MITSUBISHI PM75CL1A060

MITSUBISHI <INTELLIGENT POWER MODULES>
PM75CL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
PM75CL1A060
FEATURE
Inverter + Drive & Protection IC
a) Adopting new 5th generation Full-Gate CSTBTTM chip
b) The over-temperature protection which detects the chip surface temperature of CSTBTTM is adopted.
c) Error output signal is possible from all each protection upper and lower arm of IPM.
d) Compatible L-series package.
• 3φ 75A, 600V Current-sense and temperature sense
IGBT type inverter
• Monolithic gate drive & protection logic
• Detection, protection & status indication circuits for, shortcircuit, over-temperature & under-voltage (P-FO available
from upper arm devices)
• UL Recognized
APPLICATION
General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES
Dimensions in mm
L A B E L
11
120
106
7
19.75
3.25
66.5
16
3-2
16
3-2
16
3-2
1
5
9
16
2-φ5.5
MOUNTING HOLES
15.25
6-2
3
2-φ2.5
19
14.5
V
W
11.75
6-M5 NUTS
U
(13.5)
B
32
13
27.5
P
17.5
55
N
17.5
12
(19.75)
10.75
12
32.75
23
23
23
22 +– 10.5
Terminal code
3.15
13
(7)
(SCREWING DEPTH)
12
19-■0.5
1.
2.
3.
4.
5.
6.
7.
VUPC
UFO
UP
VUP1
VVPC
VFO
VP
8.
9.
10.
11.
12.
13.
14.
VVP1
VWPC
WFO
WP
VWP1
VNC
VN1
15.
16.
17.
18.
19.
NC
UN
VN
WN
Fo
May 2009
1
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75CL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
INTERNAL FUNCTIONS BLOCK DIAGRAM
NC Fo
VNC WN
VN1
WP
VWP1
VWPC WFO
UN
VN
1.5k
VP
VVPC
1.5k
Gnd In
Gnd
Fo Vcc
Si Out
OT
Gnd In
Gnd
Fo Vcc
Si Out
NC
OT
Gnd In
Gnd
Fo Vcc
Si Out
OT
N
Gnd In
Gnd
UP
VUPC
1.5k
Fo Vcc
Si Out
VVP1
VFO
OT
W
Gnd In
Gnd
V
1.5k
Fo Vcc
Si Out
VUP1
UFO
Gnd In
OT
Gnd
Fo Vcc
Si Out
U
OT
P
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCES
±IC
±ICP
PC
Tj
Parameter
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
Junction Temperature
Condition
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C
(Note-1)
(Note-1)
Ratings
600
75
150
337
–20 ~ +150
Unit
V
A
A
W
°C
Ratings
Unit
20
V
20
V
20
V
20
mA
*: Tc measurement point is just under the chip.
CONTROL PART
Symbol
Parameter
VD
Supply Voltage
VCIN
Input Voltage
VFO
Fault Output Supply Voltage
IFO
Fault Output Current
Condition
Applied between : VUP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN-VNC
Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC
FO-VNC
Sink current at UFO, VFO, WFO, FO terminals
May 2009
2
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75CL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
TOTAL SYSTEM
Parameter
Supply Voltage Protected by
VCC(PROT)
SC
VCC(surge) Supply Voltage (Surge)
Storage Temperature
Tstg
Isolation Voltage
Viso
Symbol
Ratings
Condition
VD = 13.5 ~ 16.5V
Inverter Part, Tj = +125°C Start
Applied between : P-N, Surge value
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
Unit
400
V
500
–40 ~ +125
2500
V
°C
Vrms
THERMAL RESISTANCES
Symbol
Condition
Parameter
Rth(j-c)Q
Rth(j-c)F
Junction to case Thermal
Resistances
Rth(c-f)
Contact Thermal Resistance
Inverter IGBT part (per 1 element)
Inverter FWDi part (per 1 element)
Case to fin, (per 1 module)
Thermal grease applied
(Note-1)
(Note-1)
(Note-1)
Min.
—
—
Limits
Typ.
—
—
Max.
0.37
0.63
—
—
0.038
Limits
Typ.
