RDB
I
TLCHT_TC
Write/Not read
BD4STARP_TC
Ready indication
VSS+1.8V
31
VSS
G
32
RDYB
OZ
33
OBC_TYPE
I-PD
TLCHTDQ_TC
I960/Generic selection
34
INTB_0
O
BD4STARP_TC
Requests OBC interrupt service line 0
3/23
MTC20455
Table 3. PQFP 160 pin list (continued)
Pin #
Signal Name
Signal
type
35
INTB_1
O
Technology
BD4STARP_TC
Description
Requests OBC interrupt service line 1
36
VDD
P
37
INTB_2
O
BD4STARP_TC
Requests OBC interrupt service line 2
38
INTB_3
O
BD4STARP_TC
Requests OBC interrupt service line 3
39
RESETB
I
TLCHT_TC
Hard reset
40
VSS
G
BD4STARP_TC
Boundary scan out
41
VDD
P
42
TDO
OZ
VSS+1.8V
VSS+1.8V
43
TDI
I-PU
TLCHTUQ_TC
Boundary scan in
44
TMS
I-PU
TLCHTUQ_TC
Tap controller signal
45
TCK
I-PD
TLCHTDQ_TC
Boundary scan clock
46
TRSTB
I-PD
TLCHTDQ_TC
Not reset of Tap controller
47
VSS
G
48
TESTE
I-PD
TLCHTDQ_TC
Enables scan test mode
49
VSSIO
G
50
U_RXDATA_0
OZ
BD8STARP_TC
Utopia receive data bus
51
U_RXDATA_1
OZ
BD8STARP_TC
Utopia receive data bus
52
U_RXDATA_2
OZ
BD8STARP_TC
Utopia receive data bus
53
U_RXDATA_3
OZ
BD8STARP_TC
Utopia receive data bus
54
U_RXDATA_4
OZ
BD8STARP_TC
Utopia receive data bus
55
U_RXDATA_5
OZ
BD8STARP_TC
Utopia receive data bus
56
U_RXDATA_6
OZ
BD8STARP_TC
Utopia receive data bus
57
U_RXDATA_7
OZ
BD8STARP_TC
58
VDDIO
P
59
U_RXSOC
OZ
BD8STARP_TC
Utopia receive start of cell
60
U_RXCLK
I
TLCHT_TC
Utopia receive clock
61
U_RXENBB
I
TLCHT_TC
62
U_RXCLAV
OZ
63
VDD
P
64
U_RXADDR_0
I
TLCHT_TC
Utopia receive address
65
U_RXADDR_1
I
TLCHT_TC
Utopia receive address
66
U_RXADDR_2
I
TLCHT_TC
Utopia receive address
67
U_RXADDR_3
I
TLCHT_TC
Utopia receive address
68
U_RXADDR_4
I
TLCHT_TC
Utopia receive address
69
VSS
G
70
AFRESET_0
O
BD4STARP_TC
MTC20455 Reset line 0
71
PDOWN_0
O
BD4STARP_TC
MTC20455 power down line 0
72
AFRXD_0_0
I
TLCHT_TC
Receive data nibble line 0
73
AFRXD_0_1
I
TLCHT_TC
Receive data nibble line 0
74
AFRXD_0_2
I
TLCHT_TC
Receive data nibble line 0
75
AFRXD_0_3
I
TLCHT_TC
Receive data nibble line 0
76
VSSIO
G
77
CLWD_0
I
TLCHT_TC
Start of word indication line 0
4/23
Utopia receive data bus
VSSIO+3.3V
Utopia receive not enable
Utopia receive cell available
VSS+1.8V
MTC20455
Table 3. PQFP 160 pin list (continued)
Pin #
Signal Name
Signal
type
78
MCLK_0
I
TLCHT_TC
Master clock line 0
79
CTRLDATA_0
O
BD4STARP_TC
Serial data transmit channel line 0
80
VDD
P
81
VSS
G
82
AFTXD_0_0
O
BD4STARP_TC
Transmit data nibble line 0
83
AFTXD_0_1
O
BD4STARP_TC
Transmit data nibble line 0
84
AFTXD_0_2
O
BD4STARP_TC
Transmit data nibble line 0
85
AFTXD_0_3
O
BD4STARP_TC
Transmit data nibble line 0
BD4STARP_TC
MTC20455 Reset line 1
Technology
Description
VSS+1.8V
86
VDDIO
P
87
AFRESET_1
O
VSSIO+3.3V
88
PDOWN_1
O
BD4STARP_TC
MTC20455 power down line 1
89
AFRXD_1_0
I
TLCHT_TC
Receive data nibble line 1
90
AFRXD_1_1
I
TLCHT_TC
Receive data nibble line 1
91
AFRXD_1_2
I
TLCHT_TC
Receive data nibble line 1
92
AFRXD_1_3
I
TLCHT_TC
Receive data nibble line 1
93
VDD
P
94
CLWD_1
I
TLCHT_TC
Start of word indication line 1
VSS+1.8V
95
MCLK_1
I
TLCHT_TC
Master clock line 1
96
CTRLDATA_1
O
BD4STARP_TC
Serial data transmit channel line 1
97
VSSIO
G
98
AFTXD_1_0
O
BD4STARP_TC
Transmit data nibble line 1
99
AFTXD_1_1
O
BD4STARP_TC
Transmit data nibble line 1
100
AFTXD_1_2
O
BD4STARP_TC
Transmit data nibble line 1
101
AFTXD_1_3
O
BD4STARP_TC
Transmit data nibble line 1
102
VSS
G
103
GP_IN
I-PD
TLCHTDQ_TC
