U3500BM Cordless Telephone Signal Processor Description The programmable cordless phone signal processor includes all necessary low frequency parts such as microphone- and earphone amplifier, compander, preemphasis, deemphasis, scrambler, data management, power-supply management, as well as RF receiving parts such as IF converter, FM demodulator. RSSI and low noise amplifier. Several gains and mutes in transmit and receive direction are controlled by serial bus while compander, pre- and deemphasis and scrambler can be bypassed. Features RF Receiver Part D Compander D D D D Low-noise amplifier D Pre- and deemphasis IF converter D Scrambler FM demodulator D Data management RSSI D Power-supply management Low Frequency Part D Serial bus D Symmetrical input of microphone amplifier D Symmetrical output of earpiece amplifier Application: CT0 Block Diagram MIXO IFIN1 IFIN2 DACO IFAMP MIXIN LOG Demodulator RGAIN ADJ LPF RXO Deem LPF MIXGND Scrambler frequency EXIN Oscillator 11.15 MHz LOIN ETC Expander Divider RECO2 D/A LPF REC RECO1 LNA LNAIN MIC1 RGND LNAO MIC2 MIC MICO VBATT RXDAT Battery low detector C Serial D Bus LPF VCC TXDAT Scrambler frequency LPF TGAIN ADJ.2 Limiter TXO Preem GND TGAIN ADJ.1 COIN Compressor CTC 14678 Figure 1. Block diagram Rev. A3, 20-May-98 1 (17) Preliminary Information U3500BM Pin Description TXO 1 28 TXDAT CTC 2 27 RXDAT COIN 3 26 D MICO 4 25 C Pin 1 2 3 4 5 6 MIC2 5 24 DACO MIC1 6 23 VCC GND 7 22 LOIN RXO 8 21 VBATT RECO2 9 20 LNAO RECO1 10 19 RGND EXIN 11 18 LNAIN ETC 12 17 MIXGND 7 8 9 10 IFIN2 13 IFIN1 16 MIXIN 14 15 MIXO 96 11791 11 12 13 14 15 16 17 18 19 20 21 22 Figure 2. Pinning 23 24 25 26 27 28 Symbol TXO CTC Function Transmit section analog output Compressor time constant control analog output COIN Compressor analog input MICO Microphone amplifier output MIC2 Non-inverting input of microphone amplifier MIC1 Inverting input of microphone amplifier GND LF analog/ digital ground RXO Intermediate receive analog output RECO2 Symmetrical output of receive amplifier RECO1 Symmetrical output of receive amplifier EMN Expander analog input ETC Expander time constant control analog output IFIN2 Symmetrical IF amplifier input IFIN1 Symmetrical IF amplifier input MIXO Mixer output MIXIN Mixer input MIXGND IF amplifier and mixer ground LNAIN Low-noise amplifier input RGND Low-noise amplifier ground LNAO Low-noise amplifier output/ External LO input VBATT Battery supply LOIN Local oscillator input (11.15 MHz) VCC Supply-voltage output for peripherals and internal supply of digital part DACO D/A comparator output C Clock input of serial bus D Data input of serial bus RXDAT Receive data digital output TXDAT Transmit data input Order Information Extended Type Number U3500BM-BFL U3500BM-BFLG3 Package SO28 SO28 Remarks Taped and reeled 2 (17) Rev. A3, 20-May-98 Preliminary Information U3500BM Absolute Maximum Ratings Parameters Supply voltage Junction temperature Ambient temperature Storage temperature Power dissipation Tamb = 60°C Symbol VBatt, VCC Tj Tamb Tstg Ptot Value 5.5 +125 –25 to +75 –50 to +125 1 Unit