MITSUBISHI MITSUBISHI <INTELLIGENT <INTELLIGENT POWER POWER MODULES> MODULES> PM300CLA120 PM300CLA120 FLAT-BASE FLAT-BASE TYPE TYPE INSULATED INSULATED PACKAGE PACKAGE PM300CLA120 FEATURE a) Adopting new 5th generation IGBT (CSTBT) chip, which performance is improved by 1µm fine rule process. For example, typical Vce(sat)=1.9V @Tj=125°C b) I adopt the over-temperature conservation by Tj detection of CSTBT chip, and error output is possible from all each conservation upper and lower arm of IPM. • 3φ 300A, 1200V Current-sense IGBT type inverter • Monolithic gate drive & protection logic • Detection, protection & status indication circuits for, shortcircuit, over-temperature & under-voltage (Fo available from all arm devices) • Acoustic noise-less 45kW/55kW class inverter application • UL Recognized Yellow Card No.E80276(N) File No.E80271 APPLICATION General purpose inverter, servo drives and other motor controls PACKAGE OUTLINES Dimensions in mm 172 11 28 27 21 20 L A B E L 21 24 25 22 23 26 3-2.54 53.75 3.75 29 3233 30 31 34 3-2.54 36 35 21 50 150 3-2.54 53.75 1 2 3 4 5 6 12 12 12 12 12 12 12 17 17 17 17 17 17 (SCREWING DEPTH) (15.5) Terminal code 24- 0.64 36.6 6-φ2.5 35.5 8-φ5.5 MOUNTING HOLES 20 19 8-φ3.5 21 137 3-2.54 123 3.22 99 13 16 17 14 15 18 13.5 31.84 3-2.54 94.5 3.22 110±0.5 12 7.75 11 55 17 +1.0 –0.5 6 22 31.84 3-2.54 (24) 50 50 31.84 3.22 28 10 9.08 22 6.5 28 9 22 8 14 50±0.5 50±0.5 5.5 50±0.5 7 12-M6 NUTS 2 162 6 1. 2. 3. 4. 5. 6. N 7. W P 8. W N 9. V P 10. V N 11. U P 12. U 13. 14. 15. 16. 17. 18. VUPC UPFO UP VUP1 VUNC UNFO 19. 20. 21. 22. 23. 24. UN VUN1 VVPC VPFO VP VVP1 25. 26. 27. 28. 29. 30. VVNC VNFO VN VVN1 VWPC WPFO 31. 32. 33. 34. 35. 36. WP VWP1 VWNC WNFO WN VWN1 Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM300CLA120 FLAT-BASE TYPE INSULATED PACKAGE INTERNAL FUNCTIONS BLOCK DIAGRAM VWNC WN VWN1 WNFO VWPC WP WPFO 1.5k Gnd In Fo Gnd Si Out VWP1 VVNC VN 1.5k Vcc Gnd OT In Gnd N Fo W OT P VVN1 VVPC VP 1.5k Vcc Si Out VNFO Gnd In Fo Gnd Si Out VPFO VVP1 VUNC UN UNFO 1.5k Vcc OT N Gnd Gnd In Fo V OT P VUPC UP UPFO 1.5k Vcc Si Out VUN1 Gnd In Fo Gnd Si Out N VUP1 1.5k Vcc OT Gnd Gnd In Fo Vcc Si Out U OT P MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted) INVERTER PART Symbol VCES ±IC ±ICP PC Tj Parameter Collector-Emitter Voltage Collector Current Collector Current (Peak) Collector Dissipation Junction Temperature Condition VD = 15V, VCIN = 15V TC = 25°C TC = 25°C TC = 25°C (Note-1) Ratings 1200 300 600 1562 –20 ~ +150 Unit V A A W °C Ratings Unit 20 V 20 V 20 V 20 mA CONTROL PART Symbol Parameter VD Supply Voltage VCIN Input Voltage VFO Fault Output Supply Voltage IFO Fault Output Current Condition Applied between : VUP1-VUPC, VVP1-VVPC, VWP1-VWPC VUN1-VUNC, VVN1-VVNC, VWN1-VWNC Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN-VUNC, VN-VVNC, WN-VWNC Applied between : UPFO-VUPC, VPFO-VVPC, WPFO-VWPC UNFO-VUNC, VNFO-VVNC, WNFO-VWNC Sink current at UPFO, VPFO, WPFO, UNFO, VNFO, WNFO terminals Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM300CLA120 