MITSUBISHI PM300CLA120_05

MITSUBISHI
MITSUBISHI
<INTELLIGENT
<INTELLIGENT
POWER
POWER
MODULES>
MODULES>
PM300CLA120
PM300CLA120
FLAT-BASE
FLAT-BASE
TYPE
TYPE
INSULATED
INSULATED
PACKAGE
PACKAGE
PM300CLA120
FEATURE
a) Adopting new 5th generation IGBT (CSTBT) chip, which
performance is improved by 1µm fine rule process.
For example, typical Vce(sat)=1.9V @Tj=125°C
b) I adopt the over-temperature conservation by Tj detection of
CSTBT chip, and error output is possible from all each conservation upper and lower arm of IPM.
• 3φ 300A, 1200V Current-sense IGBT type inverter
• Monolithic gate drive & protection logic
• Detection, protection & status indication circuits for, shortcircuit, over-temperature & under-voltage (Fo available from
all arm devices)
• Acoustic noise-less 45kW/55kW class inverter application
• UL Recognized
Yellow Card No.E80276(N)
File No.E80271
APPLICATION
General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES
Dimensions in mm
172
11
28
27
21
20
L A B E L
21 24 25
22 23 26
3-2.54
53.75
3.75
29 3233
30 31 34
3-2.54
36
35
21
50
150
3-2.54
53.75
1
2
3
4
5
6
12
12
12
12
12
12
12
17
17
17
17
17
17
(SCREWING DEPTH)
(15.5)
Terminal code
24-
0.64
36.6
6-φ2.5
35.5
8-φ5.5
MOUNTING HOLES
20
19
8-φ3.5
21
137
3-2.54
123
3.22
99
13 16 17
14 15 18
13.5
31.84
3-2.54
94.5
3.22
110±0.5
12
7.75
11
55
17 +1.0
–0.5
6
22
31.84
3-2.54
(24)
50
50
31.84
3.22
28
10
9.08
22
6.5
28
9
22
8
14
50±0.5
50±0.5
5.5
50±0.5
7
12-M6 NUTS
2
162
6
1.
2.
3.
4.
5.
6.
N 7. W
P
8. W
N 9. V
P 10. V
N 11. U
P 12. U
13.
14.
15.
16.
17.
18.
VUPC
UPFO
UP
VUP1
VUNC
UNFO
19.
20.
21.
22.
23.
24.
UN
VUN1
VVPC
VPFO
VP
VVP1
25.
26.
27.
28.
29.
30.
VVNC
VNFO
VN
VVN1
VWPC
WPFO
31.
32.
33.
34.
35.
36.
WP
VWP1
VWNC
WNFO
WN
VWN1
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM300CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
INTERNAL FUNCTIONS BLOCK DIAGRAM
VWNC
WN
VWN1
WNFO
VWPC
WP
WPFO
1.5k
Gnd
In
Fo
Gnd
Si
Out
VWP1
VVNC
VN
1.5k
Vcc
Gnd
OT
In
Gnd
N
Fo
W
OT
P
VVN1
VVPC
VP
1.5k
Vcc
Si Out
VNFO
Gnd
In
Fo
Gnd
Si
Out
VPFO
VVP1
VUNC
UN
UNFO
1.5k
Vcc
OT
N
Gnd
Gnd
In
Fo
V
OT
P
VUPC
UP
UPFO
1.5k
Vcc
Si Out
VUN1
Gnd
In
Fo
Gnd
Si
Out
N
VUP1
1.5k
Vcc
OT
Gnd
Gnd
In
Fo
Vcc
Si Out
U
OT
P
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCES
±IC
±ICP
PC
Tj
Parameter
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
Junction Temperature
Condition
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C
(Note-1)
Ratings
1200
300
600
1562
–20 ~ +150
Unit
V
A
A
W
°C
Ratings
Unit
20
V
20
V
20
V
20
mA
CONTROL PART
Symbol
Parameter
VD
Supply Voltage
VCIN
Input Voltage
VFO
Fault Output Supply Voltage
IFO
Fault Output Current
Condition
Applied between : VUP1-VUPC, VVP1-VVPC, VWP1-VWPC
VUN1-VUNC, VVN1-VVNC, VWN1-VWNC
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN-VUNC, VN-VVNC, WN-VWNC
