MITSUBISHI IGBT MODULES CM100DU-24NFH HIGH POWER SWITCHING USE CM100DU-24NFH ¡IC ................................................................... 100A ¡VCES ......................................................... 1200V ¡Insulated Type ¡2-elements in a pack APPLICATION High frequency switching use (30kHz to 60kHz). Gradient amplifier, Induction heating, power supply, etc. OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm TC measured point 94 80 ±0.25 23 4 G1E1 12 4 4 11 18 E2 G2 C1 E2 C2E1 2–φ6.5 MOUNTING HOLES 23 48 CM 24 17 13 7 13.5 2.5 16 TAB C2E1 E2 21.2 +1 30 –0.5 LABEL #110. t=0.5 C1 G1 E1 25 7.5 16 2.5 E2 G2 3–M5NUTS 12mm deep CIRCUIT DIAGRAM Feb. 2009 MITSUBISHI IGBT MODULES CM100DU-24NFH HIGH POWER SWITCHING USE MAXIMUM RATINGS Symbol VCES VGES IC ICM IE (Note 1) IEM (Note 1) PC (Note 3) PC’ (Note 3) Tj Tstg Viso — — — (Tj = 25°C, unless otherwise specified) Parameter Collector current Emitter current Maximum collector dissipation Maximum collector dissipation Junction temperature Storage temperature Isolation voltage Mounting torque Weight ELECTRICAL CHARACTERISTICS Symbol Conditions Collector-emitter voltage Gate-emitter voltage G-E Short C-E Short Operation Pulse Operation Pulse TC = 25°C TC’ = 25°C*4 Ratings 1200 ±20 100 200 100 200 560 730 –40 ~ +150 –40 ~ +125 2500 2.5 ~ 3.5 3.5 ~ 4.5 310 (Note 2) (Note 2) (Note 2) (Note 2) Terminals to base plate, f = 60Hz, AC 1 minute Main terminals M5 screw Mounting M6 screw Typical value Unit V V A A A A W W °C °C Vrms N•m N•m g (Tj = 25°C, unless otherwise specified) Test conditions Parameter Limits Typ. — Max. 1 Unit ICES Collector cutoff current VCE = VCES, VGE = 0V Min. — VGE(th) Gate-emitter threshold voltage IC = 10mA, VCE = 10V 4.5 6 7.5 V IGES Gate leakage current ±VGE = VGES, VCE = 0V — — — — — — — — — — — — — — — — — — — 3.1 — 5.0 5.0 — — — 450 — — — — — 5.0 — — — 0.07 — — — 0.5 6.5 — 16 1.3 0.3 — 100 50 250 150 150 — 3.5 0.22 0.47 — µA VCE(sat) Collector-emitter saturation voltage Cies Coes Cres QG td(on) tr td(off) tf trr (Note 1) Qrr (Note 1) VEC(Note 1) Rth(j-c)Q Rth(j-c)R Rth(c-f) Rth(j-c’)Q Rth(j-c’)R RG Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Reverse recovery time Reverse recovery charge Emitter-collector voltage Thermal resistance*1 Contact thermal resistance Thermal resistance*4 Tj = 25°C Tj = 125°C IC = 100A, VGE = 15V VCE = 10V VGE = 0V VCC = 600V, IC = 100A, VGE = 15V VCC = 600V, IC = 100A VGE = ±15V RG = 3.1Ω, Inductive load IE = 100A IE = 100A, VGE = 0V IGBT part (1/2 module) FWDi part (1/2 module) Case to heat sink, Thermal compound Applied*2 (1/2 module) IGBT part (1/2 module) FWDi part (1/2 module) External gate resistance mA V nF nF nF nC ns ns ns ns ns 0.17*3 0.29*3 31 µC V K/W K/W K/W K/W K/W Ω *1 : Case temperature (TC) measured point is shown in page OUTLINE DRAWING. *2 : Typical value is measured by using thermally conductive grease of λ = 0.9[W/(m • K)]. *3 : If you use this value, Rth(f-a) should be measured just under the chips. *4 : Case temperature (TC’) measured point is just under the chips. Note 1. IE, VEC, trr & Qrr represent characteristics of the anti-parallel, emitter-collector free-wheel diode (FWDi). 2. Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed Tjmax rating. 3. Junction temperature (Tj) should not increase beyond 150°C. 4. No short circuit capability is designed. Feb. 2009 2 MITSUBISHI IGBT MODULES CM100DU-24NFH HIGH POWER SWITCHING USE PERFORMANCE CURVES TRANSFER CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) 200 14 COLLECTOR CURRENT IC (A) 13 15 12 140 120 11 100 80 10 60 40 9 20 8 0 2 4 6 8 VCE = 10V 180 160 140 120 100 80 60 40 Tj = 25°C Tj = 125°C 20 0 10 0 5 10 15 20 COLLECTOR-EMITTER VOLTAGE VCE (V) GATE-EMITTER VOLTAGE VGE (V) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 9 COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) VGE=20 (V) 160 0 VGE = 15V 8 Tj = 25°C Tj = 125°C 7 6 5 4 3 2 1 0 EMITTER CURRENT IE (A) Tj = 25°C 180 0 40 80 120 160 10 IC = 100A 4 IC = 40A 2 6 8 10 12 14 16 18 20 COLLECTOR CURRENT IC (A) GATE-EMITTER VOLTAGE VGE (V) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) CAPACITANCE CHARACTERISTICS (TYPICAL) 102 7 5 7 5 3 2 Tj = 125°C Tj = 25°C 102 7 5 3 2 0 IC = 200A 6 103 101 Tj = 25°C 8 0 200 CAPACITANCE Cies, Coes, Cres (nF) COLLECTOR CURRENT IC (A) 200 1 2 3 4 5 3 2 101 Cies 7 5 3 2 100 7 5 Coes 3 2 Cres VGE = 0V 10–1 –1 0 1 10 2 3 5 7 10 2 3 5 7 10 2 3 5 7 102 COLLECTOR-EMITTER VOLTAGE VCE (V) EMITTER-COLLECTOR VOLTAGE VEC (V) Feb. 2009 3 MITSUBISHI IGBT MODULES CM100DU-24NFH HALF-BRIDGE SWITCHING TIME CHARACTERISTICS (TYPICAL) REVERSE RECOVERY TIME trr (ns) 103 SWITCHING TIME (ns) 7 5 3 2 td(off) 102 7 5 3 2 101 7 5 3 2 100 1 10 2 3 td(on) tf tr Conditions: VCC = 600V VGE = ±15V RG = 3.1Ω Tj = 125°C Inductive load 5 7 102 2 3 5 7 103 5 5 3 3 2 2 Irr 102 102 trr 7 5 3 2 101 1 10 2 3 5 7 102 7 Conditions: 5 VCC = 600V VGE = ±15V 3 RG = 3.1Ω 2 Tj = 25°C Inductive load 101 2 3 5 7 103 COLLECTOR CURRENT IC (A) EMITTER CURRENT IE (A) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT part) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (FWDi part) 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 100 7 5 3 2 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j – c) 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 100 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j – c) REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 103 103 Tj = 25°C 7 7 Single Pulse TC = 25°C 10–1 10–1 7 5 3 2 7 5 3 2 10–2 10–2 7 5 3 Per unit base = 2 7 5 3 2 Rth(j–c) = 0.22K/W 10–3 REVERSE RECOVERY CURRENT Irr (A) HIGH POWER SWITCHING USE 7 5 3 2 Single Pulse TC = 25°C 10–1 10–1 7 5 3 2 7 5 3 2 10–2 10–2 7 5 3 Per unit base = 2 Rth(j–c) = 0.47K/W 10–3 10–3 10–5 2 3 5 710–4 2 3 5 7 10–3 TIME (s) 7 5 3 2 10–3 10–5 2 3 5 710–4 2 3 5 7 10–3 TIME (s) GATE CHARGE CHARACTERISTICS (TYPICAL) GATE-EMITTER VOLTAGE VGE (V) 20 IC = 100A VCC = 400V 15 VCC = 600V 10 5 0 0 100 200 300 400 500 600 700 GATE CHARGE QG (nC) Feb. 2009 4