V °C °C °C W Symbol RthJA Value 120 Unit K/W Thermal Resistance Junction ambient Parameters SO28 Electrical Characteristics Test conditions (unless otherwise specified): VBatt = VCC = 3.6 V, Tamb = +25°C Parameters Test Conditions / Pins Symbol Current consumption ERX2 ELNA ERXHF ERX1 ERXO EEA 0 0 0 0 0 0 Operating voltage range Inactive mode VBatt = 2.9 V Standby mode RX waiting for RSSI ELNA = ERXHF = 1 RX waiting for data ELNA = ERXHF = ERX1 = 1 Operating current, RX and ERX2 = ELNA = ERXHF = TX completely active ERX1 = ERXO = EEA= EDEE = GDEM = ETX = 1 Low noise amplifier (LNA) f = 41.4 MHz, input level = –50 dBm Supply current Input impedance Output impedance Gain f = 50 MHz Noise figure Bandwidth = 1 MHz 1-dB input compression point Third-order input intercept f = 41.4 MHz point f = 41.4125 MHz Input level = –60 dBm Frequency range FRF Min. Typ. Max. EDEE 0 3.1 3.6 30 60 100 1.7 2.5 1.45 1.9 4.5 6.5 ETX 0 5.2 80 120 3.4 2.45 9.5 0.8 160 40 20 1.2 240 120 26 5 –27 1 200 80 23 4 –24 –15 –12 20 Rev. A3, 20-May-98 50 Unit Fig. EPREE 0 V mA mA mA mA mA mA dB dB dBm 3 3 3 3 3 3 dBm 3 MHz 3 W W 3 (17) Preliminary Information U3500BM Parameters Receiver IF mixer, f = 10.7 MHz Input resistance Input capacitance Output impedance Gain GVMIX Input compression point Third-order input intercept point Carrier breakthrough from internal LO (11.15 MHz) to IF output Carrier breakthrough from internal LO (11.15 MHz) to RF input IF amplifier: RSSI Input resistance RSSI-sensitivity Test Conditions / Pins Input level 7 mVrms Symbol GMIX Min. Typ. Max. 2000 2.5 1200 13 –17 –9 3000 3 1500 15 4000 3.5 1800 17 300 10 VIF = 0 mVrms starting from 0 increase RSSIlevel until mean of sampled signal at DACO is 0.2 RSSI-level = CON0 1.6 2 2.5 Unit W pF W dB dBm dBm mVrms mVrms kW Fig. 4 4 4 4 4 4 4 4 5 v VIF = 25.4 mVrms, f = 450 kHz increase RSSI level again until mean of sampled signal at DACO is 0.2. RSSI-level = CON1 RSSI-sensitivity = CON1–CON0 5 1 v RSSI-input voltage dynamic range RSSI-level number of programmable steps *) RSSI-level step size in the logarithmic region 60 65 dB 127 0.35 0.46 5 5 0.6 dB 5 *) RSSI Level Programming (Typical Values) Input Voltage VIF (mVrms) 0 25.4 42.4 424 4240 42400 RSSI Level (Decimal) 5 8 14 54 97 111 4 (17) Rev. A3, 20-May-98 Preliminary Information U3500BM Parameters RF demodulator BSCR EDEE 1 0 Recovered audio Test Conditions / Pins Symbol Min. Typ. fIF = 450 kHz, fMOD = 1 kHz, VIF = 500 mVrms GRX0 GRX1 GRX2 GRX3 ERX1 1 1 1 0 1 GDEM = 0, DfFM = 2.5 kHz 0.4 0.8 GDEM = 1, DfFM = 5.0 kHz 0.4 0.8 Recovered audio output VBatt = 3.1 to 5.2 V –1 voltage drop AM rejection ratio 30% AM 30 35 RX audio Change of RX0 signal EDEE = 0 –0.5 0 deemphasis bypass Gain adjust range 12 15 Gain adjust step 0.8 1 Output signal vs. frequency 100 Hz –7.5 –6.5 relative to 1 kHz (0 dB) 300 Hz –2.0 –1.0 deemphasis bypassed 1800 Hz –1.3 –0.3 3200 Hz –0.8 0.2 4100 Hz Output signal vs. frequency 100 Hz –0.7 0.3 relative to 1 kHz (0 dB) 300 Hz 3.7 4.7 deemphasis enable 1800 Hz –5.7 –4.7 EDEE = 1 3200 Hz –10 –9.0 4100 Hz Total harmonic