MITSUBISHI PM75RSE060

MITSUBISHI
MITSUBISHI
<INTELLIGENT
<INTELLIGENT
POWER
POWER
MODULES>
MODULES>
PM75RSE060
PM75RSE060
FLAT-BASE
FLAT-BASE
TYPE
TYPE
INSULATED
INSULATED
PACKAGE
PACKAGE
PM75RSE060
FEATURE
a) Adopting new 4th generation planar IGBT chip, which performance is improved by 1µm fine rule process.
For example, typical VCE(sat)=1.7V
b) Using new Diode which is designed to get soft reverse
recovery characteristics.
• 3φ 75A, 600V Current-sense IGBT for 15kHz switching
• 30A, 600V Current-sense regenerative brake IGBT
• Monolithic gate drive & protection logic
• Detection, protection & status indication circuits for overcurrent, short-circuit, over-temperature & under-voltage
• Acoustic noise-less 5.5/7.5kW class inverter application
• UL Recognized
Yellow Card No.E80276(N)
File No.E80271
APPLICATION
General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES
Dimensions in mm
110±1
95±0.5
2-2.54 2-2.54 2-2.54
6-2.54
17.02
10.16 10.16 10.16
Screwing depth
Min9.0
4-φ5.5
MOUNTING HOLES
3.22
Terminal code
PBT
78 9
N
φ2.54
10
V
0.5±0.3
24.5
4-R6
26
26
21.2
+1.0
6-M5NUTS
0.64
2-2.54
0.64
2-φ2.54
4
LABEL
22
19.4
A : DETAIL
31.6
32.6
1.6
16-
3.22
22 –0.5
67.4
A
VN1
Br
UN
VN
WN
FO
U
11.6
W
11.
12.
13.
14.
15.
16.
4.5
17.5
12
VUPC
UP
VUP1
VVPC
VP
VVP1
VWPC
WP
VWP1
VNC
10.6
P
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
10 12 14 16
11 13 15
74±0.5
4 56
89±1
17
20
B
20
2±0.5
123
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75RSE060
FLAT-BASE TYPE
INSULATED PACKAGE
INTERNAL FUNCTIONS BLOCK DIAGRAM
Rfo=1.5kΩ
WP
Br
Fo
VNC W N
VN1
VN
UN
VWP1
VWPC
VP
VVP1
VVPC
UP
VUP1
VUPC
Rfo
Gnd In
Gnd
Fo Vcc
Gnd In
Gnd
Si Out
Fo Vcc Gnd In
Si Out
Gnd
Fo Vcc
Si Out
Gnd In
Gnd
Fo Vcc
Si Out
Gnd In
Gnd
Vcc
Si Out
Gnd In
Gnd
Vcc Gnd In
Si Out
Gnd
Vcc
Si Out
Th
B
N
W
V
U
P
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCES
±IC
±ICP
PC
Tj
Parameter
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
Junction Temperature
Condition
Ratings
600
75
150
255
–20 ~ +150
Unit
V
A
A
W
°C
Condition
Ratings
600
30
60
176
600
30
–20 ~ +150
Unit
V
A
A
W
V
A
°C
Ratings
Unit
20
V
20
V
20
20
V
mA
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C
BRAKE PART
Symbol
VCES
IC
ICP
PC
VR(DC)
IF
Tj
Parameter
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
FWDi Rated DC Reverse Voltage
FWDi Forward Current
Junction Temperature
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C
TC = 25°C
TC = 25°C
CONTROL PART
Symbol
Parameter
VD
Supply Voltage
VCIN
Input Voltage
VFO
IFO
Fault Output Supply Voltage
Fault Output Current
Condition
Applied between : VUP1-VUPC
VVP1-VVPC, VWP1-VWPC, VN1-VNC
