TEMIC U3500BM

U3500BM
Cordless Telephone Signal Processor
Description
The programmable cordless phone signal processor
includes all necessary low frequency parts such as
microphone- and earphone amplifier, compander, preemphasis, deemphasis, scrambler, data management,
power-supply management, as well as RF receiving parts
such as IF converter, FM demodulator. RSSI and low
noise amplifier.
Several gains and mutes in transmit and receive direction
are controlled by serial bus while compander, pre- and
deemphasis and scrambler can be bypassed.
Features
RF Receiver Part
D Compander
D
D
D
D
Low-noise amplifier
D Pre- and deemphasis
IF converter
D Scrambler
FM demodulator
D Data management
RSSI
D Power-supply management
Low Frequency Part
D Serial bus
D Symmetrical input of microphone amplifier
D Symmetrical output of earpiece amplifier
Application: CT0
Block Diagram
MIXO IFIN1 IFIN2
DACO
IFAMP
MIXIN
LOG
Demodulator
RGAIN
ADJ
LPF
RXO
Deem
LPF
MIXGND
Scrambler
frequency
EXIN
Oscillator
11.15 MHz
LOIN
ETC
Expander
Divider
RECO2
D/A
LPF
REC
RECO1
LNA
LNAIN
MIC1
RGND
LNAO
MIC2
MIC
MICO
VBATT
RXDAT
Battery low
detector
C
Serial
D
Bus
LPF
VCC
TXDAT
Scrambler
frequency
LPF
TGAIN
ADJ.2
Limiter
TXO
Preem
GND
TGAIN
ADJ.1
COIN
Compressor
CTC
14678
Figure 1. Block diagram
Rev. A3, 20-May-98
1 (17)
Preliminary Information
U3500BM
Pin Description
TXO
1
28 TXDAT
CTC
2
27 RXDAT
COIN
3
26 D
MICO
4
25 C
Pin
1
2
3
4
5
6
MIC2
5
24 DACO
MIC1
6
23 VCC
GND
7
22 LOIN
RXO
8
21 VBATT
RECO2
9
20 LNAO
RECO1 10
19 RGND
EXIN
11
18 LNAIN
ETC
12
17 MIXGND
7
8
9
10
IFIN2 13
IFIN1
16 MIXIN
14
15 MIXO
96 11791
11
12
13
14
15
16
17
18
19
20
21
22
Figure 2. Pinning
23
24
25
26
27
28
Symbol
TXO
CTC
Function
Transmit section analog output
Compressor time constant
control analog output
COIN
Compressor analog input
MICO Microphone amplifier output
MIC2
Non-inverting input of
microphone amplifier
MIC1
Inverting input of microphone
amplifier
GND
LF analog/ digital ground
RXO
Intermediate receive analog
output
RECO2 Symmetrical output of receive
amplifier
RECO1 Symmetrical output of receive
amplifier
EMN
Expander analog input
ETC
Expander time constant control
analog output
IFIN2
Symmetrical IF amplifier input
IFIN1
Symmetrical IF amplifier input
MIXO Mixer output
MIXIN Mixer input
MIXGND IF amplifier and mixer ground
LNAIN Low-noise amplifier input
RGND Low-noise amplifier ground
LNAO Low-noise amplifier output/
External LO input
VBATT Battery supply
LOIN
Local oscillator input
(11.15 MHz)
VCC
Supply-voltage output for
peripherals and internal supply
of digital part
DACO D/A comparator output
C
Clock input of serial bus
D
Data input of serial bus
RXDAT Receive data digital output
TXDAT Transmit data input
Order Information
Extended Type Number
U3500BM-BFL
U3500BM-BFLG3
Package
SO28
SO28
Remarks
Taped and reeled
2 (17)
Rev. A3, 20-May-98
Preliminary Information
U3500BM
Absolute Maximum Ratings
Parameters
Supply voltage
Junction temperature
Ambient temperature
Storage temperature
Power dissipation Tamb = 60°C
Symbol
VBatt, VCC
Tj
Tamb
Tstg
Ptot
Value
5.5
+125
–25 to +75
–50 to +125
1
Unit
V
°C
°C
°C
W
Symbol
RthJA
Value
120
Unit
K/W
Thermal Resistance
Junction ambient
Parameters
SO28
Electrical Characteristics
Test conditions (unless otherwise specified): VBatt = VCC = 3.6 V, Tamb = +25°C
Parameters
Test Conditions / Pins
Symbol
Current consumption
ERX2
ELNA
ERXHF
ERX1
ERXO
EEA
0
0
0
0
0
0
Operating voltage range
Inactive mode
VBatt = 2.9 V
Standby mode
RX waiting for RSSI
ELNA = ERXHF = 1
RX waiting for data
ELNA = ERXHF = ERX1 = 1
Operating current, RX and
ERX2 = ELNA = ERXHF =
TX completely active
ERX1 = ERXO = EEA=
EDEE = GDEM = ETX = 1
Low noise amplifier (LNA) f = 41.4 MHz, input level = –50 dBm
Supply current
Input impedance
Output impedance
Gain
f = 50 MHz
Noise figure
Bandwidth = 1 MHz
1-dB input compression
point
Third-order input intercept f = 41.4 MHz
point
f = 41.4125 MHz
Input level = –60 dBm
Frequency range FRF
Min.