General purpose input for DspFe test
104
AFRESET_2
O
BD4STARP_TC
MTC20455 Reset line 2
105
PDOWN_2
O
BD4STARP_TC
MTC20455 power down line 2
106
VDDIO
P
107
AFRXD_2_0
I
TLCHT_TC
Receive data nibble line 2
108
AFRXD_2_1
I
TLCHT_TC
Receive data nibble line 2
109
AFRXD_2_2
I
TLCHT_TC
Receive data nibble line 2
110
AFRXD_2_3
I
TLCHT_TC
Receive data nibble line 2
111
VDD
P
112
CLWD_2
I
TLCHT_TC
Start of word indication line 2
113
MCLK_2
I
TLCHT_TC
Master clock line 2
114
CTRLDATA_2
O
BD4STARP_TC
Serial data transmit channel line 2
115
VSS
G
116
AFTXD_2_0
O
BD4STARP_TC
Transmit data nibble line 2
117
AFTXD_2_1
O
BD4STARP_TC
Transmit data nibble line 2
118
AFTXD_2_2
O
BD4STARP_TC
Transmit data nibble line 2
119
AFTXD_2_3
O
BD4STARP_TC
Transmit data nibble line 2
120
VDD
P
VSSIO+3.3V
VSS+1.8V
VSS+1.8V
5/23
MTC20455
Table 3. PQFP 160 pin list (continued)
Pin #
Signal Name
Signal
type
121
VSS
G
122
AFRESET_3
O
BD4STARP_TC
123
PDOWN_3
O
BD4STARP_TC
MTC20455 power down line 3
124
AFRXD_3_0
I
TLCHT_TC
Receive data nibble line 3
125
AFRXD_3_1
I
TLCHT_TC
Receive data nibble line 3
126
AFRXD_3_2
I
TLCHT_TC
Receive data nibble line 3
127
AFRXD_3_3
I
TLCHT_TC
Receive data nibble line 3
128
VDD
P
129
CLWD_3
I
TLCHT_TC
Start of word indication line 3
130
MCLK_3
I
TLCHT_TC
Master clock line 3
131
CTRLDATA_3
O
BD4STARP_TC
Serial data transmit channel line 3
132
VSSIO
G
133
AFTXD_3_0
O
BD4STARP_TC
Transmit data nibble line 3
134
AFTXD_3_1
O
BD4STARP_TC
Transmit data nibble line 3
135
AFTXD_3_2
O
BD4STARP_TC
Transmit data nibble line 3
136
AFTXD_3_3
O
BD4STARP_TC
Transmit data nibble line 3
137
U_TXSOC
I
TLCHT_TC
Utopia transmit start of cell
138
VDDIO
P
139
U-TXCLK
I
140
U_TXENBB
I
141
U_TXCLAV
OZ
142
VSS
G
143
U_TXADDR_0
144
U_TXADDR_1
145
146
147
148
149
Technology
Description
MTC20455 Reset line 3
VSS+1.8V
VSSIO+3.3V
TLCHT_TC
Utopia transmit clock
TLCHT_TC
Utopia transmit not enable
BD8STARP_TC
Utopia transmit cell available
I
TLCHT_TC
Utopia transmit address
I
TLCHT_TC
Utopia transmit address
U_TXADDR_2
I
TLCHT_TC
Utopia transmit address
U_TXADDR_3
I
TLCHT_TC
Utopia transmit address
U_TXADDR_4
I
TLCHT_TC
Utopia transmit address
VDD
P
COMP_CELL
O
COMPENSATION_VSS
Resistance for compensation cell
150
VSS
G
151
U_TXDATA_0
I
TLCHT_TC
Utopia transmit data bus
152
U_TXDATA_1
I
TLCHT_TC
Utopia transmit data bus
153
U_TXDATA_2
I
TLCHT_TC
Utopia transmit data bus
154
U_TXDATA_3
I
TLCHT_TC
Utopia transmit data bus
155
U_TXDATA_4
I
TLCHT_TC
Utopia transmit data bus
156
U_TXDATA_5
I
TLCHT_TC
Utopia transmit data bus
157
U_TXDATA_6
I
TLCHT_TC
Utopia transmit data bus
158
U-TXDATA_7
I
TLCHT_TC
Utopia transmit data bus
159
U_TXREFB
I
TLCHT_TC
160
VDD
P
6/23
VSS+1.8V
8kHz from network
VSS+1.8V
MTC20455
Figure 3. LFBGA160 package pin out (Sachem4 top view)
1
2
AD_0
VDD_7
VSS_7
3
4
5
U_TXDATA_4 U_TXDATA_0
VDD_5
6
U_TXADDR_1
7
8
U_TXCLAV
U_TXSOC
U_TXREFB U_TXDATA_7 U_TXDATA_5 U_TXDATA_2 COMP_CELL U_TXADDR_2 U_TXENBB
U_TXADDR_3
VSS_4
11
12
13
MCLK_3
AFRXD_3_3
AFRXD_3_0
VSS_2
CLWD_3
PDOWN_3
AFTXD_2_3
VDD_2
B
VDD_3
AFRXD_3_2
AFTXD_2_2
VSS_1
C
AFRXD_3_1
AFTXD_2_1
VDD_1
D
VDDIO_4 AFTXD_3_0
A
AD_7
AD_3
AD_5
AD_4
AD_10
AD_6
AD_11
VSS_8
open
open
open
open
open
open
MCLK_2
CTRLDATA_2
CLWD_2
AFRXD_2_1
E
AD_12
AD_9
AD_8
VDD_9
open
open
open
open
open
open
AFRXD_2_0
AFRXD_2_3
AFRXD_2_2
AFRESET_2
F
VSS_9
AD_13
AD_14
AD_15
open
open
open
open
open
open
GP_IN
VDDIO_0
PDOWN_2
AFTXD_1_2