distortion DFM = 250 Hz DFM = 2.50 kHz Audio mute DFM = 2.5 kHz, ERXO = 0 65 ERX1 = 0, ERX2 = 0 Output impedance Expander EEA GEA0 GEA1 GEA2 GEA3 1 0 0 0 1 Gain reference level VEXIN = –10 dBVrms GOREC 11 13 Change of gain when BCOMP = 1 –0.5 expander is bypassed Gain tracking VEXIN = –20 dBVrms –21 –41 VEXIN = –30 dBVrms –53 VEXIN = –35 dBVrms –50 VEXIN = –40 dBVrms –60 Input impedance 9.5 Gain change vs. supply VBatt = 3.1 to 5.2 V –0.5 voltage Attack time VEXIN = step tf 16 –20 dBVrms –14 dBVrms, measure time after step, when output voltage has 0.75 times the final value Release time VEXIN = step tf 16 14 dBVrms –20 dBVrms, measure time after step, when output voltage has 1.5 times of the final value ³ ³ Rev. A3, 20-May-98 Max. Unit ERXO ERX2 1 1.6 1.6 +1 Fig. 1 Vpp Vpp dB dB 6 6 6 0.5 dB 17 1.2 –5.5 0 0.7 1.2 –60 1.3 5.7 –3.7 –8.0 –66 3.5 3.5 dB dB 6 6 dB 6 dB 6 100 GEA4 1 15 0.5 % % dB 6 6 6 W dB dB –19 –39 –47 dB 14.5 0.5 kW dB 7 7 7 7 7 ms 7 ms 7 5 (17) Preliminary Information U3500BM Parameters Test Conditions / Pins Symbol Earpiece amplifier BCOMP = 1, EEA = 1, VEXIN = 100 mVrms Medium gain GEA0 GEA1 GEA2 GEA3 0 0 0 0 GEA4 = 1 Minimum gain GEA0 GEA1 GEA2 GEA3 0 0 0 0 GEA4 = 0 Gain change versus VS VBatt = 3.1 to 5.2 V Gain adjust range Gain adjust step Output impedance Distortion dt Output offset voltage VEXIN = 0 mVrms Output voltage swing Increase VEXIN until distortion (RECO1/ RECO2) is 5% Maximum gain GEA0 GEA1 GEA2 GEA3 1 1 1 1 GEA4 = 1 Low Frequency Transmitter GMIC EPREE BSCR GlTX G2TX BCOMP 1 1 1 1000 1000 1 Microphone Amplifier VMIC = 10 mVrms, fIN = 1 kHz Gain High gain: GMIC = 1 Low gain: GMIC = 0 Gain change versus VS VBatt = 3.1 to 5.2 V Differential input impedance Output impedance Distortion VMIC = 10 mVrms dt Output noise VMIC = 0 Vrms high gain (psophmetrically weighted) (inputs closed across 200 W) TX Audio VCOIN = –20 dBVrms Gain GTX (COIN, TXO) Change of gain TXO EPREE = 0 Gain between 3.2 and 5.2 V TX gain adjust range adj. 1 TX gain adjust step adj. 1 LIM gain adjust range adj. 2 LIM gain adjust range adj. 2 TX gain vs. frequency 100 Hz (preemphasis bypassed) 300 Hz relative to 1 kHz reference 1800 Hz level 0 dB 3200 Hz 4100 Hz Gain vs. frequency with 100 Hz preemphasis relative to 1 kHz 300 Hz reference level 0 dB 1800 Hz 3200 Hz 4100 Hz Total band ripple VBatt = 3.1 to 5.2 V VCOIN = –20 dBV Min. Typ. Max. Unit 4 5 6 dB Fig. 7 –12 –11 –10 dB 7 –0.2 0.2 31 1 10 0.8 –200 4.8 5.0 19 20 1.2 30 2 200 21 dB dB dB W % mV Vpp 7 7 7 7 7 7 7 dB 7 ETX 1 31 23 –0.2 41 2.5 –0.5 –1 12 0.8 0.8 –1.3 –1.3 –0.8 –1.9 –25.9 –0.8 –6.8 3.3 6.0 16.6 6 (17) 32 24 0 75 10 5.5 0 0 15 1 15 1 –0.3 –0.3 0.2 0.9 –23.9 –7.0 –5.8 4.3 7.0 –14.6 33 25 0.2 103 35 1 50 8.5 0.5 +1 18 1.2 1.2 0.7 0.7 1.2 0.1 –21.9 –6.0 –4.8 5.3 8.0 –12.6 2 dB dB dB kW W % mVrmsp 8 8 8 8 8 8 dB dB dB dB dB dB dB 9 9 9 9 9 9 9 dB 9 dB 9 dB 9 Rev. A3, 20-May-98 Preliminary Information U3500BM Parameters Limiter Output voltage Mute Test Conditions / Pins Symbol Increase VCOIN until d = 5% at TX0 then measure VTX0 ETX = 0, VCOIN = –l0 dBV attenuation at