Applied between : UPFO-VUPC, VPFO-VVPC, WPFO-VWPC
UNFO-VUNC, VNFO-VVNC, WNFO-VWNC
Sink current at UPFO, VPFO, WPFO, UNFO, VNFO, WNFO
terminals
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM300CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
TOTAL SYSTEM
Parameter
Supply Voltage Protected by
VCC(PROT)
SC
VCC(surge) Supply Voltage (Surge)
Storage Temperature
Tstg
Isolation Voltage
Viso
Symbol
Ratings
Condition
VD = 13.5 ~ 16.5V, Inverter Part,
Tj = +125°C Start
Applied between : P-N, Surge value
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
Unit
800
V
1000
–40 ~ +125
2500
V
°C
Vrms
THERMAL RESISTANCES
Symbol
Condition
Parameter
Rth(j-c)Q
Rth(j-c)F
Junction to case Thermal
Resistances
Rth(c-f)
Contact Thermal Resistance
Inverter IGBT (per 1 element)
Inverter FWDi (per 1 element)
Case to fin, (per 1 module)
Thermal grease applied
(Note-1)
(Note-1)
(Note-1)
Min.
—
—
Limits
Typ.
—
—
Max.
0.08
0.13
—
—
0.014
Limits
Typ.
1.8
1.9
2.8
1.0
0.5
0.4
2.3
0.7
—
—
Max.
2.3
2.4
3.9
2.5
0.8
1.0
3.5
1.2
1
10
Unit
°C/W
(Note-1) Tc measurement point is just under the chip.
If you use this value, Rth(f-a) should be measured just under the chips.
Table 1: TC (under the chip) measurement point is below.
arm
axis
X
Y
UP
IGBT FWDi
30.1
19.2
89.4
89.4
VP
IGBT FWDi
80.1
69.2
89.4
89.4
WP
IGBT FWDi
130.1 119.2
89.4
89.4
(Unit : mm)
UN
IGBT FWDi
19.8
30.7
20.6
20.6
7
Name
plate
side
VN
IGBT FWDi
69.8
80.7
20.6
20.6
WN
IGBT FWDi
119.8 130.7
20.6
20.6
13
Bottom
view
Y
X
6
1
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCE(sat)
VEC
ton
trr
tc(on)
toff
tc(off)
ICES
Parameter
Condition
Collector-Emitter
Saturation Voltage
FWDi Forward Voltage
VD = 15V, IC = 300A
VCIN = 0V
(Fig. 1)
–IC = 300A, VD = 15V, VCIN = 15V
Switching Time
VD = 15V, VCIN = 0V↔15V
VCC = 600V, IC = 300A
Tj = 125°C
Inductive Load
Collector-Emitter
Cutoff Current
VCE = VCES, VCIN = 15V
Tj = 25°C
Tj = 125°C
(Fig. 2)
(Fig. 3, 4)
(Fig. 5)
Tj = 25°C
Tj = 125°C
Min.
—
—
—
0.5
—
—
—
—
—
—
Unit
V
V
µs
mA
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM300CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
CONTROL PART
Symbol
Parameter
Condition
V*N1-V*NC
V*P1-V*PC
ID
Circuit Current
VD = 15V, VCIN = 15V
Vth(ON)
Vth(OFF)
SC
Input ON Threshold Voltage
Input OFF Threshold Voltage
Short Circuit Trip Level
Short Circuit Current Delay
Time
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN-VUNC, VN-VVNC, WN-VWNC
(Fig. 3,6)
–20 ≤ Tj ≤ 125°C, VD = 15V
toff(SC)
OT
OTr
UV
UVr
IFO(H)
IFO(L)
tFO
VD = 15V
(Fig. 3,6)
Over Temperature Protection
VD = 15V
Detect Tj of IGBT chip
Supply Circuit Under-Voltage
Protection
–20 ≤ Tj ≤ 125°C
Fault Output Current
VD = 15V, VFO = 15V
(Note-2)
Minimum Fault Output Pulse
Width
VD = 15V
(Note-2)
Trip level
Reset level
Trip level
Reset level
Min.