G
ALE
PCLK
BE
VDD_10
open
open
open
open
open
open
AFTXD_1_1
VSS_0
AFTXD_1_3
VSS_17
H
CSB_2
CSB_0
CSB_1
WR_RDB
open
open
open
open
open
open
MCLK_1
CTRLDATA_1 AFTXD_1_0
CLWD_1
J
RDYB
CSB_3
VSS_10
VDD_11
open
open
open
open
open
open
AFRXD_1_2
AFRXD_1_3
AFRXD_1_1
K
INTB_0
TCK
PDOWN_1
AFRESET_1 AFRXD_1_0
VDDIO_16
L
AFRXD_0_0
AFTXD_0_2
AFTXD_0_3
AFTXD_0_1
M
VSS_15
MCLK_0
AFTXD_0_0
VSS_16
N
AFRXD_0_3
CLWD_0
VDD_15
U_RXDATA_0 U_RXDATA_4 VDDIO_13
U_TXCLK
VSS_3
AFRESET_3
AD_1
U_TXDATA_1 U_TXADDR_4 U_TXADDR_0
AFTXD_3_3
14
AD_2
OBC_TYPE
VSS_6
AFTXD_3_1
10
VDDIO_8
INTB_1
U_TXDATA_6 U_TXDATA_3
9
AFTXD_3_2 CTRLDATA_3 AFTXD_2_0
U_RXCLAV U_RXADDR_2AFRESET_0
INTB_3
INTB_2
TDI
VSS_12
U_RXDATA_1 U_RXDATA_5
U_RXSOC
U_RXADDR_1
VSS_14
AFRXD_0_2
VSS_11
RESETB
TMS
TESTSE
U_RXDATA_2 U_RXDATA_6
U_RXCLK
VDD_14
VDD_12
TDO
TRSTB
VSS_13
U_RXDATA_3 U_RXDATA_7 U_RXENBB U_RXADDR_0 U_RXADDR_3 PDOWN_0
U_RXADDR_4AFRXD_0_1
VDD_17
CTRLDATA_0
P
Table 4. LFBGA 160 pin list
Pin #
Signal Name
Signal
type
B1
VSS
G
Technology
Description
A1
AD_00
B
BD8STARP_TC
Address/Data Bus
C3
AD_01
B
BD8STARP_TC
Address/Data Bus
C2
AD_02
B
BD8STARP_TC
Address/Data Bus
D2
AD_03
B
BD8STARP_TC
Address/Data Bus
C1
VDDIO
P
D4
AD_04
B
BD8STARP_TC
Address/Data Bus
D3
AD_05
B
BD8STARP_TC
Address/Data Bus
VSSIO+3.3V
E2
AD_06
B
BD8STARP_TC
Address/Data Bus
D1
AD_07
B
BD8STARP_TC
Address/Data Bus
E4
VSSIO
G
F3
AD_08
B
BD8STARP_TC
Address/Data Bus
F2
AD_09
B
BD8STARP_TC
Address/Data Bus
E1
AD_10
B
BD8STARP_TC
Address/Data Bus
E3
AD_11
B
BD8STARP_TC
Address/Data Bus
7/23
MTC20455
Table 4. LFBGA 160 pin list (continued)
Pin #
Signal Name
Signal
type
F4
VDD
P
Technology
Description
VSS+1.8V
F1
AD_12
B
BD8STARP_TC
Address/Data Bus
G2
AD_13
B
BD8STARP_TC
Address/Data Bus
G3
AD_14
B
BD8STARP_TC
Address/Data Bus
G4
AD_15
B
BD8STARP_TC
Address/Data Bus
G1
VSS
G
H2
PCLK
I
TLCHT_TC
Processor Clock
H3
BE
I
TLCHT_TC
Address bit 1
H1
ALE
I
TLCHT_TC
Address Latch
J2
CSB_0
I
TLCHT_TC
Chip select line 0
H4
VDD
P
J3
CSB_1
I
TLCHT_TC
Chip select line 1
J1
CSB_2
I
TLCHT_TC
Chip select line 2
VSS+1.8V
K2
CSB_3
I
TLCHT_TC
Chip select line 3
J4
WR_RDB
I
TLCHT_TC
Write/Not read
BD4STARP_TC
Ready indication
K3
VSS
G
K1
RDYB
OZ
L2
OBC_TYPE
I-PD
TLCHTDQ_TC
I960/Generic selection
L3
INTB_0
O
BD4STARP_TC
Requests OBC interrupt service line 0
BD4STARP_TC
L1
INTB_1
O
K4
VDD
P
Requests OBC interrupt service line 1
M2
INTB_2
O
M1
INTB_3
O
BD4STARP_TC
Requests OBC interrupt service line 3
N2
RESETB
I
TLCHT_TC
Hard reset
N1
VSS
G
P1
VDD
P
VSS+1.8V
BD4STARP_TC
Requests OBC interrupt service line 2
VSS+1.8V
P2
TDO
OZ
BD4STARP_TC
Boundary scan out
M3
TDI
I-PU
TLCHTUQ_TC
Boundary scan in
N3
TMS
I-PU
TLCHTUQ_TC
Tap controller signal
L4
TCK
I-PD
TLCHTDQ_TC
Boundary scan clock
P3
TRSTB
I-PD
TLCHTDQ_TC
Not reset of Tap controller
TLCHTDQ_TC
Enables scan test mode
M4
VSS
G
N4
TESTE
I-PD
P4
VSSIO
G
L5
U_RXDATA_0
OZ
BD8STARP_TC
Utopia receive data bus
M5
U_RXDATA_1
OZ
BD8STARP_TC
Utopia receive data bus
N5
U_RXDATA_2
OZ
BD8STARP_TC
Utopia receive data bus
P5
U_RXDATA_3
OZ
BD8STARP_TC
Utopia receive data bus
L6
U_RXDATA_4
OZ
BD8STARP_TC
Utopia receive data bus
M6
U_RXDATA_5
OZ
BD8STARP_TC
Utopia receive data bus
N6
U_RXDATA_6
OZ
BD8STARP_TC
Utopia receive data bus
P6
U_RXDATA_7
OZ
BD8STARP_TC
Utopia receive data bus
L7
VDDIO
P
8/23
VSSIO+3.3V
MTC20455
Table 4. LFBGA 160 pin list (continued)
Pin #
Signal Name
Signal
type
M7