Typ.
Max.
EDEE
0
3.1
3.6
30
60
100
1.7
2.5
1.45
1.9
4.5
6.5
ETX
0
5.2
80
120
3.4
2.45
9.5
0.8
160
40
20
1.2
240
120
26
5
–27
1
200
80
23
4
–24
–15
–12
20
Rev. A3, 20-May-98
50
Unit
Fig.
EPREE
0
V
mA
mA
mA
mA
mA
mA
dB
dB
dBm
3
3
3
3
3
3
dBm
3
MHz
3
W
W
3 (17)
Preliminary Information
U3500BM
Parameters
Receiver
IF mixer, f = 10.7 MHz
Input resistance
Input capacitance
Output impedance
Gain GVMIX
Input compression point
Third-order input intercept
point
Carrier breakthrough from
internal LO (11.15 MHz) to
IF output
Carrier breakthrough from
internal LO (11.15 MHz) to
RF input
IF amplifier: RSSI
Input resistance
RSSI-sensitivity
Test Conditions / Pins
Input level 7 mVrms
Symbol
GMIX
Min.
Typ.
Max.
2000
2.5
1200
13
–17
–9
3000
3
1500
15
4000
3.5
1800
17
300
10
VIF = 0 mVrms
starting from 0 increase RSSIlevel until mean of sampled
signal at DACO is 0.2
RSSI-level = CON0
1.6
2
2.5
Unit
W
pF
W
dB
dBm
dBm
mVrms
mVrms
kW
Fig.
4
4
4
4
4
4
4
4
5
v
VIF = 25.4 mVrms, f = 450 kHz
increase RSSI level again
until mean of sampled signal
at DACO is 0.2.
RSSI-level = CON1
RSSI-sensitivity =
CON1–CON0
5
1
v
RSSI-input voltage
dynamic range
RSSI-level number of
programmable steps *)
RSSI-level step size in the
logarithmic region
60
65
dB
127
0.35
0.46
5
5
0.6
dB
5
*) RSSI Level Programming (Typical Values)
Input Voltage VIF (mVrms)
0
25.4
42.4
424
4240
42400
RSSI Level (Decimal)
5
8
14
54
97
111
4 (17)
Rev. A3, 20-May-98
Preliminary Information
U3500BM
Parameters
RF demodulator
BSCR
EDEE
1
0
Recovered audio
Test Conditions / Pins
Symbol Min.
