TI TLV2461CP

TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
D
D
D
D
D
D
D
D
D
D
D
D
TLV2460
DBV PACKAGE
(TOP VIEW)
Input Common-Mode Range Exceeds Both
Supply Rails . . . – 0.2V to VDD+ + 0.2V
Gain Bandwidth Product . . . 6.4MHz
Supply Current . . . 500µA/channel
Input Offset Voltage . . . 100 µV
Input Noise Voltage . . . 11nV/√Hz
Rail-to-Rail Output Swing
Slew Rate . . . 1.6 V/µs
± 90mA Output Drive Capability
Micropower Shutdown Mode
(TLV2460/3/5) . . . 0.3 µA/channel
Available in 5- or 6-pin SOT23 and
8- or 10-Pin MSOP
Characterized From TA = –40°C to 125°C
Universal Op Amp EVM
OUT
1
6
VDD+
GND
2
5
SHDN
IN+
3
4
IN –
description
The TLV246x is a family of low-power rail-to-rail input/output operational amplifiers specifically designed for
portable applications. The input common-mode voltage range extends beyond the supply rails for maximum
dynamic range in low-voltage systems. The amplifier output has rail-to-rail performance with high-output-drive
capability, solving one of the limitations of older rail-to-rail input/output operational amplifiers. This rail-to-rail
dynamic range and high output drive make the TLV246x ideal for buffering analog-to-digital converters.
The operational amplifier has 6.4 MHz of bandwidth and 1.6 V/µs of slew rate with only 500 µA of supply current,
providing good ac performance with low power consumption. Three members of the family offer a shutdown
terminal, which places the amplifier in an ultra-low supply current mode (IDD = 0.3 µA/ch). While in shutdown,
the operational-amplifier output is placed in a high-impedance state. DC applications are also well served with
an input noise voltage of 11 nV/√Hz and input offset voltage of 100 µV.
This family is available in the low-profile SOT23, MSOP, and TSSOP packages. The TLV2460 is the first
rail-to-rail input/output operational amplifier with shutdown available in the 6-pin SOT23, making it perfect for
high-density circuits. The family is specified over an expanded temperature range (TA = – 40°C to 125°C) for
use in industrial control and automotive systems.
FAMILY PACKAGE TABLE
DEVICE
NO OF Ch
NO.
PACKAGE TYPES
SHUTDOWN
PDIP
SOIC
SOT-23
TSSOP
MSOP
6
—
—
Yes
TLV2460
1
8
8
TLV2461
1
8
8
5
—
—
—
TLV2462
2
8
8
—
—
8
—
TLV2463
2
14
14
—
—
10
Yes
TLV2464
4
14
14
—
14
—
—
TLV2465
4
16
16
—
16
—
Yes
UNIVERSAL
EVM BOARD
Refer to the EVM
Selection Guide
(Lit# SLOU060)
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1999, Texas Instruments Incorporated
This document contains information on products in more than one phase
of development. The status of each device is indicated on the page(s)
specifying its electrical characteristics.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TLV2460 and TLV2461 AVAILABLE OPTIONS
SMALL OUTLINE
(D)
PACKAGED DEVICES
SOT-23†
(DBV)
PLASTIC DIP
(P)
2000 µV
TLV2460CD
TLV2461CD
TLV2460CDBV
TLV2461CDBV
TLV2460CP
TLV2461CP
TLV2460Y
TLV2461Y
2000 µV
TLV2460ID
TLV2461ID
TLV2460IDBV
TLV2461IDBV
TLV2460IP
TLV2461IP
—
—
1500 µV
TLV2460AID
TLV2461AID
TLV2460AIP
TLV2461AIP
—
—
TA
VIOmax
AT 25°C
0°C to 70°C
- 40°C to 125°C
—
—
CHIP FORM‡
(Y)
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2460CDR).
‡ Chip forms are tested at TA = 25°C only.
TLV2462 and TLV2463 AVAILABLE OPTIONS
PACKAGED DEVICES
MSOP†
(DGS)
TA
VIOmax
AT 25°C
SMALL OUTLINE†
(D)
MSOP
(DGK)
0°C to
70°C
2000 µV
TLV2462CD
TLV2463CD
TLV2462CDGK
—
2000 µV
TLV2462ID
TLV2463ID
1500 µV
TLV2462AID
TLV2463AID
– 40°C to
125°C
CHIP FORM‡
(Y)
PLASTIC DIP
(N)
PLASTIC DIP
(P)
—
TLV2463CDGS
—
TLV2463CN
TLV2462CP
—
TLV2462Y
TLV2463Y
TLV2462IDGK
—
—
TLV2463IDGS
—
TLV2463IN
TLV2462IP
—
—
—
—
—
—
—
—
TLV2463AIN
TLV2462AIP
—
—
—
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2462CDR).
‡ Chip forms are tested at TA = 25°C only.
TLV2464 and TLV2465 AVAILABLE OPTIONS
PACKAGED DEVICES
CHIP FORM‡
(Y)
TA
VIOmax
AT 25°C
0°C to 70°C
2000 µV
TLV2464CD
TLV2465CD
TLV2464CN
TLV2465CN
TLV2464CPW
TLV2465CPW
TLV2464Y
TLV2465Y
– 40°C to 125°C
2000 µV
TLV2464ID
TLV2465ID
TLV2464IN
TLV2465IN
TLV2464IPW
TLV2465IPW
—
—
– 40°C to 125°C
1500 µV
TLV2464AID
TLV2465AID
TLV2464AIN
TLV2465AIN
TLV2464AIPW
TLV2465AIPW
—
—
SMALL OUTLINE
(D)
PLASTIC DIP
(N)
TSSOP
(PW)
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part number
(e.g., TLV2464CDR).