Applied between : UP-VUPC, VP-VVPC
WP-VWPC, UN • VN • WN • Br-VNC
Applied between : FO-VNC
Sink current at FO terminal
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75RSE060
FLAT-BASE TYPE
INSULATED PACKAGE
TOTAL SYSTEM
Parameter
Supply Voltage Protected by
VCC(PROT)
OC & SC
VCC(surge) Supply Voltage (Surge)
Module Case Operating
TC
Temperature
Storage Temperature
Tstg
Isolation Voltage
Viso
Symbol
Ratings
Condition
VD = 13.5 ~ 16.5V, Inverter Part,
Tj = 125°C Start
Unit
400
V
500
V
(Note-1)
–20 ~ +100
°C
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
–40 ~ +125
2500
°C
Vrms
Applied between : P-N, Surge value or without switching
PBT
(Note-1) Tc measurement point is as shown below. (Base plate depth 3mm)
B
P
N
W
V
63mm
U
Tc
THERMAL RESISTANCES
Symbol
Rth(j-c)Q
Rth(j-c)F
Rth(j-c)Q
Rth(j-c)F
Rth(j-c’)Q
Rth(j-c’)F
Rth(j-c’)Q
Rth(j-c’)F
Rth(c-f)
Parameter
Junction to case Thermal
Resistances
Contact Thermal Resistance
Test Condition
Inverter IGBT part (per 1 element), (Note-1)
Inverter FWDi part (per 1 element), (Note-1)
Brake IGBT part, (Note-1)
Brake FWDi part, (Note-1)
Inverter IGBT part (per 1 element), (Note-2)
Inverter FWDi part (per 1 element), (Note-2)
Brake IGBT part, (Note-2)
Brake FWDi part, (Note-2)
Case to fin, Thermal grease applied (per 1 module)
Min.
—
—
—
—
—
—
—
—
—
Limits
Typ.
—
—
—
—
—
—
—
—
—
Max.
0.49
1.38
0.71
1.66
0.30
0.47
0.45
0.96
0.027
Min.
—
—
—
0.8
—
—
—
—
—
—
Limits
Typ.
1.7
1.7
2.2
1.2
0.15
0.4
2.4
0.6
—
—
Max.
2.3
2.3
3.3
2.4
0.3
1.0
3.3
1.2
1
10
Unit
°C/W
(Note-2) TC measurement point is just under the chips.
If you use this value, Rth(f-a) should be measured just under the chips.
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCE(sat)
VEC
ton
trr
tc(on)
toff
tc(off)
ICES
Parameter
Test Condition
Collector-Emitter
Saturation Voltage
FWDi Forward Voltage
VD = 15V, IC = 75A
VCIN = 0V, Pulsed
(Fig. 1)
–IC = 75A, VD = 15V, VCIN = 15V
Switching Time
VD = 15V, VCIN = 15V↔0V
VCC = 300V, IC = 75A
Tj = 125°C
Inductive Load (upper and lower arm)
Collector-Emitter
Cutoff Current
VCE = VCES, VCIN = 15V
(Fig. 4)
Tj = 25°C
Tj = 125°C
(Fig. 2)
(Fig. 3)
Tj = 25°C
Tj = 125°C
Unit
V
V
µs
mA
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75RSE060
FLAT-BASE TYPE
INSULATED PACKAGE
BRAKE PART
Symbol
VCE(sat)
VFM
ICES
Test Condition
Parameter
Collector-Emitter
Saturation Voltage
FWDi Forward Voltage
Collector-Emitter
Cutoff Current
VD = 15V, IC = 30A
VCIN = 0V, Pulsed
IF = 30A
(Fig. 1)
VCE = VCES, VCIN = 15V
(Fig. 4)
Tj = 25°C
Tj = 125°C
(Fig. 2)
Tj = 25°C
Tj = 125°C
Min.
—
—
—
—
—
Limits
Typ.
1.8
1.9
2.5
—
—
Max.
2.5
2.6
3.5
1
10
Min.
—
—
1.2
1.7
—
192
115
Limits
Typ.