TX0 output Output impedance TXO Compressor BSCR EPREE G2TX0 G2TX1 G2TX2 G2TX3 1 0 0 1 0 1 Input impedance BCOMP = 1 Gain reference level G0TX VCOIN = –10 dBVrms Gain change when VCOIN = –10 dBVrms BCOMP = 1 compressor is bypassed Gain tracking VCOIN = –30 dBVrms VCOIN = –50 dBVrms VCOIN = –60 dBVrms VCOIN = –70 dBVrms Attack time VCOIN= step –30 dBVrms –18 dBVrms measure time after step when output voltage has 1.5 times the final value Release time VCOIN= step –18 dBVrms –30 dBVrms measure time after step when output voltage has 0.75 times the final value Scrambler EPREE BSCR BCOMP 0 0 1 Conversion gain versus FIN=1kHz, FOUT=3.1kHz frequency FIN (1 kHz) FIN=0.1kHz, FOUT=4.0kHz reference level 0 dB FIN=0.3kHz, FOUT=3.8kHz FIN=0.7kHz, FOUT=3.4kHz FIN=1.8kHz, FOUT=2.3kHz FIN=2.6kHz, FOUT=1.5kHz FIN=3.2kHz, FOUT=0.9kHz FIN=3.4kHz, FOUT=0.7kHz Carrier break through Descrambler EDEE BSCR BCOMP 0 0 1 Conversion gain vs. FIN=4kHz, FOUT=0.1kHz frequency FIN=3.8kHz, FOUT=0.3kHz FIN=3.4kHz, FOUT=0.7kHz FIN=2.3kHz, FOUT=1.8kHz FIN=l.5kHz, FOUT=2.6kHz FIN=0.9kHz, FOUT=3.2kHz FIN=0.7kHz, FOUT=3.4kHz Carrier break through Measure FOUT = 4.099 kHz Min. Typ. 1.05 Max. Unit 2.0 Vpp 56 7 EIX 1 G0TX GlTX0 0 9 1 0.5 dB 10 ³ ³ tf kW 9 9 9 G1TX1 G1TX2 G1TX3 0 1 0 14 22 kW 9 5.5 10 dB 9 0.5 dB 9 –11 –21 –22 tf 14 Fig. –9 –19 –28 –30 3.5 dB 9 ms 9 14.4 ms 9 –1.0 –4.4 –2.1 –0.8 –1.1 –1.1 –2.5 –5 –3.6 –1.3 –0.4 –1.5 –0.4 –1.7 –1.9 Rev. A3, 20-May-98 0 –3.4 –1.1 0.2 –0.1 –0.1 –0.5 –4 10 1.0 –2.4 –0.1 1.2 0.9 0.9 –0.5 –3 20 –2.6 –0.3 0.6 0.5 0.6 –0.3 –0.9 0.1 –1.6 0.7 1.6 0.5 1.6 0.7 0.1 0.5 dB 11 mVrms dB 11 mVrms 7 (17) Preliminary Information U3500BM Parameters Data management Receive data management Test Conditions / Pins Symbol GDEM ERX1 1 1 Duty cycle RXDAT VIF = 100 mVrms fIF = 450 kHz fMIF = 1 kHz DfIF = 5 kHz Transmit data management ETX1 1 Input impedance TXDAT Final value of step reETDM = 1, BSCR = 1 sponse VTXDAT = step 1.5 V → 1.75 V Measure step at TXO Logical Part Inputs: C, D Low voltage input High voltage input Input leakage current (0 < VI < VCC) Input LOIN Input leakage current (0 < VI < VCC) Outputs: DACO, RXDAT Output low lol = 10 mA Output high loh = –10 mA Serial bus Data set-up time tsud Data hold time thd Clock low time tcl Clock high time tch Hold time before transfer teon condition Data low pulse on transfer teh condition Data high pulse on teof transfer condition Min. Typ. Max. 0.4 0.5 0.6 Unit Fig. ERXHF 1 10 kW mV 200 311 10 10 0.2 VCC 0.8 VCC –1 +5 mA –5 5 mA 0.1 VCC 0.9 VCC 0.1 0 2 2 0.1 ms ms ms ms ms 0.2 ms 0.2 ms 8 (17) 14 Rev. A3, 20-May-98 Preliminary Information U3500BM Parameters Battery Management Max bat low Min bat low over switch Test Conditions / Pins Symbol DA0 to 6 = 1, RBAT = 1 DA0 to 6 = 27 BIN, RBAT = 1 DA0 to 6 = 1, RBAT = 0 DA0 to 6 = 0, RBAT = 0 Max bat high Min bat high Adjust step Max – Min MINBL – SWOFF Battery Switch Off threshold On threshold DA0 to 6 = 1, RBAT = 1 DA0 to 6 = 27 BIN, RBAT = 1 Hysteresis Switch ron Min. Typ. Max. Unit 3.7 3.05 3.95 3.2 4.1 3.35 V V 4.75 3.83 3.5 852.5 100 5.05 4.1 