‡ Chip forms are tested at TA = 25°C only.
SOT-23 AND MSOP DEVICE SYMBOLS
DEVICE TYPE
NO. OF
TERMINALS
6 Pin
SOT 23
SOT-23
5 Pin
8 Pin
MSOP
10 Pin
2
POST OFFICE BOX 655303
PACKAGE NAME
SYMBOL
TLV2460CDBV
VAOC
TLV2460IDBV
VAOI
TLV2461CDBV
VAPC
TLV2461IDBV
VAPI
TLV2462CDGK
xxTIAAI
TLV2462IDGK
xxTIAAJ
TLV2463CDGS
xxTIAAK
TLV2463IDGS
xxTIAAL
• DALLAS, TEXAS 75265
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TLV246x PACKAGE PINOUTS
TLV2460
DBV PACKAGE
(TOP VIEW)
1
OUT
2
GND
3
IN+
6
5
4
VDD+
SHDN
IN –
TLV2461
D OR P PACKAGE
(TOP VIEW)
NC
IN –
IN +
GND
1OUT
1IN –
1IN+
GND
NC
1SHDN
NC
1
8
2
7
3
6
4
5
TLV2460
D OR P PACKAGE
(TOP VIEW)
TLV2461
DBV PACKAGE
(TOP VIEW)
OUT
1
5
VDD+
2
GND
3
IN+
4
IN –
NC
IN –
IN +
GND
1OUT
1IN –
1IN +
GND
1
8
2
7
3
6
4
5
VDD+
2OUT
2IN –
2IN+
8
2
7
3
6
4
5
SHDN
VDD+
OUT
NC
TLV2463
DGS PACKAGE
(TOP VIEW)
TLV2462
D, DGK, OR P PACKAGE
(TOP VIEW)
NC
VDD+
OUT
NC
1
1OUT
1IN –
1IN+
GND
1SHDN
1
2
3
4
5
10
9
8
7
6
VDD+
2OUT
2IN –
2IN+
2SHDN
TLV2463
D OR N PACKAGE
TLV2464
D, N, OR PWP PACKAGE
TLV2465
D, N, OR PWP PACKAGE
(TOP VIEW)
(TOP VIEW)
(TOP VIEW)
1
14
2
13
3
12
4
11
5
10
6
9
7
8
VDD+
2OUT
2IN –
2IN+
NC
2SHDN
NC
1OUT
1IN –
1IN+
VDD+
2IN+
2IN –
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN –
4IN+
GND
3IN+
3IN –
3OUT
1OUT
1IN –
1IN+
VDD+
2IN+
2IN –
2OUT
1/2SHDN
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
4OUT
4IN –
4IN+
GND
3IN +
3IN–
3OUT
3/4SHDN
NC – No internal connection
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD – 0.2 V to VDD + 0.2 V
Input current, II (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 200 mA
Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 175 mA
Total input current, II (into VDD +) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 mA
Total output current, IO (out of GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 mA
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C
Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values, except differential voltages, are with respect to GND.
DISSIPATION RATING TABLE
PACKAGE
ΘJC
(°C/W)
ΘJA
(°C/W)
TA ≤ 25°C
POWER RATING
D (8)
38.3
176
725 mW
D (14)
26.9
122.6
725 mW
D (16)
25.7
114.7
725 mW
DBV (5)
55
324.1
437 mW
DBV (6)
55
294.3
437 mW
DGK
54.23
259.96
424 mW
DGS
54.1
257.71
424 mW
N (14)
32
78
1150 mW
N (16)
32
78
1150 mW
P
41
104
1000 mW
PW (14)
29.3
173.6
700 mW
PW (16)
28.7
161.4
700 mW
recommended operating conditions
MIN
Single supply
Supply voltage
voltage, VDD
Split supply
Common-mode input voltage range, VICR
C-suffix
Operating free-air
free air temperature,
temperature TA
4
I-suffix
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MAX
2.7
6
±1.35
±3
GND
0
VDD+
70
– 40
125
UNIT
V
V
°C
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage (TLV246x)
VIO
Input offset voltage (TLV246xA)
αVIO
Temperature coefficient of input offset
voltage
TEST CONDITIONS
TA†
TLV246x
MIN
25°C
IIB
Input offset current
Input bias current
VDD = ± 1
1.5 V,
V
VIC = 0,
VO = 0,
RS = 50 Ω
VDD = ± 1