—
—
1.2
1.7
600
Limits
Typ.
20
20
1.5
2.0
—
Max.
27
27
1.8
2.3
—
Unit
mA
V
A
—
0.2
—
µs
135
—
11.5
—
—
—
145
125
12.0
12.5
—
10
—
—
12.5
—
0.01
15
°C
1.0
1.8
—
V
mA
ms
(Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to
protect it.
MECHANICAL RATINGS AND CHARACTERISTICS
Symbol
—
—
—
Condition
Parameter
Mounting torque
Mounting torque
Weight
Main terminal
Mounting part
screw : M6
screw : M5
—
Min.
3.5
2.5
—
Limits
Typ.
4.0
3.0
1250
Max.
4.5
3.5
—
Unit
N•m
N•m
g
RECOMMENDED CONDITIONS FOR USE
Symbol
VCC
Parameter
Supply Voltage
VD
Control Supply Voltage
VCIN(ON)
VCIN(OFF)
fPWM
Input ON Voltage
Input OFF Voltage
PWM Input Frequency
Arm Shoot-through
Blocking Time
tdead
Condition
Applied across P-N terminals
Applied between : VUP1-VUPC, VVP1-VVPC, VWP1-VWPC
VUN1-VUNC, VVN1-VVNC, VWN1-VWNC
(Note-3)
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN-VUNC, VN-VVNC, WN-VWNC
Using Application Circuit of Fig. 8
For IPM’s each input signals
Recommended value
≤ 800
Unit
V
15 ± 1.5
V
(Fig. 7)
≤ 0.8
≥ 9.0
≤ 20
kHz
≥ 3.0
µs
V
(Note-3) With ripple satisfying the following conditions: dv/dt swing ≤ ±5V/µs, Variation ≤ 2V peak to peak
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM300CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
PRECAUTIONS FOR TESTING
1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corresponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
IN
Fo
VCIN
Ic
V
IN
Fo
VCIN
–Ic
V
(15V)
(0V)
VD (all)
VD (all)
Fig. 1 VCE(sat) Test
Fig. 2 VEC Test
a) Lower Arm Switching
VCIN
(15V)
Fo
Signal input
(Upper Arm)
trr
CS
Fo
Signal input
(Lower Arm)
VCIN
Ic
90%
10%
10%
tc(on)
Fo
Signal input
(Upper Arm)
10%
10%
tc(off)
VCIN
CS
VCIN
(15V)
Ic
90%
VD (all)
b) Upper Arm Switching
VCIN
VCE
Irr
Vcc
Vcc
td(on)
tr
tf
td(off)
Fo
Signal input
(Lower Arm)
(ton= td(on) + tr)
(toff= td(off) + tf)
Ic
VD (all)
Fig. 3 Switching time and SC test circuit
Fig. 4 Switching time test waveform
VCIN
Short Circuit Current
P, (U,V,W)
A
VCIN
(15V)
Constant Current
IN
Fo
SC
Pulse VCE
Ic
VD (all)
U,V,W, (N)
Fo
toff(SC)
Fig. 5 ICES Test
Fig. 6 SC test waveform
IPM’ input signal VCIN
(Upper Arm)
1.5V
0V
IPM’ input signal VCIN
(Lower Arm)
0V
2V
tdead
2V
1.5V
1.5V
tdead
2V
t
t
tdead
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
Fig. 7 Dead time measurement point example
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM300CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
20k
→
VD
≥10µ
VUP1
UPFO
IF
1.5k
Vcc
Fo
UP
OT
OUT
GND GND
U
≥0.1µ
VUN1
UNFO
1.5k
1.5k
VP
1.5k
1.5k
Vcc
Fo
V
M
OT
OUT
Si
N
OT
OUT
P
Si
GND GND
VWN1
1.5k
Vcc
Fo
VWNC
Si
In
VWPC
WN
P
GND GND
WP
WNFO
OT
OUT
In
VWP1
VD
Vcc
Fo
VN
VVNC
VD
Vcc
GND GND
VVN1
WPFO
N
In
VVPC
VD
Si
GND GND
Fo
VNFO
OT
OUT
In
VVP1
VPFO
Vcc
Fo
UN
VUNC
VD
+
–
Si
In
VUPC
VD
P
W
OT
OUT
Si
In
GND GND
N
: Interface which is the same as the U-phase
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
Fast switching opto-couplers: tPLH, tPHL ≤ 0.8µs, Use High CMR type.