Typ.
fIF = 450 kHz, fMOD = 1 kHz, VIF = 500 mVrms
GRX0
GRX1
GRX2
GRX3
ERX1
1
1
1
0
1
GDEM = 0, DfFM = 2.5 kHz
0.4
0.8
GDEM = 1, DfFM = 5.0 kHz
0.4
0.8
Recovered audio output
VBatt = 3.1 to 5.2 V
–1
voltage drop
AM rejection ratio
30% AM
30
35
RX audio
Change of RX0 signal
EDEE = 0
–0.5
0
deemphasis bypass
Gain adjust range
12
15
Gain adjust step
0.8
1
Output signal vs. frequency 100 Hz
–7.5
–6.5
relative to 1 kHz (0 dB)
300 Hz
–2.0
–1.0
deemphasis bypassed
1800 Hz
–1.3
–0.3
3200 Hz
–0.8
0.2
4100 Hz
Output signal vs. frequency 100 Hz
–0.7
0.3
relative to 1 kHz (0 dB)
300 Hz
3.7
4.7
deemphasis enable
1800 Hz
–5.7
–4.7
EDEE = 1
3200 Hz
–10
–9.0
4100 Hz
Total harmonic distortion
DFM = 250 Hz
DFM = 2.50 kHz
Audio mute
DFM = 2.5 kHz, ERXO = 0
65
ERX1 = 0, ERX2 = 0
Output impedance
Expander
EEA
GEA0
GEA1
GEA2
GEA3
1
0
0
0
1
Gain reference level
VEXIN = –10 dBVrms
GOREC
11
13
Change of gain when
BCOMP = 1
–0.5
expander is bypassed
Gain tracking
VEXIN = –20 dBVrms
–21
–41
VEXIN = –30 dBVrms
–53
VEXIN = –35 dBVrms
–50
VEXIN = –40 dBVrms
–60
Input impedance
9.5
Gain change vs. supply
VBatt = 3.1 to 5.2 V
–0.5
voltage
Attack time
VEXIN = step
tf
16
–20 dBVrms –14 dBVrms,
measure time after step, when
output voltage has 0.75 times
the final value
Release time
VEXIN = step
tf
16
14 dBVrms –20 dBVrms,
measure time after step, when
output voltage has 1.5 times of
the final value
³
³
Rev. A3, 20-May-98
Max.
Unit
ERXO
ERX2
1
1.6
1.6
+1
Fig.
1
Vpp
Vpp
dB
dB
6
6
6
0.5
dB
17
1.2
–5.5
0
0.7
1.2
–60
1.3
5.7
–3.7
–8.0
–66
3.5
3.5
dB
dB
6
6
dB
6
dB
6
100
GEA4
1
15
0.5
%
%
dB
6
6
6
W
dB
dB
–19
–39
–47
dB
14.5
0.5
kW
dB
7
7
7
7
7
ms
7
ms
7
5 (17)
Preliminary Information
U3500BM
Parameters
Test Conditions / Pins
Symbol
Earpiece amplifier BCOMP = 1, EEA = 1, VEXIN = 100 mVrms
Medium gain
GEA0 GEA1 GEA2 GEA3
0
0
0
0
GEA4 = 1
Minimum gain
GEA0 GEA1 GEA2 GEA3
0
0
0
0
GEA4 = 0
Gain change versus VS
VBatt = 3.1 to 5.2 V
Gain adjust range
Gain adjust step
Output impedance
Distortion
dt
Output offset voltage
VEXIN = 0 mVrms
Output voltage swing
Increase VEXIN until distortion (RECO1/ RECO2) is 5%
Maximum gain
GEA0 GEA1 GEA2 GEA3
1
1
1
1
GEA4 = 1
Low Frequency Transmitter
GMIC
EPREE
BSCR
GlTX
G2TX
BCOMP
1
1
1
1000
1000
1
Microphone Amplifier
VMIC = 10 mVrms, fIN = 1 kHz
Gain
High gain: GMIC = 1
Low gain: GMIC = 0
Gain change versus VS
VBatt = 3.1 to 5.2 V
Differential input impedance
Output impedance
Distortion
VMIC = 10 mVrms
dt
Output noise
VMIC = 0 Vrms high gain
(psophmetrically weighted)
(inputs closed across 200 W)
TX Audio VCOIN = –20 dBVrms
Gain
GTX (COIN, TXO)
Change of gain TXO
EPREE = 0
Gain between 3.2 and 5.2 V
TX gain adjust range adj. 1
TX gain adjust step adj. 1
LIM gain adjust range adj. 2
LIM gain adjust range adj. 2
TX gain vs. frequency
100 Hz
(preemphasis bypassed)
300 Hz
relative to 1 kHz reference
1800 Hz
level 0 dB
3200 Hz
4100 Hz
Gain vs. frequency with
100 Hz
preemphasis relative to 1 kHz 300 Hz
reference level 0 dB
1800 Hz
3200 Hz
4100 Hz
Total band ripple
VBatt = 3.1 to 5.2 V
VCOIN = –20 dBV
Min.
