MITSUBISHI CM300DU-24H

MITSUBISHI IGBT MODULES
CM300DU-24H
HIGH POWER SWITCHING USE
INSULATED TYPE
CM300DU-24H
● IC ................................................................... 300A
● VCES ....................................................... 1200V
● Insulated Type
● 2-elements in a pack
● UL Recognized
Yellow Card No. E80276
File No. E80271
APPLICATION
UPS, NC machine, AC-Drive control, Servo, Welders
OUTLINE DRAWING & CIRCUIT DIAGRAM
Dimensions in mm
TC measured point
E2 G2
C1
G1 E1
6
15
6
E2
C2E1
80
E2 G2
G1 E1
CM
(18.5)
(8.25)
C2E1
E2
18.25
CIRCUIT DIAGRAM
C1
4-φ6.5 MOUTING HOLES
25
3-M6 NUTS
25
93
7
2.5
18
14
7
0.5
0.5
4
18
14
2.8
LABEL
0.5
0.5
4
21
29 +1.0
–0.5
7.5
18
14
21.5
±0.25
8.5
62 ±0.25
110
Feb. 2009
1
MITSUBISHI IGBT MODULES
CM300DU-24H
HIGH POWER SWITCHING USE
INSULATED TYPE
MAXIMUM RATINGS
Symbol
VCES
VGES
IC
ICM
IE (Note 2)
IEM (Note 2)
PC (Note 3)
Tj
Tstg
Viso
(Tj = 25°C, unless otherwise specified)
Item
Collector current
Emitter current
Maximum collector dissipation
Junction temperature
Storage temperature
Isolation voltage
—
Mounting torque
—
Weight
ELECTRICAL CHARACTERISTICS
Symbol
Conditions
Collector-emitter voltage
Gate-emitter voltage
Note 1.
2.
3.
4.
5.
6.
(Note 1)
Ratings
Unit
1200
±20
300
600
300
600
1130
–40 ~ +150
–40 ~ +125
2500
3.5 ~ 4.5
3.5 ~ 4.5
580
V
V
A
A
A
A
W
°C
°C
Vrms
N·m
N·m
g
(Tj = 25°C, unless otherwise specified)
Collector cutoff current
Gate-emitter
VGE(th)
threshold voltage
Gate-leakage current
IGES
Collector-emitter
VCE(sat)
saturation voltage
Input capacitance
Cies
Output capacitance
Coes
Reverse transfer capacitance
Cres
QG
Total gate charge
td (on)
Turn-on delay time
tr
Turn-on rise time
td (off)
Turn-off delay time
tf
Turn-off fall time
V EC(Note 2) Emitter-collector voltage
t rr (Note 2) Reverse recovery time
Q rr (Note 2) Reverse recovery charge
Rth(j-c)Q
Thermal resistance (Note 5)
Rth(j-c)R
Contact thermal resistance
(Note 1)
—
—
Charged part to base plate, f = 60Hz, AC 1 minute
Main terminals M6 screw
Mounting M6 screw
Typical value
VCE = VCES, VGE = 0V
Min
—
Limits
Typ
—
Max
1
IC = 30mA, VCE = 10V
4.5
6
7.5
V
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
2.9
2.85
—
—
—
1125
—
—
—
—
—
—
1.65
—
—
0.5
3.7
—
45
15
9
—
200
300
350
350
3.2
300
—
0.11
0.18
µA
nF
nF
nF
nC
ns
ns
ns
ns
V
ns
µC
K/W
K/W
—
0.02
—
K/W
Item
ICES
Rth(c-f)
VGE = 0V
VCE = 0V
TC = 25°C
Pulse
TC = 25°C
Pulse
TC = 25°C
Test Conditions
±VGE = VGES, VCE = 0V
IC = 300A, VGE = 15V
(Note 4)
Tj = 25°C
Tj = 125°C
VCE = 10V
VGE = 0V
VCC = 600V, IC = 300A, VGE = 15V
VCC = 600V, IC = 300A
VGE = ±15V
RG = 1.0Ω
Resistive load
IE = 300A, VGE = 0V
IE = 300A,
die / dt = –600A / µs
Junction to case, IGBT part (Per 1/2 module)
Junction to case, FWDi part (Per 1/2 module)
Case to heat sink, conductive grease applied
(Per 1/2 module)
(Note 6)
Unit
mA
V
Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed Tjmax rating.