1.5
5V
V,
VIC = 0,,
VO = 0,
RS = 50 Ω
150
25°C
Full range
1700
2.8
20
Full range
75
Full range
25
TLV246xI
Full range
75
RS = 50 Ω
25°C
– 0.2
to
3.2
Full range
– 0.2
to
3.2
RS = 50 Ω
25°C
Full range
High level output voltage
High-level
VIC = 1
1.5
5V
V,
IOL = 2.5
2 5 mA
Low level output voltage
Low-level
5V
VIC = 1
1.5
V,
IOL = 10 mA
Sourcing
2.5
25°C
0.1
0.2
25°C
0.3
Full range
Full range
0.5
20
40
± 30
Output current
25°C
AVD
Large-signal
g
g
differential voltage
g
amplification
25°C
90
Full range
89
ri(d)
Differential input resistance
ci(c)
Common-mode input capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 100 kHz,
AV = 10
25°C
66
VICR = –0.2
0 2 V to
t 3.2
3 2 V,
V
RS = 50 Ω
TLV246xC
Full range
64
TLV246xI
Full range
60
VDD = 2.7 V to 6 V,,
No load
VIC = VDD /2,,
25°C
80
Full range
75
VDD = 3 V to 5 V,,
No load
VIC = VDD /2,,
25°C
85
CMRR Common-mode rejection ratio
kSVR
Supplyy voltage
ratio
g rejection
j
(∆VDD /∆VIO)
mA
20
IO
RL = 10 kΩ
V
50
25°C
Sinking
V
2.7
Full range
Full range
nA
V
2.8
25°C
Short circuit output current
Short-circuit
nA
2.9
25°C
Full range
µV
14
TLV246xC
Common mode input voltage range
Common-mode
µV
7
Full range
4.4
UNIT
µV/°C
TLV246xI
IOH = – 10 mA
IOS
1500
TLV246xC
IOH = – 2.5
2 5 mA
VOL
2000
2200
25°C
CMRR > 60 dB
VOH
100
2
CMRR > 66 dB
VICR
MAX
Full range
25°C
IIO
TYP
105
mA
dB
25°C
109
Ω
25°C
7
pF
25°C
33
Ω
80
dB
85
95
dB
Full range
80
† Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is – 40°C to 125°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
(continued)
PARAMETER
TEST CONDITIONS
IDD
Supply current (per channels)
VO = 1.5 V,,
SHDN > 1.02 V
V(ON)
Turnon voltage level
AV = 1
V(OFF)
Turnoff voltage level
AV = 1
IDD(SHDN)
Supply
y current in shutdown
(TLV2460, TLV2463, TLV2465)
SHDN < 0.8 V,
No load,,
TA†
TLV246x
MIN
25°C
TYP
MAX
0.5
0.575
Full range
Channel 1
Channel 2
Channel 1
Channel 2
0.9
1.021
25°C
0.822
Per channel in shutdown
V
0.817
25°C
0.3
Full range
mA
V
1.02
25°C
UNIT
2.5
µA
† Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is – 40°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
In
THD + N
t((on))
t((off))
φm
VO(PP) = 2 V
V,
RL = 10 kΩ
CL = 160 pF,
pF
TA†
TLV246x
MIN
TYP
25°C
1
1.6
Full
range
0.8
25°C
16
f = 1 kHz
25°C
11
Equivalent input noise current
f = 1 kHz
25°C
0.13
Total harmonic distortion plus noise
VO(PP) = 2 V,
RL = 10 kΩ,
f = 1 kHz
Amplifier turnon time
Amplifier turnoff time
Settling time
Phase margin at unity gain
AV = 1
AV = 10
AV = 1,
RL = 10 kΩ
AV = 1,
RL = 10 kΩ
7.6
25°C
7.65
7.25
Both channels
333
25°C
Channel 2 only,
Channel 1 on
328
RL = 10 kΩ,
V(STEP)PP = 2 V,
AV = –1,,
CL = 10 pF,
RL = 10 kΩ
0.1%
V(STEP)PP = 2 V,
AV = –1,,
CL = 56 pF,
RL = 10 kΩ
0.1%
1.77
0.01%
1.98
RL = 10 kΩ,
kΩ
CL = 160 pF
25°C
ns
5.2
MHz
1.47
0.01%
1.78
µs
25°C
• DALLAS, TEXAS 75265
µs
329
f = 10 kHz,
CL = 160 pF
POST OFFICE BOX 655303
pA /√Hz
0.08%
25°C
44°
Gain margin
25°C
7
† Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is – 40°C to 125°C.