U_RXSOC
OZ
N7
U_RXCLK
I
TLCHT_TC
Utopia receive clock
P7
U_RXENBB
I
TLCHT_TC
Utopia receive not enable
L8
U_RXCLAV
OZ
Technology
BD8STARP_TC
Description
Utopia receive start of cell
Utopia receive cell available
N8
VDD
P
D11
AFTXD_2_0
O
BD4STARP_TC
VSS+1.8V
Transmit data nibble line 2
D13
AFTXD_2_1
O
BD4STARP_TC
Transmit data nibble line 2
C13
AFTXD_2_2
O
BD4STARP_TC
Transmit data nibble line 2
B13
AFTXD_2_3
O
BD4STARP_TC
B14
VDD
P
Transmit data nibble line 2
VSS+1.8V
A13
VSS
G
A14
AFRESET_3
O
BD4STARP_TC
MTC20455 Reset line 3
B12
PDOWN_3
O
BD4STARP_TC
MTC20455 power down line 3
A12
AFRXD_3_0
I
TLCHT_TC
Receive data nibble line 3
D12
AFRXD_3_1
I
TLCHT_TC
Receive data nibble line 3
C12
AFRXD_3_2
I
TLCHT_TC
Receive data nibble line 3
A11
AFRXD_3_3
I
TLCHT_TC
Receive data nibble line 3
C11
VDD
P
B11
CLWD_3
I
TLCHT_TC
Start of word indication line 3
VSS+1.8V
A10
MCLK_3
I
TLCHT_TC
Master clock line 3
D10
CTRLDATA_3
O
BD4STARP_TC
Serial data transmit channel line 3
C10
VSSIO
G
B10
AFTXD_3_0
O
BD4STARP_TC
Transmit data nibble line 3
A9
AFTXD_3_1
O
BD4STARP_TC
Transmit data nibble line 3
D9
AFTXD_3_2
O
BD4STARP_TC
Transmit data nibble line 3
C9
AFTXD_3_3
O
BD4STARP_TC
Transmit data nibble line 3
A8
U_TXSOC
I
TLCHT_TC
Utopia transmit start of cell
B9
VDDIO
P
D8
U-TXCLK
I
TLCHT_TC
Utopia transmit clock
B8
U_TXENBB
I
A7
U_TXCLAV
OZ
C8
VSS
G
D7
U_TXADDR_0
A6
B7
VSSIO+3.3V
TLCHT_TC
Utopia transmit not enable
BD8STARP_TC
Utopia transmit cell available
I
TLCHT_TC
Utopia transmit address
U_TXADDR_1
I
TLCHT_TC
Utopia transmit address
U_TXADDR_2
I
TLCHT_TC
Utopia transmit address
C7
U_TXADDR_3
I
TLCHT_TC
Utopia transmit address
D6
U_TXADDR_4
I
TLCHT_TC
Utopia transmit address
A5
VDD
P
B6
COMP_CELL
O
C6
VSS
G
VSS+1.8V
COMPENSATION_VSS
Resistance for compensation cell
A4
U_TXDATA_0
I
TLCHT_TC
Utopia transmit data bus
D5
U_TXDATA_1
I
TLCHT_TC
Utopia transmit data bus
B5
U_TXDATA_2
I
TLCHT_TC
Utopia transmit data bus
9/23
MTC20455
Table 4. LFBGA 160 pin list (continued)
Pin #
Signal Name
Signal
type
C5
U_TXDATA_3
I
TLCHT_TC
Utopia transmit data bus
A3
U_TXDATA_4
I
TLCHT_TC
Utopia transmit data bus
B4
U_TXDATA_5
I
TLCHT_TC
Utopia transmit data bus
C4
U_TXDATA_6
I
TLCHT_TC
Utopia transmit data bus
B3
U-TXDATA_7
I
TLCHT_TC
Utopia transmit data bus
B2
U_TXREFB
I
TLCHT_TC
8kHz from network
A2
VDD
P
Technology
Description
VSS+1.8V
ELECTRICAL SPECIFICATIONS GENERIC
The values presented in the following table apply for all inputs and/or outputs unless specified otherwise.
Specifically they are not influenced by the choice between CMOS or TTL levels.
Table 5. I/O Buffers generic DC Characteristics
DC Electrical Characteristics
All voltages are referenced to Vss, unless otherwise specified, positive current is towards the device
Symbol
Parameter
IIN
Input leakage current
IOZ
Tristate leakage current
Test Conditions
Min
Typ
Max
Unit
VIN = VSS, VDDIO,
no pull up/pull down
-1
1
µA
VIN = VSS, VDDIO,
-1
1
µA
-100
µA
no pull up/pull down
IPU
Pull up current
VIN = VSS
-15
-46.7
12.5
39.4
90
µA
35
70.5
200
kOhm
83.7
240
kOhm
IPD
Pull down current
VIN = VDDIO
Rpu
Pull up resistance
VIN = VSS
RPD
Pull down resistance
VIN = VDDIO
40
IDC
Static current fromVDDIO
NORMAL MODE
COREOFF MODE (no VDD)
IDDQ MODE (VDDIO <2.5)
1.7
µA
11.6
µA
-
µA
Table 6. IO buffers dynamic characteristic
DC Electrical Characteristics, important for transient but measured at (near) DC.