44
13
1.5
2.0
—
226
—
Max.
60
18
1.8
2.3
380
320
—
53
—
—
—
—
111
—
11.5
—
—
—
241
79
10
118
100
12.0
12.5
—
10
—
—
—
125
—
12.5
—
0.01
15
1.0
1.8
—
Min.
2.5
2.5
—
Limits
Typ.
3.0
3.0
560
Unit
V
V
mA
CONTROL PART
Symbol
Parameter
Test Condition
VN1-VNC
VXP1-VXPC
ID
Circuit Current
VD = 15V, VCIN = 15V
Vth(ON)
Vth(OFF)
Input ON Threshold Voltage
Input OFF Threshold Voltage
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN • Br-VNC
Over Current Trip Level
OC
Inverter part
VD = 15V
(Fig. 5,6)
Break part
–20 ≤ Tj ≤ 125°C, VD = 15V
SC
Short Circuit Trip Level
–20≤ Tj ≤ 125°C, VD = 15V
toff(OC)
OT
OTr
UV
UVr
IFO(H)
IFO(L)
Over Current Delay Time
VD = 15V
Base-plate
Temperature detection, VD = 15V
tFO
Over Temperature Protection
(Fig. 5,6)
Tj = –20°C
Tj = 25°C
Tj = 125°C
(Fig. 5,6)
Inverter part
Brake part
(Fig. 5,6)
Trip level
Reset level
Trip level
Reset level
Supply Circuit Under-Voltage
Protection
–20 ≤ Tj ≤ 125°C
Fault Output Current
VD = 15V, VFO = 15V
(Note-3)
Minimum Fault Output Pulse
Width
VD = 15V
(Note-3)
(Note-3) Fault
Fault
Fault
Fault
output
output
output
output
39
Unit
mA
V
A
A
µs
°C
V
mA
ms
is given only when the internal OC, SC, OT & UV protection.
of OT protection operate by lower arm.
of OC, SC protection given pulse.
of OT, UV protection given pulse while over level.
MECHANICAL RATINGS AND CHARACTERISTICS
Symbol
—
—
—
Test Condition
Parameter
Mounting torque
Mounting torque
Weight
Main terminal
Mounting part
screw : M5
screw : M5
—
Max.
3.5
3.5
—
Unit
N•m
N•m
g
RECOMMENDED CONDITIONS FOR USE
Symbol
VCC
Parameter
Supply Voltage
VD
Control Supply Voltage
VCIN(ON)
VCIN(OFF)
Input ON Voltage
Input OFF Voltage
fPWM
PWM Input Frequency
tdead
Arm Shoot-through
Blocking Time
Test Condition
Applied across P-N terminals
Applied between : VUP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC
(Note-4)
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN • Br-VNC
Using Application Circuit input signal of IPM, 3φ
sinusoidal PWM VVVF inverter
(Fig. 8)
For IPM’s each input signals
(Fig. 7)
Recommended value
≤ 400
Unit
V
15 ± 1.5
V
≤ 0.8
≥ 4.0
V
≤ 20
kHz
≥ 2.5
µs
(Note-4) Allowable Ripple rating of Control Voltage : dv/dt ≤ ±5V/µs, 2Vp-p
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75RSE060
FLAT-BASE TYPE
INSULATED PACKAGE