6
nV/√Hz
0.02%
Channel 2 only,
Channel 1 on
Channel 1 only,
Channel 2 on
UNIT
0.006%
25°C
AV = 100
Both channels
Channel 1 only,
Channel 2 on
MAX
V/µs
f = 100 Hz
Gain-bandwidth product
ts
TEST CONDITIONS
dB
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage (TLV246x)
VIO
Input offset voltage (TLV246xA)
αVIO
Temperature coefficient of input offset
voltage
IIO
IIB
Input offset current
Input bias current
TEST CONDITIONS
25°C
VDD = ± 2
2.5 V,
V
VIC = 0,
VO = 0,
0
RS = 50 Ω
VDD = ± 2
2.5
5V
V,
VIC = 0,,
VO = 0,
RS = 50 Ω
Full range
1700
25°C
2
25°C
0.3
60
Full range
30
TLV246xI
Full range
60
Full range
– 0.2
to
5.2
Full range
High level output voltage
High-level
IOL = 2.5
2 5 mA
Low level output voltage
Low-level
IOL = 10 mA
4.8
Sourcing
4.7
25°C
0.1
Full range
0.2
25°C
0.2
Full range
Full range
Full range
0.3
60
100
± 90
Output current
AVD
Large-signal
g
g
differential voltage
g
amplification
ri(d)
Differential input resistance
ci(c)
Common-mode input capacitance
f = 10 kHz
zo
Closed-loop output impedance
f = 100 kHz,
AV = 10
25°C
71
VICR = –0.2
0 2 V to
t 5.2
5 2 V,
V
RS = 50 Ω
TLV246xC
Full range
69
TLV246xI
Full range
60
25°C
80
Full range
75
25°C
85
Full range
80
Supplyy voltage
ratio
g rejection
j
(∆VDD /∆VIO)
25°C
RL = 10 kΩ,,
VDD = 2.7 V to 6 V,,
No load
VIC = VDD /2,,
VDD = 3 V to 5 V,,
No load
VIC = VDD /2,,
mA
60
IO
VIC = 2.5 V,,
VO = 1 V to 4 V
V
145
25°C
Sinking
V
4.8
25°C
Short circuit output current
Short-circuit
nA
4.9
25°C
Full range
nA
V
0
to
5
25°C
µV
14
TLV246xC
25°C
µV
7
15
1.3
UNIT
µV/°C
Full range
RS = 50 Ω
5V
VIC = 2
2.5
V,
1500
Full range
RS = 50 Ω
VIC = 2
2.5
5V
V,
kSVR
2000
150
25°C
Common mode input voltage range
Common-mode
CMRR Common-mode rejection ratio
150
TLV246xI
IOH = – 10 mA
IOS
MAX
TLV246xC
IOH = – 2.5
2 5 mA
VOL
TYP
2200
25°C
CMRR > 60 dB,
VOH
TLV246x
MIN
Full range
CMRR > 71 dB,
VICR
TA†
25°C
92
Full range
90
109
mA
dB
25°C
109
Ω
25°C
7
pF
25°C
29
Ω
85
dB
85
95
dB
dB
† Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is – 40°C to 125°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
(continued)
PARAMETER
TEST CONDITIONS
IDD
Supply current (per channel)
VO = 2.5 V,,
SHDN > 1.38 V
V(ON)
Turnon voltage level
AV = 1
V(OFF)
Turnoff voltage level
AV = 1
IDD(SHDN)
Supply
y current in shutdown
(TLV2460, TLV2463, TLV2465)
SHDN < 1.3 V,
No load,,
TA†
TLV246x
MIN
25°C
TYP
MAX
0.55
0.65
Full range
Channel 1
Channel 2
Channel 1
Channel 2
1
1.372
25°C
1.315
Per channels in shutdown
V
1.309
25°C
1
Full range
mA
V
1.368
25°C
UNIT
3
µA
† Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is – 40°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
In
THD + N
t((on))
t((off))
φm
VO(PP) = 2 V
V,
RL = 10 kΩ
CL = 160 pF,
pF
TA†
TLV246x
MIN
TYP
25°C
1
1.6
Full
range
0.8
25°C
14
f = 1 kHz
25°C
11
Equivalent input noise current
f = 100 Hz
25°C
0.13
Total harmonic distortion plus noise
VO(PP) = 4 V,
RL = 10 kΩ,
f = 10 kHz
Amplifier turnon time
Amplifier turnoff time
Settling time
Phase margin at unity gain
AV = 1
AV = 10
AV = 1,
RL = 10 kΩ
AV = 1,
RL = 10 kΩ
7.6
25°C
7.65
7.25
Both channels
333
25°C
Channel 2 only,
Channel 1 on
328
RL = 10 kΩ,
V(STEP)PP = 2 V,
AV = –1,,
CL = 10 pF,
RL = 10 kΩ
0.1%
V(STEP)PP = 2 V,
AV = –1,,
CL = 56 pF,
RL = 10 kΩ
0.1%
3.13
0.01%
3.33
RL = 10 kΩ,
kΩ
CL = 160 pF
25°C
ns
6.4
MHz
1.53
0.01%
1.83
µs
25°C
• DALLAS, TEXAS 75265
µs
329
f = 10 kHz,
CL = 160 pF
POST OFFICE BOX 655303
pA /√Hz
0.04%
25°C
45°
Gain margin
25°C
7
† Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is – 40°C to 125°C.