All voltages are referenced to VSS, unless otherwise specified, positive current is towards the device
Symbol
Parameter
Test Conditions
CIN
Input capacitance
@f = 1 MHz
dl/dt
Current derivative
8 mA driver,
(active slew rate control)
Ipeak
Peak current
8 mA driver,
(active slew rate control)
COUT
Output capacitance (also
bidirectional and tristate
drivers)
@f = 1MHz
10/23
Min
Typ
20
Max
Unit
5
pF
50
mA/ns
85
mA
7
pF
MTC20455
Input/Output CMOS Generic Characteristics
The values presented in the following table apply for all CMOS inputs and/ or outputs unless specified otherwise.
Table 7. TTL IO buffers generic characteristics
DC Electrical Characteristics
All voltages are referenced to VSS, unless otherwise specified, positive current is towards the device
Symbol
Parameter
Test Conditions
VIL
Low level input voltage
VIH
High level input voltage
VHY
Schmitt trigger hysteresis
slow edge <1V/µs
only for SCHMITT
VOL
Low level output voltage
IOUT = XMa*
VOH
High level output voltage
IOUT = -Xma*
Min
Typ
Max
0.2*VDD
Unit
V
0.8*vDD
V
0.8
V
0.4
0.85*vDD
V
V
* The reference current is dependent on the exact buffer chosen and is part of the buffer name. The available values are 4 and 8mA.
Input/Output TTL Generic Characteristics
The values presented in the following table apply for all TTL inputs and/or outputs unless specified otherwise.
Table 8. TTL IO buffers generic characteristics
DC Electrical Characteristics, important for transient but measured at (near) DC.
All voltages are referenced to VSS, unless otherwise specified, positive current is towards the device
Symbol
Parameter
VIL
Low level input voltage
VIH
High level input voltage
Test Conditions
Min
Typ
Max
0.8
2.0
Unit
V
V
VILHY
Low level threshold, falling slow edge < 1V/µs
0.9
1.35
V
VIHHY
High level threshold,
rising
slow edge < 1V/µs
1.3
1.9
V
Schmitt trigger hysteresis
slow edge <1V/µs
0.4
0.7
V
VOL
Low level output voltage
IOUT = XMa*
0.4
V
VOH
High level output voltage
IOUT = -Xma*
VHY
2.4
V
* The reference current is dependent on the exact buffer chosen and is part of the buffer name. The available values are 2,4, and 8mA.
Operating Conditions
Table 9. Operating Conditions
Maximum ratings
Symbol
Min
Typ
Max
Unit
IO Supply voltage
3.0
3.3
3.6
V
VDD
Core Supply voltage
1.62
1.8
TA
Ambient temperature
1m/s airflow
-40
P
Power dissipation
VDDIO
Parameter
Test Conditions
2.0
V
+85
°C
1000
mW
11/23
MTC20455
Functional Description
Fig.4 shows the global block diagram of the MTC20455. The functions can be grouped into the following:
■
■
■
■
■
DMT modems
Quad or single AFE interface
Utopia interface
Controller interface
Miscellaneous
DMT Modem Description
The following section essentially describes the sequence of actions for the receive direction, corresponding functions for the transmit direction are readily derived.
DSP Front-End
The DSP Front-End contains 4 parts in the receive direction: the Input Selector, the Analog Front-End Interface, the Decimator and the Time Equaliser. The input selector is used internally to enable test loopbacks inside the chip. The Analog Front-End Interface transfers 1 6-bits word, multiplexed on 4 input/
output signals. As a result, 4 clock cycles are needed to transfer 1 word. The Decimator receives the 16bits samples at 8.8 MHz (as sent by the Analog Front-End chip) and reduces this rate to 2.2 MHz. The
Time Equaliser (TEQ) module is an FIR filter with programmable coefficients. Its main purpose is to reduce
the effect of Inter-Symbol Interference (ISI) by shortening the channel impulse response. Both the Decimator and TEQ can be bypassed. In the transmit direction, the DSP Front-End includes: sidelobe filtering,
clipping, delay equalisation and interpolation. The sidelobe filtering and delay equalisation are implemented by IIR filters, reducing the effect of echo in FDM systems. Clipping is a statistical process limiting the
amplitude of the output signal, optimising the dynamic range of the AFE. The interpolator receives data at
2.2 MHz and generates samples at a rate of 8.8 MHz.
Figure 4. DSP Front-End
Bypass
Analog
Interface
IN
select
AFE
I/F
DEC
TEQ
To DMT
modem
DMT Modem
This computational module is a programmable DSP unit. Its instruction set enables functions like FFT, IFFT, Scaling, Rotor and Frequency Equali-sation (FEQ). This block implements the core of the DMT algorithm as specified in ANSI T1.413. In the RX path, the 512-point FFT transforms the time-domain DMT
symbol into a frequency domain representation which can be further decoded by the subsequent de-mapping stages. After the first stage time / domain equalisation and FFT block – an essentially ICI (InterCarrier
Interference) – free carrier information stream has been obtained.
This stream is still affected by carrier-specific channel distortion resulting in an attenuation of the signal
12/23
MTC20455
amplitude and a rotation of the signal phase. To compensate for these effects, the FFT is followed by a
Frequency domain equaliser (FEQ) and a Rotor (phase shifter).
In the TX path, the IFFT transforms the DMT symbol generated in the frequency domain by the mapper
into a time domain representation. The IFFT block is preceded by a Fine Tune Gain and a Rotor stage,
allowing for a compensation of the possible frequency mismatch between the master clock frequency and
the transmitter clock frequency (which may be locked to another reference).
The FFT module is a slave DSP engine controlled by the transceiver controller. It works off line and communicates with the other blocks via buffers controlled by the DSTU (DMT Symbol Timing Unit)block. The
DSP executes a program stored in a RAM area, a very flexible implementation open for future enhancements.