PRECAUTIONS FOR TESTING
1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corresponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “OC” and “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not
be allowed to rise above VCES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
P, (U,V,W,B)
IN
(Fo)
VCIN
P, (U,V,W)
Ic
V
IN
(Fo)
VCIN
–Ic
V
(15V)
(0V)
VD (all)
U,V,W, (N)
VD (all)
Fig. 1 VCE(sat) Test
U,V,W,B, (N)
Fig. 2 VEC, (VFM) Test
a) Lower Arm Switching
P
VCIN
(15V)
trr
Signal input
(Upper Arm)
CS
VCIN
Signal input
(Lower Arm)
VCE
Irr
U,V,W
Ic
Vcc
Fo
90%
90%
N
VD (all)
b) Upper Arm Switching
Ic
10%
10%
10%
10%
P
tc (on)
VCIN
Signal input
(Upper Arm)
CS
VCIN
(15V)
Signal input
(Lower Arm)
tc (off)
VCIN
U,V,W
Vcc
td (on)
tr
td (off)
tf
Fo
(ton= td (on) + tr)
(toff= td (off) + tf)
N
Ic
VD (all)
Fig. 3 Switching time Test circuit and waveform
P, (U,V,W,B)
A
VCIN
(15V)
VCIN
IN
(Fo)
Pulse VCE
VD (all)
Over Current
U,V,W, (N)
OC
IC
toff (OC)
Fig. 4 ICES Test
P, (U,V,W,B)
Constant Current
Short Circuit Current
IN
(Fo)
Constant Current
VCC
SC
VCIN
IC
VD (all)
U,V,W, (N)
IC
Fig. 5 OC and SC Test
Fig. 6 OC and SC Test waveform
P
VD
VCINP
U,V,W
Vcc
VD
VCINN
N
Ic
VCINP
0V
t
VCINN
0V
t
tdead
tdead
tdead
Fig. 7 Dead time measurement point example
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75RSE060
FLAT-BASE TYPE
INSULATED PACKAGE
P
≥10µ
20k
VUP1
Vcc
→
VD
IF
OUT
+
–
Si
UP
In
VUPC
U
GND GND
≥0.1µ
VVP1
VD
Vcc
Si
VP
In
VVPC
V
GND GND
VWP1
VD
OUT
Vcc
M
OUT
Si
WP
In
VWPC
W
GND GND
20k
→
Vcc
≥10µ
IF
Fo
UN
OUT
Si
In
GND GND
≥0.1µ
N
TEMP
20k
→
Vcc
≥10µ
IF
Fo
VN
Th
OUT
Si
In
GND GND
≥0.1µ
20k
→
VD
VN1
Vcc
≥10µ
IF
Fo
WN
≥0.1µ
In
GND GND
VNC
4.7k
1k
B
Vcc
Fo
Br
5V
OUT
Si
Fo
In
Rfo
OUT
Si
GND GND
: Interface which is the same as the U-phase
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
Quick opto-couplers: TPLH, TPLH ≤ 0.8µs. Use High CMR type. The line between opto-coupler and intelligent module
should be shortened as much as possible to minimize the floating capacitance.
Slow switching opto-coupler: recommend to use at CTR = 100 ~ 200%, Input current = 8 ~ 10mA, to work in active.
Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal.
Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
and improve noise immunity of the system.