8
nV/√Hz
0.01%
Channel 2 only,
Channel 1 on
Channel 1 only,
Channel 2 on
UNIT
0.004%
25°C
AV = 100
Both channels
Channel 1 only,
Channel 2 on
MAX
V/µs
f = 100 Hz
Gain-bandwidth product
ts
TEST CONDITIONS
dB
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
IIB
Input offset voltage
vs Common-mode input voltage
1, 2
Input bias current
vs Free-air temperature
3, 4
IIO
VOH
Input offset current
vs Free-air temperature
3, 4
High-level output voltage
vs High-level output current
5, 6
VOL
VO(PP)
Low-level output voltage
vs Low-level output current
7, 8
Peak-to-peak output voltage
vs Frequency
9, 10
Open-loop gain
vs Frequency
11, 12
Phase
vs Frequency
11, 12
Differential voltage amplification
vs Load resistance
13
Amplifier stability
vs Load
14
Zo
CMRR
Output impedance
vs Frequency
15, 16
Common-mode rejection ratio
vs Frequency
17
kSVR
Supply-voltage rejection ratio
vs Frequency
18, 19
AVD
IDD
Supply current
vs Supply voltage
20
vs Free-air temperature
21
Amplifier turnon characteristics
22
Amplifier turnoff characteristics
23
Supply current turnon
24
Supply current turnoff
SR
25
Shutdown supply current
vs Free-air temperature
Slew rate
vs Supply voltage
26
27
vs Frequency
28, 29
vs Common-mode input voltage
30, 31
Vn
Equivalent input noise voltage
THD
Total harmonic distortion
vs Frequency
32, 33
THD+N
Total harmonic distortion plus noise
vs Peak-to-peak signal amplitude
34, 35
vs Frequency
11, 12
φm
Phase margin
vs Load capacitance
36
vs Free-air temperature
37
vs Supply voltage
38
vs Free-air temperature
39
Gain bandwidth product
Large signal follower
40, 41
Small signal follower
42, 43
Inverting large signal
44, 45
Inverting small signal
46, 47
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
1
0.8
VDD = 5 V
TA = 25°C
0.8
0.6
VIO – Input Offset Voltage – mV
VIO – Input Offset Voltage – mV
1
VDD = 3 V
TA = 25°C
0.4
0.2
0
–0.2
–0.4
–0.6
–0.8
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
–0.8
–1
0
0.5
1
1.5
2
2.5
–1
3
0
VICR – Common-Mode Input Voltage – V
1
Figure 1
VDD = 3 V
VI = 1.5 V
4.5
IIB
4
3.5
3
2.5
2
1.5
1
0.5
IIO
–15
5
25
5
45
65
85
105
125
TA – Free-Air Temperature – °C
6
VDD = 5 V
VI = 2.5 V
5
IIB
4
3
2
1
IIO
0
–1
–55 –35
Figure 3
10
4
INPUT BIAS AND INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
I IB and I IO – Input Bias and Input Offset Currents – nA
I IB and I IO – Input Bias and Input Offset Currents – nA
5
–0.5
–55 –35
3
Figure 2
INPUT BIAS AND INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
0
2
VICR – Common-Mode Input Voltage – V
–15
5
25
Figure 4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
45
65
85
TA – Free-Air Temperature – °C
105
125
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
3
5
VDD = 5 VDC
4.5
2.5
VOH – High-Level Output Voltage – V
VOH – High-Level Output Voltage – V
VDD = 3 VDC
TA = –55°C
2
1.5
TA = 125°C
TA = 85°C
TA = 25°C
1
TA = –40°C
0.5
TA = –55°C
4
3.5
3
2.5
2
TA = 125°C
TA = 85°C
TA = 25°C
1.5
TA = –40°C
1
0.5
0
0
10
20
30
40
50
60
70
0
80
0
IOH – High-Level Output Current – mA
20
40
60
Figure 5
100 120 140 160 180 200
Figure 6
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
3
4.5
VDD = 3 VDC
VDD = 5 VDC
4
2.5
VOL – Low-Level Output Voltage – V
VOL – Low-Level Output Voltage – V
80
IOH – High-Level Output Current – mA
TA = –40°C
2
TA = 25°C
1.5
TA = 85°C
TA = 125°C
1
0.5
0
10
20
30
40
50
60
TA = –40°C
3
TA = 25°C
2.5
TA = 85°C
TA = 125°C
2
1.5
1
TA = –55°C
0.5
TA = –55°C
0
3.5
70
IOL – Low-Level Output Current – mA
0
0
20
40
60
80
100
120
140
160
IOL – Low-Level Output Current – mA
Figure 7
Figure 8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
5.5
VDD = 3 V
AV = –10
THD = 1%
RL = 10 kΩ
2.5
VO(PP) – Peak-to-Peak Output Voltage – V
VO(PP) – Peak-to-Peak Output Voltage – V
3
2
1.5
1
0.5
0
10k
100k
1M
VDD = 5 V
AV = –10
THD = 1%
RL = 10 kΩ
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
10k
10M
100k
f – Frequency – Hz
1M
f – Frequency – Hz
Figure 9
Figure 10
OPEN-LOOP GAIN AND PHASE
vs
FREQUENCY
100
VDD = ±1.5 V
RL = 10 kΩ
CL = 0
TA = 25°C
90
80
60
0°
–20°
–40°
AVD
50
–60°
40
–80°
–100°
30
Phase
20
–120°
10
–140°
0
–160°
–10
–180°
–20
10
100
1k
10k
100k
1M
f – Frequency – Hz
Figure 11
12
20°
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
–200°
10M
Phase
Open-Lopp Gain – dB
70
40°
10M
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