Figure 5. DMT Modem
Trellis
coding
From
DSP PE
FFT
FEQ
Rotor
FEQ
Coefficients
Demapper
Monitor
FEQ
Update
Monitor Indications
DPLL
The Digital PLL module receives a metric for the phase error of the pilot tone. In general, the clock frequencies at the transmitter and receiver do not match exactly. The phase error is filtered and integrated
by a low pass filter, yielding an estimation of the frequency offset. Various processes can use this estimate
to deal with the frequency mismatch. In particular, small accumulated phase errors can be compensated
in the frequency domain by a rotation of the received code constellation (Rotor). Larger errors are compensated in the time domain by inserting or deleting clock cycles in the sample input sequence.
Mapper/Demapper, Monitor, Trellis Coding, FEQ Update
The Demapper converts the constellation points computed by the FFT to a block of bits. This essentially
consists in identifying a point in a 2D QAM constellation plane. The Demapper supports trellis coded demodulation and provides a Viterbi maximum likelihood estimator. When the trellis is active, the Demapper
receives an indication for the most likely constellation subset to be used. In the transmit direction, the Mapper performs the inverse operation, mapping a block of bits into one constellation point (in a complex x+jy
representation) which is passed to the IFFT block. The Trellis Encoder generates redundant bits to improve the robustness of the transmission, using a 4-Dimensional Trellis Coded Modulation scheme.
The Monitor computes error parameters for carriers specified in the Demapper process. Those parameters can be used for updates of adaptive filters coefficients, clock phase adjustments, error detection, etc.
A series of values is constantly monitored, such as signal power, pilot phase deviations, symbol erasures
generation, loss of frame, etc.
13/23
MTC20455
Generic TC Layer Functions
These functions relate to byte oriented data streams. They are completely described in ANSI T1.413. Additions described in the Issue 2 of this specification are also supported. The data received from the demapper is split into two paths, one dedicated to an interleaved data flow, the other one for a non-interleaved
data flow. These data flows are also referred to as slow and fast data flows. The interleaving/-de-interleaving is used to increase the error correcting capabilityof block codes for error bursts. After de-interleaving
(if applicable), the data flow enters a Reed-Solomon error correcting code decoder, able to correct a number of bytes containing bit errors. The decoder also uses the information of previous receiving stages that
may have detected the errored bytes and have labelled them with an “erasure” indication. Each time the
RS decoder detects and corrects errors in a RS codeword, an RS correction event is generated. The occurrence of such events can be signalled to the management layer. After leaving the RS decoder, the corrected byte stream is descrambled in the PMD (Physical Medium Dependent) descramblers.
Two descramblers are used, for interleaved and non-interleaved data flows. These are defined in ANSI
T1.413. After descrambling, the data flows enter the Deframer that extracts and processes bytes to support physical layer-related functions according to ANSI T1.413. The ADSL frames indeed contain physical
layer-related information in addition to the data passed to the higher layers. In particular, the deframer extracts the EOC (Embedded Operations Channel), the AOC (ADSL Overhead Control) and the indicators
bits and passes them to the appropriate processing unit (e.g. the transceiver controller). The deframer also
performs a CRC check (Cyclic Redundancy Check) on the received frame and generates events in case
of error detection. Event counters can be read by management processes. The outputs of the deframer
are an interleaved and a fast data stream. These data streams can either carry ATM cells or another type
of traffic. In the latter case, the ATM specific TC layer functional block, described hereafter, is bypassed
and the data stream is directly presented at the input of the interface module.
Figure 6. Generic TC Layer Functions
Indications bits
AOC
EOC
AST
F
FAST
From
Demapper
RS
coding
De-interleaver
PMD
descrambler
Detramer
I
To
ATM TC
PMD
descrambler
ATM Specific TC Layer Functions
The 2 byte streams (fast and slow) are received from the byte-based processing unit. When ATM cells are
transported, this block provides basic cell functions such as cell synchronisa-tion, cell payload descrambling, idle/-unassigned cell filter, cell Header Error Correction (HEC) and detection. The cell processing
happens according to ITU-T I.163 standard. Provision is also made for BER measurements at this ATM
cell level. When non cell oriented byte streams are transported, the cell processing unit is not active.
14/23
MTC20455
Figure 7. ATM Specific TC Layer Functions
BER
FAST
Cell
Descrambler
Synchronizer
HEC
Cell
Descrambler
Synchronizer
HEC
Cell filter
To Interface
Module
From Generic TC
Cell filter
SLOW
BER
DMT Symbol Timing Unit (DSTU)
The DSTU interfaces with various modules, like DSP Front-End, FFT/IFFT, Mapper/Demapper, RS, Monitor and Transceiver Controller. It consists of a real time and a scheduler module. The real time unit generates a time-base for the DMT symbols (sample counter), superframes (symbol counter) and
hyperframes (sync counter). The timebases can be modified by various control features. They are continuously fine-tuned by the DPLL module. The DSTU schedulers execute a program, controlled by program
opcodes and a set of variables, the most important of which are real time counters. The transmit and receive sequencers are completely independent and run different programs. An independent set of variables
is assigned to each of them. The sequencer programs can be updated in real time.
Interface Module
The interface module collects cells (from the cell-based function module) or a byte stream (from the deframer). Cells are stored in FIFO’s (424 bytes or 8 cells wide, transmit buffers have the same size), from
which they are extracted by the interface submodule, providing an Utopia level 2 interface.
Analog Front-End Control Interface
The Analog Front-End Interface is designed to be connected to the MTC20154 or MTC20454 Analog
Front-End component Transmit Interface The 16 bit words are multiplexed on 4 AFTXD output signals. As
a result 4 cycles are needed to transfer 1 word. Refer to Table 10 for the bit/pin allocation for the 4 cycles.