•
•
•
•
•
•
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75RSE060
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES (Inverter Part)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
100
15V
80
60
13V
40
20
0
0.5
0
1
1.5
2
VD = 15V
1.5
1
0.5
Tj = 25°C
Tj = 125°C
0
20
0
40
60
80
100
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(TYPICAL)
2
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
1.5
1
0.5
IC = 75A
Tj = 25°C
Tj = 125°C
0
12
13
14
15
16
17
101
7 VCC = 300V
5 VD = 15V
Tj = 25°C
4
Tj = 125°C
3
2 Inductive load
100
7
5
4
3
2
10–1 1
10
18
tc(off)
tc(on)
tc(off)
tc(on)
2
3 4 5 7 102
2
3 4 5 7 103
CONTROL SUPPLY VOLTAGE VD (V)
COLLECTOR CURRENT IC (A)
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
SWITCHING LOSS CHARACTERISTICS
(TYPICAL)
101
SWITCHING TIME ton, toff (µs)
2
COLLECTOR-EMITTER VOLTAGE VCE (V)
SWITCHING TIME tc(on), tc(off) (µs)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
VD = 17V
7
5
4
3
toff
2
ton
100
7
5
4
3
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
2
10–1 1
10
2
3 4 5 7 102
2
3 4 5 7 103
COLLECTOR CURRENT IC (A)
SWITCHING LOSS ESW(on), ESW(off) (mJ/pulse)
COLLECTOR CURRENT IC (A)
Tj = 25°C
101
7
5
4
3
ESW(off)
2
100
7
5
4
3
ESW(on)
2
10–1 1
10
2
3 4 5 7 102
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
2
3 4 5 7 103
COLLECTOR CURRENT IC (A)
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75RSE060
VD = 15V
7
5
4
3
2
101
7
5
4
3
2
100
Tj = 25°C
Tj = 125°C
0
1
1.5
2
7
5
4
3
10–1
trr
7
5
4
3
2
101
7
5
4
3
2
10–2 1
10
2.5
Irr
2
7
5
4
3
2
VCC = 300V
VD = 15V
Tj = 25°C
2
Tj = 125°C
Inductive load
100
3 4 5 7 102
2 3 4 5 7 103
EMITTER-COLLECTOR VOLTAGE VEC (V)
COLLECTOR RECOVERY CURRENT –IC (A)
ID VS. fc CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT PART)
100
CIRCUIT CURRENT ID (mA)
0.5
DIODE REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
100
102
101
VD = 15V
Tj = 25°C
80
60
N-side
40
20
0
P-side
0
5
REVERSE RECOVERY CURRENT lrr (A)
102
REVERSE RECOVERY TIME trr (µs)
DIODE FORWARD CHARACTERISTICS
(TYPICAL)
10
15
20
25
CARRIER FREQUENCY fc (kHz)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j – c)
COLLECTOR RECOVERY CURRENT –IC (A)
FLAT-BASE TYPE
INSULATED PACKAGE
7
5
3
2
100
7
5
3
2
10–1
7
5
3
2
10–2
7
5
3 Single Pulse
2 Per unit base = Rth(j – c)Q = 0.49°C/W
10–3
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101
TIME (s)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi PART)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j – c)
101
7
5
3
2
100
7
5
3
2
10–1
7
5
3
2
10–2
7
5
3 Single Pulse
2 Per unit base = Rth(j – c)F = 1.38°C/W
10–3
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101
TIME (s)
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75RSE060
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES (Brake Part)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
40
COLLECTOR CURRENT IC (A)
Tj = 25°C
15V
30
VD = 17V
13V
20
10
0
0
0.5
1
1.5
2
2.5
2
1.5
1
0
2.5
VD = 15V
Tj = 25°C
Tj = 125°C
0.5
0
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(TYPICAL)
2.5
2
1.5
1
0.5
IC = 30A
Tj = 25°C
Tj = 125°C
0
12
13
14
15
16
17
18
30
40
DIODE FORWARD CHARACTERISTICS
(TYPICAL)
102
VD = 15V
Tj = 25°C
Tj = 125°C
7
5
4
3
2
101
7
5
4
3
2
100
0
0.5
1
1.5
2
2.5
3
CONTROL SUPPLY VOLTAGE VD (V)
EMITTER-COLLECTOR VOLTAGE VEC (V)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT PART)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi PART)
101
7
5
3
2
100
7
5
3
2
10–1
7
5
3
2
10–2
7
5
3 Single Pulse
2 Per unit base = Rth(j – c)Q = 0.71°C/W
10–3
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101
TIME (s)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j – c)
101
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j – c)
20
COLLECTOR CURRENT IC (A)
COLLECTOR RECOVERY CURRENT –IC (A)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
COLLECTOR-EMITTER VOLTAGE VCE (V)
10
7
5
3
2
100
7
5
3
2
10–1
7
5
3
2
10–2
7
5
3 Single Pulse
2 Per unit base = Rth(j – c)F = 1.66°C/W
10–3
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101
TIME (s)
Jul. 2005