Typ.
Max.
Unit
4
5
6
dB
Fig.
7
–12
–11
–10
dB
7
–0.2
0.2
31
1
10
0.8
–200
4.8
5.0
19
20
1.2
30
2
200
21
dB
dB
dB
W
%
mV
Vpp
7
7
7
7
7
7
7
dB
7
ETX
1
31
23
–0.2
41
2.5
–0.5
–1
12
0.8
0.8
–1.3
–1.3
–0.8
–1.9
–25.9
–0.8
–6.8
3.3
6.0
16.6
6 (17)
32
24
0
75
10
5.5
0
0
15
1
15
1
–0.3
–0.3
0.2
0.9
–23.9
–7.0
–5.8
4.3
7.0
–14.6
33
25
0.2
103
35
1
50
8.5
0.5
+1
18
1.2
1.2
0.7
0.7
1.2
0.1
–21.9
–6.0
–4.8
5.3
8.0
–12.6
2
dB
dB
dB
kW
W
%
mVrmsp
8
8
8
8
8
8
dB
dB
dB
dB
dB
dB
dB
9
9
9
9
9
9
9
dB
9
dB
9
dB
9
Rev. A3, 20-May-98
Preliminary Information
U3500BM
Parameters
Limiter
Output voltage
Mute
Test Conditions / Pins
Symbol
Increase VCOIN until d = 5%
at TX0 then measure VTX0
ETX = 0, VCOIN = –l0 dBV
attenuation at TX0 output
Output impedance TXO
Compressor
BSCR EPREE G2TX0 G2TX1 G2TX2
G2TX3
1
0
0
1
0
1
Input impedance
BCOMP = 1
Gain reference level G0TX VCOIN = –10 dBVrms
Gain change when
VCOIN = –10 dBVrms
BCOMP = 1
compressor is bypassed
Gain tracking
VCOIN = –30 dBVrms
VCOIN = –50 dBVrms
VCOIN = –60 dBVrms
VCOIN = –70 dBVrms
Attack time
VCOIN= step
–30 dBVrms –18 dBVrms
measure time after step when
output voltage has 1.5 times
the final value
Release time
VCOIN= step
–18 dBVrms –30 dBVrms
measure time after step when
output voltage has 0.75 times
the final value
Scrambler
EPREE BSCR
BCOMP
0
0
1
Conversion gain versus
FIN=1kHz, FOUT=3.1kHz
frequency FIN (1 kHz)
FIN=0.1kHz, FOUT=4.0kHz
reference level 0 dB
FIN=0.3kHz, FOUT=3.8kHz
FIN=0.7kHz, FOUT=3.4kHz
FIN=1.8kHz, FOUT=2.3kHz
FIN=2.6kHz, FOUT=1.5kHz
FIN=3.2kHz, FOUT=0.9kHz
FIN=3.4kHz, FOUT=0.7kHz
Carrier break through
Descrambler
EDEE
BSCR
BCOMP
0
0
1
Conversion gain vs.
FIN=4kHz, FOUT=0.1kHz
frequency
FIN=3.8kHz, FOUT=0.3kHz
FIN=3.4kHz, FOUT=0.7kHz
FIN=2.3kHz, FOUT=1.8kHz
FIN=l.5kHz, FOUT=2.6kHz
FIN=0.9kHz, FOUT=3.2kHz
FIN=0.7kHz, FOUT=3.4kHz
Carrier break through
Measure FOUT = 4.099 kHz
Min.
Typ.
1.05
Max.
Unit
2.0
Vpp
56
7
EIX
1
G0TX
GlTX0
0
9
1
0.5
dB
10
³
³
tf
kW
9
9
9
G1TX1 G1TX2 G1TX3
0
1
0
14
22
kW
9
5.5
10
dB
9
0.5
dB
9
–11
–21
–22
tf
14
Fig.