OPEN-LOOP GAIN AND PHASE
vs
FREQUENCY
100
VDD = ±2.5 V
RL = 10 kΩ
CL = 0
TA = 25°C
90
80
60
20°
0°
–20°
–40°
AVD
50
–60°
40
–80°
–100°
30
Phase
20
–120°
10
–140°
0
–160°
–10
–180°
–20
Phase
Open-Loop Gain – dB
70
40°
10
100
1k
10k
100k
1M
–200°
10M
f – Frequency – Hz
Figure 12
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
AMPLIFIER STABILITY
vs
LOAD
10000
TA = 25°C
160
140
CL – Capacitive Load – pF
A VD – Differential Voltage Amplification – V/mV
180
120
VDD = ±2.5 V
100
VDD = ±1.5 V
80
60
40
Phase Margin < 30°
1000
Phase Margin > 30°
VDD = 5 V
Phase Margin = 30°
TA = 25°C
20
0
100
1k
10k
100k
1M
100
10
RL – Load Resistance – Ω
100
1k
10k
RL – Resistive Load – Ω
Figure 13
Figure 14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
VDD = ±1.5 V
TA = 25°C
100
Zo – Output Impedance – Ω
Zo – Output Impedance – Ω
100
10
AV = 100
1
AV = 10
0.1
VDD = ±2.5 V
TA = 25°C
AV = 1
10
AV = 100
1
AV = 10
0.1
AV = 1
0.01
100
1k
10k
100k
1M
0.01
100
10M
1k
f – Frequency – Hz
10k
f – Frequency – Hz
Figure 15
Figure 16
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
CMRR – Common-Mode Rejection Ratio – dB
90
85
80
VDD = 5 V
VIC = 2.5 V
75
VDD = 3 V
VIC = 1.5 V
70
65
60
10
100
1k
10k
100k
1M
f – Frequency – Hz
Figure 17
14
100k
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10M
1M
10M
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
90
+kSVR
VDD = ±1.5 V
TA = 25°C
100
k SVR – Supply Voltage Rejection Ratio – dB
k SVR – Supply Voltage Rejection Ratio – dB
110
90
–kSVR
80
70
60
+kSVR
50
–kSVR
40
10
100
1k
10k
100k
1M
+kSVR
80
–kSVR
70
60
+kSVR
50
–kSVR
40
10
10M
VDD = ±2.5 V
TA = 25°C
100
1k
f – Frequency – Hz
10k
100k
1M
10M
f – Frequency – Hz
Figure 18
Figure 19
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
0.8
0.80
IDD = 125°C
I DD – Supply Current – mA
I DD – Supply Current – mA
0.75
IDD = 85°C
0.7
0.6
0.5
0.40
IDD = 25°C
0.30
IDD = –55°C
VDD = 5 V
VI = 2.5 V
0.65
0.60
0.55
VDD = 3 V
VI = 1.5 V
0.50
0.45
0.40
IDD = –40°C
0.20
0.70
0.35
0.10
2.5
3
3.5
4
4.5
5
5.5
6
0.30
–55 –35
–15
5
25
45
65
85
105
125
TA – Free-Air Temperature – °C
VDD – Supply Voltage – V
Figure 20
Figure 21
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
AMPLIFIER WITH A SHUTDOWN PULSE
TURNON CHARACTERISTICS
AMPLIFIER WITH A SHUTDOWN PULSE
TURNOFF CHARACTERISTICS
5
5
4
Shutdown Pin
3
2
1
0
Amplifier Output
3
2
1
0
–5
VDD = 5 V
RL = 10 kΩ
AV = 1
TA = 25°C
Shutdown Pin
3
VSD – Shutdown Voltage – V
VSD – Shutdown Voltage – V
4
VDD = 5 V
RL = 10 kΩ
AV = 1
TA = 25°C
–3
–1
2
1
0
Amplifier Output
3
2
1
1
3
5
9
7
0
–5
11
–3
–1
t – Time – µs
1
t – Time – µs
Figure 23
Figure 22
SUPPLY CURRENT WITH A SHUTDOWN PULSE
TURNON CHARACTERISTICS
1
5.5
0.8
4.5
0.6
3.5
Supply Current
0.4
2.5
0.2
1.5
VDD = 5 V
VI = 2.5 V
AV = 1
TA = 25°C
0
–0.2
–0.4
–0.2
0
0.2
0.4
t – Time – µs
Figure 24
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
0.5
–0.5
0.6
VSD – Shutdown Voltage – V
I DD – Supply Current – mA
Shutdown Pin
3
5
7
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
TURNOFF SUPPLY CURRENT
WITH A SHUTDOWN PULSE
1
5.5
4.5
0.6
0.4
3.5
Supply Current
2.5
0.2
1.5
0
0.5
–0.2
–0.4
–0.2
0
0.2
VSD – Shutdown Voltage – V
Shutdown Pin
0.8
I DD – Supply Current – mA
VDD = 5 V
VI = 2.5 V
AV = 1
TA = 25°C
–0.5
0.6
0.4
t – Time – µs
Figure 25
SLEW RATE
vs
SUPPLY VOLTAGE
3
1.8
2.5
1.75
1.7
VDD = 5 V
VI = 2.5 V
2
SR – Slew Rate – V/ µs
I DD – Supply Current – µ A
SHUTDOWN SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
1.5
1
VDD = 3 V
VI = 1.5 V
0.5
0
SR+
1.65
1.6
1.55
1.5
1.45
1.4
–0.5
–1
–55 –35
1.35
–15
5
25
45
65
85
105
125
SR–
1.3
2.5
VO(PP) = 2 V
CL = 160 pF
AV = 1
RL = 10 kΩ
TA = 25°C
3
TA – Free-Air Temperature – °C
3.5
4
4.5
5
5.5
6
VDD – Supply Voltage – V
Figure 26
Figure 27
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
18
VDD = 3 V
AV = 10
VI = 1.5 V
TA = 25°C
17
Vn – Equivalent Input Noise Voltage – nV/ Hz
Vn – Equivalent Input Noise Voltage – nV/ Hz
18
16
15
14
13
12
11
10
100
1k
10k
VDD = 5 V
AV = 10
VI = 2.5 V
TA = 25°C
17
16
15
14
13
12
11
10
100
100k
1k
f – Frequency – Hz
Figure 28
EQUIVALENT INPUT NOISE VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
20
20
VDD = 3 V
AV = 10
f = 1 kHz
TA = 25°C
15
Vn – Equivalent Input Noise Voltage – nV/ Hz
Vn – Equivalent Input Noise Voltage – nV/ Hz
100k
Figure 29
EQUIVALENT INPUT NOISE VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