1.75
1.75
1.7
0.8
0.4
0.4
1.0
0.3
—
—
Max.
2.35
2.35
2.8
2.0
0.8
1.0
2.3
1.0
1
10
Unit
°C/W
* If you use this value, Rth(f-a) should be measured just under the chips.
(Note-1) Tc (under the chip) measurement point is below.
arm
axis
X
Y
UP
IGBT FWDi
27.9
27.9
0.2
–6.2
VP
IGBT FWDi
66.2
66.2
0.2
–6.2
WP
IGBT FWDi
85.8
85.8
0.2
–6.2
(unit : mm)
UN
IGBT FWDi
37.4
37.4
–0.8
5.4
VN
IGBT FWDi
56.1
56.1
–0.8
5.4
WN
IGBT FWDi
74.7
74.7
–0.8
5.4
Bottom view
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCE(sat)
VEC
ton
trr
tc(on)
toff
tc(off)
ICES
Condition
Parameter
Collector-Emitter Saturation
Voltage
FWDi Forward Voltage
VD = 15V, IC = 75A
VCIN = 0V, Pulsed
(Fig. 1)
–IC = 75A, VD = 15V, VCIN = 15V
Switching Time
VD = 15V, VCIN = 0V↔15V
VCC = 300V, IC = 75A
Tj = 125°C
Inductive Load
Collector-Emitter Cutoff
Current
VCE = VCES, VD = 15V
Tj = 25°C
Tj = 125°C
(Fig. 2)
(Fig. 3,4)
(Fig. 5)
Tj = 25°C
Tj = 125°C
Min.
—
—
—
0.3
—
—
—
—
—
—
Unit
V
V
µs
mA
May 2009
3
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75CL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
CONTROL PART
Symbol
Parameter
Condition
VN1-VNC
V*P1-V*PC
ID
Circuit Current
VD = 15V, VCIN = 15V
Vth(ON)
Vth(OFF)
SC
Input ON Threshold Voltage
Input OFF Threshold Voltage
Short Circuit Trip Level
Short Circuit Current Delay
Time
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN-VNC
(Fig. 3,6)
–20 ≤ Tj ≤ 125°C, VD = 15V
Over Temperature Protection
Detect Temperature of IGBT chip
Supply Circuit Under-Voltage
Protection
–20 ≤ Tj ≤ 125°C
Fault Output Current
VD = 15V, VCIN = 15V
(Note-2)
Minimum Fault Output Pulse
Width
VD = 15V
(Note-2)
toff(SC)
OT
OT(hys)
UV
UVr
IFO(H)
IFO(L)
tFO
VD = 15V
(Fig. 3,6)
Trip level
Hysteresis
Trip level
Reset level
Min.
—
—
1.2
1.7
150
Limits
Typ.
6
2
1.5
2.0
—
Max.
12
4
1.8
2.3
—
—
0.2
—
µs
135
—
11.5
—
—
—
—
20
12.0
12.5
—
10
—
—
12.5
—
0.01
15
°C
1.0
1.8
—
Unit
mA
V
A
V
mA
ms
(Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to
protect it.
MECHANICAL RATINGS AND CHARACTERISTICS
Condition
Parameter
Symbol
—
Mounting torque
—
Weight
Mounting part
Main terminal part
screw : M5
screw : M5
—
Min.
2.5
2.5
—
Limits
Typ.
3.0
3.0
380
Max.