–9
–19
–28
–30
3.5
dB
9
ms
9
14.4
ms
9
–1.0
–4.4
–2.1
–0.8
–1.1
–1.1
–2.5
–5
–3.6
–1.3
–0.4
–1.5
–0.4
–1.7
–1.9
Rev. A3, 20-May-98
0
–3.4
–1.1
0.2
–0.1
–0.1
–0.5
–4
10
1.0
–2.4
–0.1
1.2
0.9
0.9
–0.5
–3
20
–2.6
–0.3
0.6
0.5
0.6
–0.3
–0.9
0.1
–1.6
0.7
1.6
0.5
1.6
0.7
0.1
0.5
dB
11
mVrms
dB
11
mVrms
7 (17)
Preliminary Information
U3500BM
Parameters
Data management
Receive data management
Test Conditions / Pins
Symbol
GDEM
ERX1
1
1
Duty cycle RXDAT
VIF = 100 mVrms
fIF = 450 kHz
fMIF = 1 kHz
DfIF = 5 kHz
Transmit data management
ETX1
1
Input impedance TXDAT
Final value of step reETDM = 1, BSCR = 1
sponse
VTXDAT = step
1.5 V → 1.75 V
Measure step at TXO
Logical Part
Inputs: C, D
Low voltage input
High voltage input
Input leakage current
(0 < VI < VCC)
Input LOIN
Input leakage current
(0 < VI < VCC)
Outputs: DACO, RXDAT
Output low
lol = 10 mA
Output high
loh = –10 mA
Serial bus
Data set-up time
tsud
Data hold time
thd
Clock low time
tcl
Clock high time
tch
Hold time before transfer
teon
condition
Data low pulse on transfer teh
condition
Data high pulse on
teof
transfer condition
Min.
Typ.
Max.
0.4
0.5
0.6
Unit
Fig.
ERXHF
1
10
kW
mV
200
311
10
10
0.2 VCC
0.8 VCC
–1
+5
mA
–5
5
mA
0.1 VCC
0.9 VCC
0.1
0
2
2
0.1
ms
ms
ms
ms
ms
0.2
ms
0.2
ms
8 (17)
14
Rev. A3, 20-May-98
Preliminary Information
U3500BM
Parameters
Battery Management
Max bat low
Min bat low over switch
Test Conditions / Pins
Symbol
DA0 to 6 = 1, RBAT = 1
DA0 to 6 = 27 BIN,
RBAT = 1
DA0 to 6 = 1, RBAT = 0
DA0 to 6 = 0, RBAT = 0
Max bat high
Min bat high
Adjust step
Max – Min
MINBL – SWOFF
Battery Switch
Off threshold
On threshold
DA0 to 6 = 1, RBAT = 1
DA0 to 6 = 27 BIN,
RBAT = 1
Hysteresis
Switch ron
Min.
Typ.
Max.
Unit
3.7
3.05
3.95
3.2
4.1
3.35
V
V
4.75
3.83
3.5
852.5
100
5.05
4.1
7.5
952.5
200
5.25
4.27
11.5
1052.5
300
V
V
mV
mV
mV
2.9
3.1
3.0
3.2
3.1
3.35
V
V
220
250
35
280
50
mV
DA0 to 6 = 0, RBAT = 0
Max bat low
:
MAXL (battery voltage when all DAC bits are high, low range)
Min bat low
:
MINBL (battery voltage when DAC bits are 001 1011, low range)
Max bat high
:
MAXBH (battery voltage when all DAC bits are high, high range)
Min bat high
:
MINBH (battery voltage when all DAC bits are low, high range)
Adjust step
:
Adjust step
Max – Min
:
MAXBH – MINBH
MINBL – SWOFF
:
MINBL – SWOFF
Off threshold
:
SWOFF (off threshold of the battery switch)
On threshold
:
SWON (on threshold of the battery switch)
Hysteresis
:
SWON– SWOFF
Switch ron
:
Switch Ron (resistance of the switch transistor, when switch is “ON”)
LNAIN 18
LNA
1 nF
20
W
LNAO
100 pF
MIXIN
200 Ω
VFRF
Fig.