FLAT-BASE TYPE INSULATED PACKAGE TOTAL SYSTEM Parameter Supply Voltage Protected by VCC(PROT) SC VCC(surge) Supply Voltage (Surge) Storage Temperature Tstg Isolation Voltage Viso Symbol Ratings Condition VD = 13.5 ~ 16.5V, Inverter Part, Tj = +125°C Start Applied between : P-N, Surge value 60Hz, Sinusoidal, Charged part to Base, AC 1 min. Unit 800 V 1000 –40 ~ +125 2500 V °C Vrms THERMAL RESISTANCES Symbol Condition Parameter Rth(j-c)Q Rth(j-c)F Junction to case Thermal Resistances Rth(c-f) Contact Thermal Resistance Inverter IGBT (per 1 element) Inverter FWDi (per 1 element) Case to fin, (per 1 module) Thermal grease applied (Note-1) (Note-1) (Note-1) Min. — — Limits Typ. — — Max. 0.08 0.13 — — 0.014 Limits Typ. 1.8 1.9 2.8 1.0 0.5 0.4 2.3 0.7 — — Max. 2.3 2.4 3.9 2.5 0.8 1.0 3.5 1.2 1 10 Unit °C/W (Note-1) Tc measurement point is just under the chip. If you use this value, Rth(f-a) should be measured just under the chips. Table 1: TC (under the chip) measurement point is below. arm axis X Y UP IGBT FWDi 30.1 19.2 89.4 89.4 VP IGBT FWDi 80.1 69.2 89.4 89.4 WP IGBT FWDi 130.1 119.2 89.4 89.4 (Unit : mm) UN IGBT FWDi 19.8 30.7 20.6 20.6 7 Name plate side VN IGBT FWDi 69.8 80.7 20.6 20.6 WN IGBT FWDi 119.8 130.7 20.6 20.6 13 Bottom view Y X 6 1 ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) INVERTER PART Symbol VCE(sat) VEC ton trr tc(on) toff tc(off) ICES Parameter Condition Collector-Emitter Saturation Voltage FWDi Forward Voltage VD = 15V, IC = 300A VCIN = 0V (Fig. 1) –IC = 300A, VD = 15V, VCIN = 15V Switching Time VD = 15V, VCIN = 0V↔15V VCC = 600V, IC = 300A Tj = 125°C Inductive Load Collector-Emitter Cutoff Current VCE = VCES, VCIN = 15V Tj = 25°C Tj = 125°C (Fig. 2) (Fig. 3, 4) (Fig. 5) Tj = 25°C Tj = 125°C Min. — — — 0.5 — — — — — — Unit V V µs mA Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM300CLA120 FLAT-BASE TYPE INSULATED PACKAGE CONTROL PART Symbol Parameter Condition V*N1-V*NC V*P1-V*PC ID Circuit Current VD = 15V, VCIN = 15V Vth(ON) Vth(OFF) SC Input ON Threshold Voltage Input OFF Threshold Voltage Short Circuit Trip Level Short Circuit Current Delay Time Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN-VUNC, VN-VVNC, WN-VWNC (Fig. 3,6) –20 ≤ Tj ≤ 125°C, VD = 15V toff(SC) OT OTr UV UVr IFO(H) IFO(L) tFO VD = 15V (Fig. 3,6) Over Temperature Protection VD = 15V Detect Tj of IGBT chip Supply Circuit Under-Voltage Protection –20 ≤ Tj ≤ 125°C Fault Output Current VD = 15V, VFO = 15V (Note-2) Minimum Fault Output Pulse Width VD = 15V (Note-2) Trip level Reset level Trip level Reset level Min. — — 1.2 1.7 600 Limits Typ. 20 20 1.5 2.0 — Max. 27 27 1.8 2.3 — Unit mA V A — 0.2 — µs 135 — 11.5 — — — 145 125 12.0 12.5 — 10 — — 12.5 — 0.01 15 °C 1.0 1.8 — V mA ms (Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to protect it. MECHANICAL RATINGS AND CHARACTERISTICS Symbol — — — Condition Parameter Mounting torque Mounting torque Weight Main terminal Mounting part screw : M6 screw : M5 — Min. 3.5 2.5 — Limits Typ. 4.0 3.0 1250 Max. 