3.5
3.5
—
Unit
N•m
g
RECOMMENDED CONDITIONS FOR USE
Symbol
VCC
Parameter
Supply Voltage
VD
Control Supply Voltage
VCIN(ON)
VCIN(OFF)
fPWM
Input ON Voltage
Input OFF Voltage
PWM Input Frequency
Arm Shoot-through Blocking
Time
tdead
Condition
Applied across P-N terminals
Applied between : VUP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC
(Note-3)
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN-VNC
Using Application Circuit of Fig. 8
For IPM’s each input signals
Recommended value
≤ 400
Unit
V
15.0 ± 1.5
V
(Fig. 7)
≤ 0.8
≥ 9.0
≤ 20
kHz
≥ 2.0
µs
V
(Note-3) With ripple satisfying the following conditions: dv/dt swing ≤ ±5V/µs, Variation ≤ 2V peak to peak
≤ ± 5V/µs
≤ 2V
15V
GND
May 2009
4
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75CL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
PRECAUTIONS FOR TESTING
1. Before applying any control supply voltage (VD), the input terminals should be pulled up by resistors, etc. to their corresponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
P, (U,V,W)
IN
Fo
VCIN
P, (U,V,W)
Ic
V
IN
Fo
VCIN
–Ic
V
(15V)
(0V)
U,V,W, (N)
VD (all)
U,V,W, (N)
VD (all)
Fig. 1 VCE(sat) Test
Fig. 2 VEC, (VFM) Test
a) Lower Arm Switching
P
Fo
VCIN
(15V)
trr
Signal input
(Upper Arm)
CS
Ic
Irr
Vcc
Fo
Signal input
(Lower Arm)
VCIN
VCE
U,V,W
90%
90%
N
VD (all)
b) Upper Arm Switching
Ic
10%
10%
tc(on)
P
10%
10%
tc(off)
Fo
Signal input
(Upper Arm)
VCIN
VCIN
U,V,W
CS
VCIN
(15V)
Vcc
td(on)
tr
tf
td(off)
Fo
Signal input
(Lower Arm)
(ton = td(on) + tr)
(toff = td(off) + tf)
N
Ic
VD (all)
Fig. 3 Switching time and SC test circuit
Fig. 4 Switching time test waveform
VCIN
Short Circuit Current
P, (U,V,W)
A
VCIN
(15V)
Constant Current
IN
Fo
SC Trip
Pulse VCE
Ic
VD (all)
U,V,W, (N)
Fo
toff(SC)
Fig. 5 ICES Test
Fig. 6 SC test waveform
IPM’ input signal VCIN
(Upper Arm)
0V
2V
1.5V
0V
IPM’ input signal VCIN
(Lower Arm)
2V
1.5V
1.5V
tdead
2V
tdead
t
t
tdead
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
Fig. 7 Dead time measurement point example
May 2009
5
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75CL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
P
20k ≥10µ
VUP1
→
VD
UFo
IF
1.5k
UP
OT
OUT
Vcc
Fo
VUPC
+
–
Si
In
U
GND GND
≥0.1µ
VVP1
VFo
VD
VP
Si
V
GND GND
VWP1
VD
Fo
In
VVPC
WFo
OT
OUT
Vcc
1.5k
1.5k
WP
OT
OUT
Vcc
Fo
Si
In
VWPC
W
GND GND
20k
→
OT
Vcc
≥10µ
OUT
Si
Fo
IF
UN
In
GND GND
≥0.1µ
20k
→
M
N
OT
Vcc
≥10µ
IF
OUT
Si
Fo
VN
In
GND GND
≥0.1µ
20k
→
VD
VN1
IF
OUT
Si
Fo
WN
≥0.1µ
OT
Vcc
≥10µ
In
GND GND
VNC
NC
NC
5V
1k
Fo
1.5k
: Interface which is the same as the U-phase
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
Fast switching opto-couplers: tPLH, tPHL ≤ 0.8µs, Use High CMR type.
Slow switching opto-coupler: CTR > 100%
Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal.
Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
and improve noise immunity of the system.