3 kΩ
VBATT
11779
15
10 nF
VFRF
MIXO
1.5 kΩ
11.15 MHz
50 Ω
RF generator
16
100 nF
RF generator
11780
Figure 3.
Figure 4.
Rev. A3, 20-May-98
9 (17)
Preliminary Information
U3500BM
26
IFIN2
IFIN1
MICO 4
Setup
13
25
100 nF
20 kΩ
D
C
14
24
VIF
100 nF
RSSI–level
programming
DACO
100 nF
MIC2
D
25
C
5
100 Ω
VMIC
RSSI–level
information
26
MIC1
Setup
6
100 Ω
11781
11784
Figure 5.
Figure 8.
2
CTC
IFIN2 13
VIF
IFIN1 14
470 nF
25
C
3
COIN
2.5 kΩ
100 nF
D
470 nF
8 RXO
100 nF
26
1
Setup
TXO
100 nF
14696
VCOIN
100 kΩ
Figure 6.
11785
Figure 9.
RECO2
1 kΩ
9
RECO1 10
26
D
25
C
28 TXDAT
TXO
Setup
1
100 kΩ
EXIN
11
ETC
12
VTXDAT
27 RXDAT
1.5 V
100 nF
IFIN2
13
100 nF
VEXIN
25 C
IFIN1
470 nF
26 D
Setup
14
VIF
11783
100 nF
Figure 7.
14679
Figure 10.
10 (17)
Rev. A3, 20-May-98
Preliminary Information
U3500BM
DATA
F–3 dB=3.35 kHz
F–3 dB=3.95 kHz
Output buffer
Gain stage
Signal: 4.1 kHz/DC/OFF
State : SCRON/SCROFF/DATA
Gain : –4 dB/0 dB/OFF
Demo–
dulator
F–3 dB=90 Hz
RGAIN
ADJ
F–3 dB=3.95 kHz
Signal: 1 kHz
State : SCRON/SCROFF
Gain : 5.9 dB/1.9 dB
F–3 dB=3.35 kHz
Deemphasis
Signal: 4.1 kHz/DC/OFF
State : DESCRON/DESCROFF/DATA
Gain : –4 dB/0 dB/OFF
Signal: 1 kHz
State : DESCRON/DESCROFF
Gain : –0.5 dB/–4.5 dB
F–3 dB=1 kHz
Comparator
DATA
11786
Figure 11.
Serial Bus Interface
The circuit is remoted by an external microcontroller
through the serial bus (programming can be started 10 ms
after power supply settled).
The data is an 12-bit word:
A3 – A0: address of the destination register (0 to 15)
D7 – D0: contents of register
The data line must be stable when the clock is high and
data must be serially shifted.
After 12 clock periods, the transfer to the destination register is (internally) generated by a low-to-high transition
of the data line when the clock is high.
Data
Microprocessor
Rev. A3, 20-May-98
Clock
D
C
96 11787
Figure 12.
11 (17)
Preliminary Information
U3500BM
Data
(D)
D0
D1
D2
A1
A2
A3
Clock
(C)
Ist word
2nd word
Word transmission
13317
Transfer condition
Figure 13.
Data
8
4
Clock
0
Address
decoder
128 latches
15
Commands
96 11789
Figure 14.
Data
(D)
A1
A2
A3
D0
(C)
Clock
tsud
thd
tch
tcl
teon
teh
teoff
13318
Figure 15.