The first of 4 cycles is identified by the CLWD signal (Fig.7). The Analog Front-End fetches the 16 bit word
to be multiplexed on AFTXD from the Tx Digital Front-End module.
Table 10. Bits assigned to pins/time slot for single line interface
Cycle 0
Cycle 1
Cycle 2
Cycle 3
AFRXD_i[0]
b0
b4
b8
b12
AFRXD_i[1]
b1
b5
b9
b13
AFRXD_i[2]
b2
b6
b10
b14
AFRXD_i[3]
b3
b7
b11
b15
GP_IN
t0
t1
t2
t3
15/23
MTC20455
Table 11. Bits assigned to pins/time slot for muxed-line interface
0
Cycles
1
2
line 0
3
4
line 1
5
6
line 2
7
8
line 3
AFRXD_1[0]
b0
b4
b0
b4
b0
b4
B0
b4
AFRXD_1[1]
b1
b5
b1
b5
b1
b5
b1
AFRXD_1[2]
b2
b6
b2
b6
b2
b6
b2
AFRXD_1[3]
b3
b7
b3
b7
b3
b7
b3
9
10
line 0
11
12
line 1
b8
b12
b5
b9
b6
b10
b7
b11
13
14
line 2
b8
b12
b13
b9
b14
b10
b15
b11
15
line 3
b8
b12
b8
b12
b13
b9
b14
b10
b13
b9
b13
b14
b10
b15
b11
b14
b15
b11
b15
Receive Interface
The 16 bit receive word is multiplexed on 4 AFRXD input signals. As a result 4 cycles are needed to transfer 1 word. Refer to Table 11 for the bit/pin allocation for the 4 cycles. The first of 4 cycles is identified by
the CLWD signal. (Fig.9). The CLWD must repeat after 4 MCLK cycles.
Figure 8. Receive word timing diagram for single line Interface
MCLK_i
CLWD_i
AFRXD_i
Cycle0
Cycle1
Cycle2
test0
test1
test
Cycle3
GP_IN
test3
Figure 9. Receive word timing diagram for muxed line interface
MCLK_1
CLWD_1
AFRXD_1
Cycle
0
1
line 0
2
3
line 1
4
5
line 2
6
7
line 3
8
9
line 0
10
111 12
line 1
13
line 2
14
15
line 3
Table 12. Transmitted bits assigned to signal/time slot for single-line interface
Cycle 0
Cycle 1
Cycle 2
Cycle 3
AFTXD_I[0]
b0
b4
b8
b12
AFTXD_I[1]
b1
b5
b9
b13
AFTXD_I[2]
b2
b6
b10
b14
AFTXD_I[3]
b3
b7
b11
b15
POWER_DOWN_i
t0
t1
t2
t3
16/23
MTC20455
Table 13. Transmitted bits assigned to signal/time slot for muxed-line interface
0
Cycles
1
2
b8
b0
line 0
3
4
b8
b0
line 1
5
6
b8
b0
line 2
7
line 3
AFTXD_1[0]
b0
b8
AFTXD_1[1]
b1
b9
b1
b9
b1
b9
b1
b9
AFTXD_1[2]
b2
b10
b2
b10
b2
b10
b2
b10
AFTXD_1[3]
b3
b11
b3
b11
b3
b11
b3
b11
AFTXD_2[0]
b4
b12
b4
b12
b4
b12
b4
b12
AFTXD_2[1]
b5
b13
b5
b13
b5
b13
b5
b13
AFTXD_2[2]
b6
b14
b6
b14
b6
b14
b6
b14
AFTXD_2[3]
b7
b15
b7
b15
b7
b15
b7
b15
Table 14. MCLK, AC Electrical Characteristics
AC Electrical Characteristics for MCLK_i
Symbol
F
Tper
Th
Parameter
Test Conditions
Min
Clock Frequency
Clock Period
Clock duty cycle
Typ
Max
Unit
35.328
MHz
28.3
ns
40
60
%
Max
Unit
16
ns
Table 15. AFTXD AC Electrical Characteristics
AC Electrical Characteristics for AFTXD_i
Symbol
Parameter
Test Conditions
Tva
Data valid time
20 pF load
Tha
Data hold time
20 pF load
Min
Typ
4
ns
Table 16. CTRLDATA AC Electrical Characteristics
AC Electrical Characteristics for CTRLDATA_i
Symbol
Parameter
Test Conditions
Tvb
Data valid time
20 pF load
Thb
Data hold time
20 pF load
Min
Typ
Max
20
4
Unit
ns
ns
Figure 10. Analog front end receive interface timing diagram
MCLK_i
Ts
Th
AFRXD_i
CLWD_i
17/23
MTC20455
Table 17. AFRXD AC Electrical Characteristics
AC Electrical Characteristics for AFRXD
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
Ts
Data setup time
5
ns
Th
Data setup time
1
ns
Digital Interface
With a Utopia Level 2 Interface the ATM forum takes the ATM layer chip as a reference. It defines the
direction from ATM to physical layer as the Transmit direction. The direction from physical layer to ATM
direction is referred to as the receive direction. Fig.9 shows the interconnection between ATM and PHY
layer devices. Tx reference and Rx reference are supported for network timing.
The UTOPIA interface transfers one byte in a single clock cycle, as a result cells are transferred in 53 clock
cycles. Both transmit and receive interfaces are synchronised on clocks generated by the ATM layer chip,
and as no specific relationship between Receive and Transmit clock is assumed, they must be regarded
as mutually asynchronous clocks. Flow control signals are available to match the bandwidth constraints
of the physical layer and the ATM layer.
The UTOPIA level 2 supports point to multi-point configurations by introducing an addressing capability
and by making a distinction between polling and selecting a device:
– the ATM chip polls a specific physical layer chip by putting its address on the address bus when the
enable (notTxEnb/notRxEnb) line is asserted. The addressed physical layer answers the next cycle
via a cell available line (TxClav/RxClav) reflecting its status at that time.