•
•
•
•
•
•
•
May 2009
6
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75CL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT IC (A)
100
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
OUTPUT CHARACTERISTICS
(TYPICAL)
Tj = 25°C
90
15V
80
VD = 17V
70
60
13V
50
40
30
20
10
0
0.5
0
1.0
1.5
2.0
1.6
1.4
1.2
1.0
0.8
0.6
0.4
Tj = 25°C
Tj = 125°C
0.2
0
2.0
VD = 15V
1.8
20
0
2.2
2.0
1.8
1.6
1.4
1.0
12
SWITCHING TIME ton, toff (µs)
COLLECTOR RECOVERY CURRENT –IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(TYPICAL)
2.4
IC = 75A
Tj = 25°C
Tj = 125°C
1.2
13
14
15
16
17
60
80
100
COLLECTOR CURRENT IC (A)
18
DIODE FORWARD CHARACTERISTICS
(TYPICAL)
103
VD = 15V
7
5
3
2
102
7
5
3
2
101
7
5
3
2
100
Tj = 25°C
Tj = 125°C
0
0.5
1.0
1.5
2.0
2.5
CONTROL VOLTAGE VD (V)
EMITTER-COLLECTOR VOLTAGE VEC (V)
SWITCHING TIME (ton, toff) CHARACTERISTICS
(TYPICAL)
101
VCC = 300V
7
VD = 15V
5
Tj = 25°C
4
Tj = 125°C
3
Inductive load
SWITCHING TIME (tc(on), tc(off)) CHARACTERISTICS
(TYPICAL)
100
SWITCHING TIME tc(on), tc(off) (µs)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
COLLECTOR-EMITTER VOLTAGE VCE (V)
40
2
100
toff
7
5
4
3
ton
2
10–1 0
10
2
3 4 5 7 101
2
7
5
4
3
2
tc(on)
10–1
COLLECTOR CURRENT IC (A)
tc(off)
7
5
4
3
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
2
10–2 0
10
3 4 5 7 102
tc(off)
2
3 4 5 7 101
2
3 4 5 7 102
COLLECTOR CURRENT IC (A)
May 2009
7
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75CL1A060
2.0
1.5
Eoff
1.0
0.5
0
0
20
40
60
80
DIODE REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
1.0
50
VCC = 300V
0.9 VD = 15V
45
j
=
25°C
T
0.8
40
Tj = 125°C
0.7 Inductive load
35
Irr
0.5
25
20
0.4
0.3
15
trr
0.2
10
0.1
5
0
100
30
0.6
20
0
40
60
80
0
100
COLLECTOR REVERSE CURRENT –IC (A)
SWITCHING RECOVERY LOSS CHARACTERISTICS
(TYPICAL)
1.8
VCC = 300V
1.6 VD = 15V
Tj = 25°C
1.4
Tj = 125°C
1.2 Inductive load
ID VS. fc CHARACTERISTICS
(TYPICAL)
30
N-side
ID (mA)
20
1.0
0.8
0.6
15
10
P-side
0.4
5
0.2
0
0
20
40
60
80
0
100
0
5
10
15
20
25
COLLECTOR REVERSE CURRENT –IC (A)
fc (kHz)
UV TRIP LEVEL VS. Tj CHARACTERISTICS
(TYPICAL)
20
UVt
18
UVr
16
SC TRIP LEVEL VS. Tj CHARACTERISTICS
(TYPICAL)
2.0
VD = 15V
1.8
14
UVt /UVr (V)
VD = 15V
Tj = 25°C
Tj = 125°C
25
SC
(SC of Tj = 25°C is normalized 1)
SWITCHING LOSS Err (mJ/pulse)
COLLECTOR CURRENT IC (A)
REVERSE RECOVERY CURRENT lrr (A)
SWITCHING LOSS CHARACTERISTICS
(TYPICAL)
4.0
VCC = 300V
Eon
3.5 VD = 15V
Tj = 25°C
Tj = 125°C
3.0
Inductive load
2.5
REVERSE RECOVERY TIME trr (µs)
SWITCHING LOSS Eon, Eoff (mJ/pulse)
FLAT-BASE TYPE
INSULATED PACKAGE
12
10
8
6
4
2
0
–50
0
50
100
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
–50
150
0
50
100
150
Tj (°C)
Tj (°C)
May 2009
8
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75CL1A060
FLAT-BASE TYPE
INSULATED PACKAGE
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(TYPICAL)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j-c)
100
7
5
3
2
10–1
7
5
3
2
10–2 Single Pulse
7
5 IGBT part;
3 Per unit base = Rth(j-c)Q = 0.37°C/ W
2 FWDi part;
Per unit base = Rth(j-c)F = 0.63°C/ W
10–3 –5
10 2 3 5 710–4 2 3 5 710–32 3 5 710–2 2 3 5 710–12 3 5 7100 2 3 5 7101
TIME t (sec)
May 2009
9