12 (17)
Rev. A3, 20-May-98
Preliminary Information
U3500BM
Content of Internal Registers
The registers have the following structure:
D7
D6
D5
D4
D3
D2
D1
D0
RO: Reference for D/A converter
MUXDA
DA6
DA5
DA4
DA3
DA2
DA1
DA0
GEA0
GRX3
GRX2
GRX1
GRX0
G1TX3
G1TX2
G1TX1
G1TX0
ERX1
ERXHF
ELNA
ERX2
GMIC
ETDM
EPREE
ETX
free
free
GEA4
EXTLO
MUXDA:
DA(6:0):
D/A multiplexing
Reference voltage D/A
R1: Gain adjustment RECLF
GEA2
GEA1
GEA3
GEA(3:0): Gain earpiece amplifier (see also R5)
GRX(3:0): Gain adjustment RX
R2: Gain adjustment TRANLF
G2TX2
G2TX1
G2TX3
G2TXO
G2TX(3:0): Gain adjustment TX after limiter
G1TX(3:0): Gain adjustment TX
R3: Enable functions receive
GDEM
EDDE
EEA
GDEM:
EDDE:
EEA:
ERXO:
ERXHF:
ELNA:
ERX(l:0):
ERXO
Gain demodulator
Enable deemphasis (disables bypass)
Enable earpiece amplifier
Enable RXO output
Enable mixer and IF amplifier
Enable low-noise amplifier
Enable parts of RXLF
R4: Enable functions transmit
SSCCK
RBAT
BCOMP
SSCCK:
RBAT:
BCOMP:
BSCR:
GMIC:
ETDM:
EPREE:
ETX:
R5:
free
GEA4:
EXTLO:
BSCR
Shift SC-clock (chifts SC-clock by 17/16)
Battery detection high/low range
Bypass compressor and expander
Bypass scrambler and descrambler
Gain of microphone preamplifier
Enable transmit data management
Enable preemphasis (disables bypass)
Enable TX low frequency part
free
free
free
Gain earpiece amplifier MSB (see also R1)
Select input mixer
R6 – R15: reserved for U3550BM
Rev. A3, 20-May-98
13 (17)
Preliminary Information
U3500BM
Example of Mode Setting Using Enable Bits
(U3500B + U3550B)
Active Mode
(Transmission)
Active Mode
(PLL
Convergence
Waiting)
Receive Mode
(Only Data)
Receive Mode
(RX Waiting)
Standby Mode
(ex. Battery
Low)
*PA (VTX PIN),
EEA
X
*EVCO1 ETX,
ERX2, ERXO
X
X
ERX1
X
X
X
ERXHF, ELNA
*EVCO3
RSSI / Battery
Management
(MUXDA)
X
X
X
X
LOGIC PART
(Enables when VBatt
> 3.2 V)
X
X
X
X
X
Switch Comparator
(Always Enabled)
X
X
X
X
X
Inactive Mode
(Switch Off)
X
* refer to U3550BM
14 (17)
Rev. A3, 20-May-98
Preliminary Information
TXDAT
RXDAT
DACO
C
D
DGND
VCC
MCKO
330 nF
22 nF
390 k W
560 k W
Rev. A3, 20-May-98
Preliminary Information
27
2
28
1
1
28
330 nF
3
26
2
27
470 nF
100 nF
4
25
3
26
680 pF
23
6
5
330 nF
5
24
6
23
22
7
21
330 nF
100 pF
330 nF
21
7
470 nF
8
9
20
8
U3550BM
22
330 nF
U3500BM
330 nF
11.15 MHz
4.7 pF
100 nF
24
4
25
1 mF
5.6 k W
10 nF
10
19
9
20
11
18
10
19
330 nF
1 nF
330 nF
12
13
16
13
16
14
15
10G75A
10.7 MHz
12
17
4.7 k W
1.5 kW
17
11
18
14
15
100 nH
33 pF
10 nF
68 nF
CFU450G
100 nF
510 W
2x
BZT55C51
56 k W
24 k W
IN
mH
100 nF
1
1 nF
TX
RX
GND
ANT
Duplex
filter
GND
U3500BM
Application Circuit
Figure 16.
15 (17)
U3500BM
Package Information
Package SO28
Dimensions in mm
9.15
8.65
18.05
17.80
7.5
7.3
2.35
28
0.25
0.25
0.10
0.4
1.27
10.50
10.20
16.51
15
technical drawings
according to DIN
specifications
13033
1
14
16 (17)
Rev. A3, 20-May-98
Preliminary Information
U3500BM
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems
with respect to their impact on the health and safety of our employees and the public, as well as their impact on
the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs).
The Montreal Protocol ( 1987) and its London Amendments ( 1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
TEMIC Semiconductor GmbH semiconductor division has been able to use its policy of continuous improvements
to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or
unauthorized use.
TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
Rev. A3, 20-May-98
17 (17)
Preliminary Information