IE, VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter-collector free-wheel diode.
Junction temperature (Tj) should not increase beyond 150°C.
Pulse width and repetition rate should be such as to cause negligible temperature rise.
Case temperature (TC) measured point is shown in page OUTLINE DRAWING.
Typical value is measured by using thermally conductive grease of λ = 0.9[W/(m • K)].
Feb. 2009
2
MITSUBISHI IGBT MODULES
CM300DU-24H
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
TRANSFER CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
600
15
VCE = 10V
COLLECTOR CURRENT IC (A)
12
500 Tj = 25°C
11
400
300
10
200
9
100
8
0
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
VGE = 20
(V)
0
2
4
6
8
400
300
200
100
Tj = 25°C
Tj = 125°C
0
4
8
12
16
20
COLLECTOR-EMITTER VOLTAGE VCE (V)
GATE-EMITTER VOLTAGE VGE (V)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
5
VGE = 15V
Tj = 25°C
Tj = 125°C
4
3
2
1
0
100
0
200
300
400
500
8
6
IC = 600A
4
IC = 300A
IC = 120A
2
0
4
8
12
16
20
GATE-EMITTER VOLTAGE VGE (V)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
CAPACITANCE CHARACTERISTICS
(TYPICAL)
102
Tj = 25°C
3
2
102
7
5
3
2
101
1.0
Tj = 25°C
COLLECTOR CURRENT IC (A)
CAPACITANCE Cies, Coes, Cres (nF)
7
5
10
0
600
103
EMITTER CURRENT IE (A)
500
0
10
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
COLLECTOR CURRENT IC (A)
600
7
5
3
2
VGE = 0V
Cies
101
7
5
3
2
100
Coes
Cres
7
5
3
2
3.5
10–1 –1
10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
EMITTER-COLLECTOR VOLTAGE VEC (V)
COLLECTOR-EMITTER VOLTAGE VCE (V)
1.5
2.0
2.5
3.0
Feb. 2009
3
MITSUBISHI IGBT MODULES
CM300DU-24H
HIGH POWER SWITCHING USE
INSULATED TYPE
tf
td(off)
td(on)
3
2
tr
102
7
5
Tj = 125°C
VCC = 600V
VGE = ±15V
RG = 1.0Ω
3
2
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j – c)
101 1
10
2
3
5 7 102
2
3
2
3
3
Irr
2
2
trr
102
101
7
5
7
5
3
3
2
2
2
3
5 7 102
100
2
3
5 7 103
COLLECTOR CURRENT IC (A)
EMITTER CURRENT IE (A)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT part)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi part)
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
101
7 Single Pulse
5
3 TC = 25°C
Per
W
Perunit
unitbase
base==RRth(j
th(j––c)c)==0.14°C/
0.11K/W
100
5
5
101 1
10
5 7 103
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j – c)
SWITCHING TIMES (ns)
7
5
REVERSE RECOVERY TIME trr (ns)
103
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(TYPICAL)
103
102
– di /dt = 600A /µs
7
7
Tj = 25°C
7
5
3
2
3
2
10–1
10–1
10–2
10–2
10–3
10–3
10–5 2 3 5 710–4 2 3 5 7 10–3
7
5
3
2
7
5
3
2
7
5
3
2
7
5
3
2
TIME (s)
REVERSE RECOVERY CURRENT Irr (A)
HALF-BRIDGE
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
101
7 Single Pulse
5
3 TC = 25°C
2
100
Per
W
Perunit
unitbase
base==RRth(j
th(j––c)c)==0.24°C/
0.18K/W
7
5
3
2
3
2
10–1
10–1
10–2
10–2
10–3
10–3
10–5 2 3 5 710–4 2 3 5 7 10–3
7
5
3
2
7
5
3
2
7
5
3
2
7
5
3
2
TIME (s)
GATE CHARGE CHARACTERISTICS
(TYPICAL)
GATE-EMITTER VOLTAGE VGE (V)
20
IC = 300A
VCC = 400V
15
VCC = 600V
10
5
0
0
400
800
1200
1600
GATE CHARGE QG (nC)
Feb. 2009
4