Slow switching opto-coupler: CTR > 100%
Use 6 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal.
Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
and improve noise immunity of the system.
•
•
•
•
•
•
•
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM300CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
400
COLLECTOR CURRENT IC (A)
Tj = 25°C
15V
VD = 17V
320
13V
240
160
80
0
0
0.5
1
1.5
2
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
OUTPUT CHARACTERISTICS
(TYPICAL)
2.5
2.5
VD = 15V
2
1.5
1
0.5
Tj = 25°C
Tj = 125°C
0
80
0
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(TYPICAL)
2.5
1.5
1
0.5
IC = 300A
Tj = 25°C
Tj = 125°C
0
12
13
14
15
16
17
400
101
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
7
5
4
3
2
tc(off)
100
7
5
4
3
2
tc(on)
10–1 1
10
18
2
3 4 5 7 102
2
3 4 5 7 103
CONTROL SUPPLY VOLTAGE VD (V)
COLLECTOR CURRENT IC (A)
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
SWITCHING LOSS CHARACTERISTICS
(TYPICAL)
101
SWITCHING TIME ton, toff (µs)
320
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
SWITCHING TIME tc(on), tc(off) (µs)
2
240
COLLECTOR CURRENT IC (A)
7
5
4
3
toff
2
100
ton
7
5
4
3
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
2
10–1 1
10
2
3 4 5 7 102
2
3 4 5 7 103
COLLECTOR CURRENT IC (A)
SWITCHING LOSS ESW(on), ESW(off) (mJ/pulse)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
COLLECTOR-EMITTER VOLTAGE VCE (V)
160
102
7
5
4
3
ESW(on)
2
ESW(on)
101
7 ESW(off)
5
4
3
2
ESW(off)
100 1
10
2
3 4 5 7 102
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
2
3 4 5 7 103
COLLECTOR CURRENT IC (A)
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM300CLA120
103
VD = 15V
Tj = 25°C
Tj = 125°C
7
5
4
3
2
102
7
5
4
3
2
101
0
0.5
1
1.5
2
2.5
3
2
Irr
100
7
5
4
3
2
trr
10–1
3
2
102
7
5
4
3
2
101
7
5
4
3
2
10–2
101
3
Tj = 25°C
Tj = 125°C
Inductive load
2
3 4 5 7 102
2
7
5
4
3
2
100
3 4 5 7 103
EMITTER-COLLECTOR VOLTAGE VEC (V)
COLLECTOR RECOVERY CURRENT –IC (A)
ID VS. fc CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT PART)
100
60
P-side or N-side
VD = 15V
50
Tj = 25°C
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j – c)
CIRCUIT CURRENT ID (mA)
DIODE REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
101
103
VCC = 600V 7
7
5
5
VD = 15V
4
4
40
30
20
10
0
REVERSE RECOVERY CURRENT lrr (A)
DIODE FORWARD CHARACTERISTICS
(TYPICAL)
REVERSE RECOVERY TIME trr (µs)
COLLECTOR RECOVERY CURRENT –IC (A)
FLAT-BASE TYPE
INSULATED PACKAGE
0
5
10
15
20
25
CARRIER FREQUENCY fc (kHz)
7
5
3
2
10–1
7
5
3
2
10–2
7
5
3
Single Pulse
2
Per unit base = Rth(j – c)Q = 0.08°C/W
10–3 –5
10 2 3 5 710–4 2 3 5 710–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101
TIME (s)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi PART)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j – c)
100
7
5
3
2
10–1
7
5
3
2
10–2
7
5
3
Single Pulse
2
Per unit base = Rth(j – c)F = 0.13°C/W
10–3 –5
10 2 3 5 710–4 2 3 5 710–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101
TIME (s)
Jul. 2005