4.5 3.5 — Unit N•m N•m g RECOMMENDED CONDITIONS FOR USE Symbol VCC Parameter Supply Voltage VD Control Supply Voltage VCIN(ON) VCIN(OFF) fPWM Input ON Voltage Input OFF Voltage PWM Input Frequency Arm Shoot-through Blocking Time tdead Condition Applied across P-N terminals Applied between : VUP1-VUPC, VVP1-VVPC, VWP1-VWPC VUN1-VUNC, VVN1-VVNC, VWN1-VWNC (Note-3) Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN-VUNC, VN-VVNC, WN-VWNC Using Application Circuit of Fig. 8 For IPM’s each input signals Recommended value ≤ 800 Unit V 15 ± 1.5 V (Fig. 7) ≤ 0.8 ≥ 9.0 ≤ 20 kHz ≥ 3.0 µs V (Note-3) With ripple satisfying the following conditions: dv/dt swing ≤ ±5V/µs, Variation ≤ 2V peak to peak Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM300CLA120 FLAT-BASE TYPE INSULATED PACKAGE PRECAUTIONS FOR TESTING 1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corresponding supply voltage and each input signal should be kept off state. After this, the specified ON and OFF level setting for each input signal should be done. 2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device. (These test should not be done by using a curve tracer or its equivalent.) IN Fo VCIN Ic V IN Fo VCIN –Ic V (15V) (0V) VD (all) VD (all) Fig. 1 VCE(sat) Test Fig. 2 VEC Test a) Lower Arm Switching VCIN (15V) Fo Signal input (Upper Arm) trr CS Fo Signal input (Lower Arm) VCIN Ic 90% 10% 10% tc(on) Fo Signal input (Upper Arm) 10% 10% tc(off) VCIN CS VCIN (15V) Ic 90% VD (all) b) Upper Arm Switching VCIN VCE Irr Vcc Vcc td(on) tr tf td(off) Fo Signal input (Lower Arm) (ton= td(on) + tr) (toff= td(off) + tf) Ic VD (all) Fig. 3 Switching time and SC test circuit Fig. 4 Switching time test waveform VCIN Short Circuit Current P, (U,V,W) A VCIN (15V) Constant Current IN Fo SC Pulse VCE Ic VD (all) U,V,W, (N) Fo toff(SC) Fig. 5 ICES Test Fig. 6 SC test waveform IPM’ input signal VCIN (Upper Arm) 1.5V 0V IPM’ input signal VCIN (Lower Arm) 0V 2V tdead 2V 1.5V 1.5V tdead 2V t t tdead 1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value Fig. 7 Dead time measurement point example Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM300CLA120 FLAT-BASE TYPE INSULATED PACKAGE 20k → VD ≥10µ VUP1 UPFO IF 1.5k Vcc Fo UP OT OUT GND GND U ≥0.1µ VUN1 UNFO 1.5k 1.5k VP 1.5k 1.5k Vcc Fo V M OT OUT Si N OT OUT P Si GND GND VWN1 1.5k Vcc Fo VWNC Si In VWPC WN P GND GND WP WNFO OT OUT In VWP1 VD Vcc Fo VN VVNC VD Vcc GND GND VVN1 WPFO N In VVPC VD Si GND GND Fo VNFO OT OUT In VVP1 VPFO Vcc Fo UN VUNC VD + – Si In VUPC VD P W OT OUT Si In GND GND N : Interface which is the same as the U-phase Fig. 8 Application Example Circuit NOTES FOR STABLE AND SAFE OPERATION ; Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the stray capacity between the input and output wirings of opto-coupler. Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler. Fast switching opto-couplers: tPLH, tPHL ≤ 0.8µs, Use High CMR type. Slow switching opto-coupler: CTR > 100% Use 6 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the power supply. Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N terminal. Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line and improve noise immunity of the system. • • • • • • • Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM300CLA120 FLAT-BASE TYPE INSULATED PACKAGE PERFORMANCE CURVES COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (TYPICAL) 400 COLLECTOR CURRENT IC (A) Tj = 25°C 15V VD = 17V 320 13V 240 160 80 0 0 0.5 1 1.5 2 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) OUTPUT CHARACTERISTICS (TYPICAL) 2.5 2.5 VD = 15V 2 1.5 1 0.5 Tj = 25°C Tj = 125°C 0 80 0 COLLECTOR-EMITTER SATURATION VOLTAGE (VS. VD) CHARACTERISTICS (TYPICAL) 2.5 1.5 1 0.5 IC = 300A Tj = 25°C Tj = 125°C 0 12 13 14 15 16 17 400 101 VCC = 600V VD = 15V Tj = 25°C Tj = 125°C Inductive load 7 5 4 3 2 tc(off) 100 7 5 4 3 2 tc(on) 10–1 1 10 18 2 3 4 5 7 102 2 3 4 5 7 103 CONTROL SUPPLY VOLTAGE VD (V) COLLECTOR CURRENT IC (A) SWITCHING TIME CHARACTERISTICS (TYPICAL) SWITCHING LOSS CHARACTERISTICS (TYPICAL) 101 SWITCHING TIME ton, toff (µs) 320 SWITCHING TIME CHARACTERISTICS (TYPICAL) SWITCHING TIME tc(on), tc(off) (µs) 2 240 COLLECTOR CURRENT IC (A) 7 5 4 3 toff 2 100 ton 7 5 4 3 VCC = 600V VD = 15V Tj = 25°C Tj = 125°C Inductive load 2 10–1 1 10 2 3 4 5 7 102 2 3 4 5 7 103 COLLECTOR CURRENT IC (A) SWITCHING LOSS ESW(on), ESW(off) (mJ/pulse) COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) COLLECTOR-EMITTER VOLTAGE VCE (V) 160 102 7 5 4 3 ESW(on) 2 ESW(on) 101 7 ESW(off) 5 4 3 2 ESW(off) 100 1 10 2 3 4 5 7 102 VCC = 600V VD = 15V Tj = 25°C Tj = 125°C Inductive load 2 3 4 5 7 103 COLLECTOR CURRENT IC (A) Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM300CLA120 103 VD = 15V Tj = 25°C Tj = 125°C 7 5 4 3 2 102 7 5 4 3 2 101 0 0.5 1 1.5 2 2.5 3 2 Irr 100 7 5 4 3 2 trr 10–1 3 2 102 7 5 4 3 2 101 7 5 4 3 2 10–2 101 3 Tj = 25°C Tj = 125°C Inductive load 2 3 4 5 7 102 2 7 5 4 3 2 100 3 4 5 7 103 EMITTER-COLLECTOR VOLTAGE VEC (V) COLLECTOR RECOVERY CURRENT –IC (A) ID VS. fc CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT PART) 100 60 P-side or N-side VD = 15V 50 Tj = 25°C NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j – c) CIRCUIT CURRENT ID (mA) DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) 101 103 VCC = 600V 7 7 5 5 VD = 15V 4 4 40 30 20 10 0 REVERSE RECOVERY CURRENT lrr (A) DIODE FORWARD CHARACTERISTICS (TYPICAL) REVERSE RECOVERY TIME trr (µs) COLLECTOR RECOVERY CURRENT –IC (A) FLAT-BASE TYPE INSULATED PACKAGE 0 5 10 15 20 25 CARRIER FREQUENCY fc (kHz) 7 5 3 2 10–1 7 5 3 2 10–2 7 5 3 Single Pulse 2 Per unit base = Rth(j – c)Q = 0.08°C/W 10–3 –5 10 2 3 5 710–4 2 3 5 710–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101 TIME (s) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (FWDi PART) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j – c) 100 7 5 3 2 10–1 7 5 3 2 10–2 7 5 3 Single Pulse 2 Per unit base = Rth(j – c)F = 0.13°C/W 10–3 –5 10 2 3 5 710–4 2 3 5 710–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101 TIME (s) Jul. 2005