7.5 952.5 200 5.25 4.27 11.5 1052.5 300 V V mV mV mV 2.9 3.1 3.0 3.2 3.1 3.35 V V 220 250 35 280 50 mV DA0 to 6 = 0, RBAT = 0 Max bat low : MAXL (battery voltage when all DAC bits are high, low range) Min bat low : MINBL (battery voltage when DAC bits are 001 1011, low range) Max bat high : MAXBH (battery voltage when all DAC bits are high, high range) Min bat high : MINBH (battery voltage when all DAC bits are low, high range) Adjust step : Adjust step Max – Min : MAXBH – MINBH MINBL – SWOFF : MINBL – SWOFF Off threshold : SWOFF (off threshold of the battery switch) On threshold : SWON (on threshold of the battery switch) Hysteresis : SWON– SWOFF Switch ron : Switch Ron (resistance of the switch transistor, when switch is “ON”) LNAIN 18 LNA 1 nF 20 W LNAO 100 pF MIXIN 200 Ω VFRF Fig. 3 kΩ VBATT 11779 15 10 nF VFRF MIXO 1.5 kΩ 11.15 MHz 50 Ω RF generator 16 100 nF RF generator 11780 Figure 3. Figure 4. Rev. A3, 20-May-98 9 (17) Preliminary Information U3500BM 26 IFIN2 IFIN1 MICO 4 Setup 13 25 100 nF 20 kΩ D C 14 24 VIF 100 nF RSSI–level programming DACO 100 nF MIC2 D 25 C 5 100 Ω VMIC RSSI–level information 26 MIC1 Setup 6 100 Ω 11781 11784 Figure 5. Figure 8. 2 CTC IFIN2 13 VIF IFIN1 14 470 nF 25 C 3 COIN 2.5 kΩ 100 nF D 470 nF 8 RXO 100 nF 26 1 Setup TXO 100 nF 14696 VCOIN 100 kΩ Figure 6. 11785 Figure 9. RECO2 1 kΩ 9 RECO1 10 26 D 25 C 28 TXDAT TXO Setup 1 100 kΩ EXIN 11 ETC 12 VTXDAT 27 RXDAT 1.5 V 100 nF IFIN2 13 100 nF VEXIN 25 C IFIN1 470 nF 26 D Setup 14 VIF 11783 100 nF Figure 7. 14679 Figure 10. 10 (17) Rev. A3, 20-May-98 Preliminary Information U3500BM DATA F–3 dB=3.35 kHz F–3 dB=3.95 kHz Output buffer Gain stage Signal: 4.1 kHz/DC/OFF State : SCRON/SCROFF/DATA Gain : –4 dB/0 dB/OFF Demo– dulator F–3 dB=90 Hz RGAIN ADJ F–3 dB=3.95 kHz Signal: 1 kHz State : SCRON/SCROFF Gain : 5.9 dB/1.9 dB F–3 dB=3.35 kHz Deemphasis Signal: 4.1 kHz/DC/OFF State : DESCRON/DESCROFF/DATA Gain : –4 dB/0 dB/OFF Signal: 1 kHz State : DESCRON/DESCROFF Gain : –0.5 dB/–4.5 dB F–3 dB=1 kHz Comparator DATA 11786 Figure 11. Serial Bus Interface The circuit is remoted by an external microcontroller through the serial bus (programming can be started 10 ms after power supply settled). The data is an 12-bit word: A3 – A0: address of the destination register (0 to 15) D7 – D0: contents of register The data line must be stable when the clock is high and data must be serially shifted. After 12 clock periods, the transfer to the destination register is (internally) generated by a low-to-high transition of the data line when the clock is high. Data Microprocessor Rev. A3, 20-May-98 Clock D C 96 11787 Figure 12. 11 (17) Preliminary Information U3500BM Data (D) D0 D1 D2 A1 A2 A3 Clock (C) Ist word 2nd word Word transmission 13317 Transfer condition Figure 13. Data 8 4 Clock 0 Address decoder 128 latches 15 Commands 96 11789 Figure 14. Data (D) A1 A2 A3 D0 (C) Clock tsud thd tch tcl teon teh teoff 13318 Figure 15. 