14
13
12
11
10
0
0.5
1
1.5
2
2.5
3
VICR – Common-Mode Input Voltage – V
VDD = 5 V
AV = 10
f = 1 kHz
TA = 25°C
15
14
13
12
11
10
0
1
2
Figure 31
POST OFFICE BOX 655303
3
4
VICR – Common-Mode Input Voltage – V
Figure 30
18
10k
f – Frequency – Hz
• DALLAS, TEXAS 75265
5
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
1
VDD = ±1.5 V
VO(PP) = 2 V
RL = 10 kΩ
THD – Total Harmonic Distortion – %
THD – Total Harmonic Distortion – %
0.5
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
AV = 100
0.1
AV = 10
0.010
0.001
AV = 1
10
100
1k
10k
0.1
AV = 100
AV = 10
0.010
AV = 1
0.001
100k
VDD = ±2.5 V
VO(PP) = 4 V
RL = 10 kΩ
10
100
1k
f – Frequency – Hz
Figure 32
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
PEAK-TO-PEAK SIGNAL AMPLITUDE
1
THD+N – Total Harmonic Distortion +Noise – %
THD+N – Total Harmonic Distortion +Noise – %
1
RL = 250 Ω
RL = 2 kΩ
0.1
RL = 10 kΩ
0.010
RL = 100 kΩ
0.001
1
1.2 1.4 1.6 1.8 2
100k
Figure 33
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
PEAK-TO-PEAK SIGNAL AMPLITUDE
VDD = 3 V
AV = 1
TA = 25°C
10k
f – Frequency – Hz
2.2 2.4 2.6 2.8
3
3.2
RL = 250 Ω
RL = 2 kΩ
0.1
RL = 10 kΩ
0.010
RL = 100 kΩ
VDD = 5 V
AV = 1
TA = 25°C
0.001
4
4.1 4.2
Peak-to-Peak Signal Amplitude – V
4.3
4.4
4.5 4.6
4.7 4.8 4.9
5
Peak-to-Peak Signal Amplitude – V
Figure 34
Figure 35
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
PHASE MARGIN
vs
LOAD CAPACITANCE
90
60
VDD = ±2.5 V
TA = 25°C
RL = 10 kΩ
80
RL = 10 kΩ
CL = 160 pF
55
70
φ m – Phase Margin – degrees
φ m – Phase Margin – degrees
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
Rnull = 50 Ω
60
50
40
Rnull = 20 Ω
30
20
Rnull = 0 Ω
50
VDD = ±2.5 V
45
VDD = ±1.5 V
40
35
10
0
10
100
1k
10k
30
–55 –35
100k
–15
Figure 36
45
65
85
105
125
GAIN BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
5
5
CL = 160 pF
RL = 10 kΩ
f = 10 kHz
TA = 25°C
4.75
Gain Bandwidth Product – MHz
Gain Bandwidth Product – MHz
25
Figure 37
GAIN BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
4.75
5
TA – Free-Air Temperature – °C
CL – Load Capacitance – pF
4.5
4.25
4
3.75
4.5
RL = 10 kΩ
CL = 160 pF
VDD = ±2.5 V
4.25
4
3.75
3.5
VDD = ±1.5 V
3.25
3.5
2.5
3
3.5
4
4.5
5
5.5
6
3
–55 –35
Figure 38
20
–15
5
25
Figure 39
POST OFFICE BOX 655303
45
65
85
TA – Free-Air Temperature – °C
VDD – Supply Voltage – V
• DALLAS, TEXAS 75265
105
125
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
LARGE SIGNAL FOLLOWER
LARGE SIGNAL FOLLOWER
2.2
3.7
2
3.3
VO – Voltage – V
Input
VO – Voltage – V
Input
1.8
Output
1.6
1.4
VDD = 3 V
VI(PP) = 1 V
VI = 1.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
1.2
1
0.8
–2
0
2
4
6
Input
2.9
Output
2.5
VDD = 5 V
VI(PP) = 2 V
VI = 2.5 V
RL = 10 kΩ
CL = 160 pF
AV = 1
TA = 25°C
2.1
Output
1.7
8
10
12
14
16
1.3
–2
18
0
2
4
6
t – Time – µs
8
10
12
14
16
18
Figure 41
SMALL SIGNAL FOLLOWER
SMALL SIGNAL FOLLOWER
1.6
2.6
1.55
2.55
VO – Voltage – V
VO – Voltage – V
Output
t – Time – µs
Figure 40
Input
1.5
Output
1.45
1.4
–0.2
Input
Input
2.5
Output
2.45
VDD = 3 V
VI(PP) = 100 mV CL = 160 pF
AV = 1
VI = 1.5 V
TA = 25°C
RL = 10 kΩ
0
0.2
0.4
0.6
0.8
1
1.2 1.4
1.6 1.8
2.4
–0.2
VDD = 5 V
VI(PP) = 100 mV
VI = 2.5 V
RL = 10 kΩ
0
t – Time – µs
0.2
0.4
0.6
CL = 160 pF
AV = 1
TA = 25°C
0.8
1
1.2 1.4
1.6 1.8
t – Time – µs
Figure 42
Figure 43
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
TYPICAL CHARACTERISTICS
INVERTING LARGE SIGNAL
INVERTING LARGE SIGNAL
4
2.3
Input
2.1
Input
3.5
VDD = 3 V
VI(PP) = 1 V
VI = 1.5 V
RL = 10 kΩ
CL = 160 pF
AV = –1
TA = 25°C
1.7
1.5
1.3
VO – Voltage – V
VO – Voltage – V
1.9
1.1
VDD = 5 V
VI(PP) = 2 V
VI = 2.5 V
RL = 10 kΩ
CL = 160 pF
AV = –1
TA = 25°C
3
2.5
2
Output
0.9
Output
1.5
0.7
0.5
–0.2
0
0.2
0.4
0.6
0.8
1
1.2 1.4
1
–0.2
1.6 1.8
0
0.2
0.4
t – Time – µs
0.6
Figure 44
INVERTING SMALL SIGNAL
1.6 1.8
INVERTING SMALL SIGNAL
Input
Input
2.55
VDD = 3 V
VI(PP) = 100 mV
VI = 1.5 V
RL = 10 kΩ
CL = 160 pF
AV = –1
TA = 25°C
1.5
VO – Voltage – V
VO – Voltage – V
1.2 1.4
2.6
1.55
1.45
VDD = 5 V
VI(PP) = 100 mV
VI = 2.5 V
RL = 10 kΩ
CL = 160 pF
AV = –1
TA = 25°C
2.5
2.45
Output
0
0.2
0.4
0.6
0.8
Output
1
1.2 1.4
1.6 1.8
2.4
–0.2
0
t – Time – µs
0.2
0.4
0.6
0.8
1
t – Time – µs
Figure 46
22
1
Figure 45
1.6
1.4
–0.2
0.8
t – Time – µs
Figure 47
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1.2 1.4
1.6 1.8