– the ATM chip selects a specific physical layer chip by putting its address on the address bus when
the enable line is deasserted and asserting the enable line on the next cycle. The addressed physical
layer chip will be the target or source of the next cell transfer.
Figure 11. Signals at Utopia Level 2 Interface
PH Y
A TM
RxAddr
1
PHY
Receive
5
RxClav
notRxEnb
RxClk
8
ATM
Receive
RxData
RxSOC
TxAddr
1
PHY
Transmit
TxClav
notTxEnb
TxClk
TxData
TxSOC
18/23
5
8
ATM
Transmit
MTC20455
Utopia Level 2 Signals
The physical layer chip sends cell data towards the ATM layer chip. The ATM layer chip polls the status
of the FIFO of the physical layer chip. Refer to Table 6 for a list of interface signals. The cell exchange
proceeds like:
a) The physical layer chip signals the availability of a cell by asserting RxClav when polled by the ATM
chip.
b) The ATM chips selects a physical layer chip, then starts the transfer by asserting notRxEnb.
c) If the physical layer chip has data to send, it puts them on the RxData line the cycle after it sampled
notRxEnb active. It also advances the offset in the cell. If the data transferred is the first byte of a cell,
RxSOC is 1b at the time of the data transfer, 0b otherwise.
d) The ATM chip accepts the data when they are available. If RxSOC was 1b during the transfer, it resets
its internal offset pointer to the value 1, otherwise it advances the offset in the cell.
MTC20455 Utopia Level 2 MPHY Operation
Utopia level 2 MPHY operation can be done by various interface schemes. The MTC20455 supports only
the required mode, this mode is referred to as «operation with 1 TxClav and 1 RxClav.»
PHY Device Identification
The MTC20455 holds 2 PHY layer Utopia ports, one is dedicated to the fast data channel, the other one
to the interleaved data channel. The associated PHY address is specified by the PHY_ADDR_x fields the
Utopia PHY address register. Beware that an incorrect address configuration may lead to bus conflicts.
MTC20136 Transceiver Controller Interface
Table 18. All signals
Symbol
tr, tf
Parameter
Min
Typ
Rise and Fall time (10% - 90%)
Max
Unit
3
ns
Ci
Input load
10
pF
Co
Output load
20
pF
Max
Unit
33
MHz
Max
Unit
4
ns
Figure 12. PCLK Clock frequency
Symbol
f
Parameter
PCLK clock frequency
Min
Typ
8
Table 19. Address with respect to ALE
Symbol
tr,tf
Parameter
Min
Rise and Fall time (10% - 90%)
12
Typ
Talew
ALE pulse width
ns
Tavs
Address valid setup time
7
ns
Tavh
Address valid hold time
8
ns
19/23
MTC20455
Figure 13. Address and ALE timing diagram
Talew
ALE
Tavs
AD [15:0]
Tavh
Table 20. Data input with respect to clock
Symbol
Parameter
Min
Max
Unit
Tdh
Data write hold time
3
ns
Tds
Data write setup time
10
ns
Table 21. Data output with respect to clock
Symbol
Min
Max
Unit
Tzd
Data active delay from clock, Z to data
Parameter
3
20
ns
Tdz
Data inactive delay from clock, data to Z
3
20
ns
Min
Max
Unit
Table 22. WR_RDB input specification with respect to PCLK
Symbol
Parameter
Twrs
setup WR_RDB to clock
10
ns
Twrh
hold WR_RDB to clock
3
ns
Table 23. CSB input specification with respect to PCLK
Symbol
Parameter
Min
Max
Unit
Twrs
setup CSB to clock
10
ns
Twrh
hold CSB to clock
3
ns
Table 24. RDYB output with respect to PCLK
Symbol
20/23
Parameter
Min
Max
Unit
Tzrd
RDYB active delay from clock, Z to 0
3
19
ns
Trdz
RDYB inactive delay from clock, 0 to Z
3
19
ns
MTC20455
mm
DIM.
MIN.
TYP.
A
inch
MAX.
MIN.
TYP.
4.07
A1
0.25
A2
3.17
B
MAX.
0.160
0.010
3.67
0.125
0.22
0.38
0.009
0.015
C
0.13
0.23
0.005
0.009
D
30.95
31.20
31.45
1.219
1.228
1.238
D1
27.90
28.00
28.10
1.098
1.102
1.106
3.42
0.135
D3
25.35
0.998
e
0.65
0.026
0.144
E
30.95
31.20
31.45
1.219
1.228
1.238
E1
27.90
28.00
28.10
1.098
1.102
1.106
E3
L
L1
K
25.35
0.65
OUTLINE AND
MECHANICAL DATA
0.80
0.998
0.95
0.026
1.60
0.031
0.063
0°(min.), 7°(max.)
0.037
PQFP160
21/23
MTC20455
mm
inch
DIM.
MIN.
A
1.210
A1
0.270
A2
TYP.
MAX.
MIN.
1.700
0.047
TYP.
MAX.
0.067
0.010
1.120
0.044
b
0.450
0.500
0.550
0.018
0.02
0.021
D
11.85
12.00
12.15
0.466
0.472
0.478
D1
E
10.40
11.85
E1
12.00
0.409
12.15
0.466
10.40
0.472
0.478
Body: 12 x 12 x 1.7mm
0.409
e
0.720
0.800
0.880
0.028
0.031
0.034
f
0.650
0.800
0.950
0.025
0.031
0.037
ddd
OUTLINE AND
MECHANICAL DATA
0.120
LFBGA160
Low Profile Fine Pitch Ball Grid Array
0.004
7254214 A
22/23
MTC20455
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
23/23