12 (17) Rev. A3, 20-May-98 Preliminary Information U3500BM Content of Internal Registers The registers have the following structure: D7 D6 D5 D4 D3 D2 D1 D0 RO: Reference for D/A converter MUXDA DA6 DA5 DA4 DA3 DA2 DA1 DA0 GEA0 GRX3 GRX2 GRX1 GRX0 G1TX3 G1TX2 G1TX1 G1TX0 ERX1 ERXHF ELNA ERX2 GMIC ETDM EPREE ETX free free GEA4 EXTLO MUXDA: DA(6:0): D/A multiplexing Reference voltage D/A R1: Gain adjustment RECLF GEA2 GEA1 GEA3 GEA(3:0): Gain earpiece amplifier (see also R5) GRX(3:0): Gain adjustment RX R2: Gain adjustment TRANLF G2TX2 G2TX1 G2TX3 G2TXO G2TX(3:0): Gain adjustment TX after limiter G1TX(3:0): Gain adjustment TX R3: Enable functions receive GDEM EDDE EEA GDEM: EDDE: EEA: ERXO: ERXHF: ELNA: ERX(l:0): ERXO Gain demodulator Enable deemphasis (disables bypass) Enable earpiece amplifier Enable RXO output Enable mixer and IF amplifier Enable low-noise amplifier Enable parts of RXLF R4: Enable functions transmit SSCCK RBAT BCOMP SSCCK: RBAT: BCOMP: BSCR: GMIC: ETDM: EPREE: ETX: R5: free GEA4: EXTLO: BSCR Shift SC-clock (chifts SC-clock by 17/16) Battery detection high/low range Bypass compressor and expander Bypass scrambler and descrambler Gain of microphone preamplifier Enable transmit data management Enable preemphasis (disables bypass) Enable TX low frequency part free free free Gain earpiece amplifier MSB (see also R1) Select input mixer R6 – R15: reserved for U3550BM Rev. A3, 20-May-98 13 (17) Preliminary Information U3500BM Example of Mode Setting Using Enable Bits (U3500B + U3550B) Active Mode (Transmission) Active Mode (PLL Convergence Waiting) Receive Mode (Only Data) Receive Mode (RX Waiting) Standby Mode (ex. Battery Low) *PA (VTX PIN), EEA X *EVCO1 ETX, ERX2, ERXO X X ERX1 X X X ERXHF, ELNA *EVCO3 RSSI / Battery Management (MUXDA) X X X X LOGIC PART (Enables when VBatt > 3.2 V) X X X X X Switch Comparator (Always Enabled) X X X X X Inactive Mode (Switch Off) X * refer to U3550BM 14 (17) Rev. A3, 20-May-98 Preliminary Information TXDAT RXDAT DACO C D DGND VCC MCKO 330 nF 22 nF 390 k W 560 k W Rev. A3, 20-May-98 Preliminary Information 27 2 28 1 1 28 330 nF 3 26 2 27 470 nF 100 nF 4 25 3 26 680 pF 23 6 5 330 nF 5 24 6 23 22 7 21 330 nF 100 pF 330 nF 21 7 470 nF 8 9 20 8 U3550BM 22 330 nF U3500BM 330 nF 11.15 MHz 4.7 pF 100 nF 24 4 25 1 mF 5.6 k W 10 nF 10 19 9 20 11 18 10 19 330 nF 1 nF 330 nF 12 13 16 13 16 14 15 10G75A 10.7 MHz 12 17 4.7 k W 1.5 kW 17 11 18 14 15 100 nH 33 pF 10 nF 68 nF CFU450G 100 nF 510 W 2x BZT55C51 56 k W 24 k W IN mH 100 nF 1 1 nF TX RX GND ANT Duplex filter GND U3500BM Application Circuit Figure 16. 15 (17) U3500BM Package Information Package SO28 Dimensions in mm 9.15 8.65 18.05 17.80 7.5 7.3 2.35 28 0.25 0.25 0.10 0.4 1.27 10.50 10.20 16.51 15 technical drawings according to DIN specifications 13033 1 14 16 (17) Rev. A3, 20-May-98 Preliminary Information U3500BM Ozone Depleting Substances Policy Statement It is the policy of TEMIC Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs). The Montreal Protocol ( 1987) and its London Amendments ( 1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. TEMIC Semiconductor GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423 Rev. A3, 20-May-98 17 (17) Preliminary Information