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
PARAMETER MEASUREMENT INFORMATION
Rnull
_
+
RL
CL
Figure 48
APPLICATION INFORMATION
driving a capacitive load
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the
device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater
than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as
shown in Figure 49. A minimum value of 20 Ω should work well for most applications.
RF
RG
RNULL
_
Input
Output
+
CLOAD
Figure 49. Driving a Capacitive Load
offset voltage
The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times
the corresponding gains. The following schematic and formula can be used to calculate the output offset
voltage:
RF
IIB–
RG
+
–
VI
VO
+
RS
ǒ ǒ ǓǓ ǒ ǒ ǓǓ
IIB+
V
OO
+ VIO 1 )
R
R
F
G
" IIB) RS
1
)
R
R
F
G
" IIB– RF
Figure 50. Output Offset Voltage Model
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
APPLICATION INFORMATION
general configurations
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifer
(see Figure 51).
RG
RF
–
VO
+
VI
R1
V
O
V
I
C1
ǒ Ǔǒ
+ 1 ) RRF
G
1
f
–3dB
Ǔ
1
+ 2pR1C1
) sR1C1
1
Figure 51. Single-Pole Low-Pass Filter
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.
Failure to do this can result in phase shift of the amplifier.
C1
+
_
VI
R1
R1 = R2 = R
C1 = C2 = C
Q = Peaking Factor
(Butterworth Q = 0.707)
R2
f
C2
RG
RF
RG =
Figure 52. 2-Pole Low-Pass Sallen-Key Filter
24
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
–3dB
+ 2p1RC
(
RF
1
2–
Q
)
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
APPLICATION INFORMATION
shutdown function
Three members of the TLV246x family (TLV2460/3/5) have a shutdown terminal for conserving battery life in
portable applications. When the shutdown terminal is tied low, the supply current is reduced to 0.3 µA/channel,
the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the
shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care
should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place
the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to VDD/2.
Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to
be pulled to VDD– (not GND) to disable the operational amplifier.
The amplifier’s output with a shutdown pulse is shown in Figures 22, 23, 24, and 25. The amplifier is powered
with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon
and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output
waveform. The times for the single, dual, and quad are listed in the data tables.
circuit layout considerations
To achieve the levels of high performance of the TLV246x, follow proper printed-circuit board design techniques.
A general set of guidelines is given in the following.
D
D
D
D
D
Ground planes – It is highly recommended that a ground plane be used on the board to provide all
components with a low inductive ground connection. However, in the areas of the amplifier inputs and
output, the ground plane can be removed to minimize the stray capacitance.
Proper power supply decoupling – Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less
effective. The designer should strive for distances of less than 0.1 inches between the device power
terminals and the ceramic capacitors.
Sockets – Sockets can be used but are not recommended. The additional lead inductance in the socket pins
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board
is the best implementation.
Short trace runs/compact part placements – Optimum high performance is achieved when stray series
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at
the input of the amplifier.
Surface-mount passive components – Using surface-mount passive components is recommended for high
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
kept as short as possible.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
APPLICATION INFORMATION
general power dissipation considerations
ǒ Ǔ
For a given θJA, the maximum power dissipation is shown in Figure 53 and is calculated by the following formula:
P
+
D
Where:
T
–T
MAX A
q JA
PD = Maximum power dissipation of THS246x IC (watts)
TMAX = Absolute maximum junction temperature (150°C)
TA
= Free-ambient air temperature (°C)
θJA = θJC + θCA
θJC = Thermal coefficient from junction to case
θCA = Thermal coefficient from case to ambient air (°C/W)
MAXIMUM POWER DISSIPATION
vs
FREE-AIR TEMPERATURE
2
Maximum Power Dissipation – W
1.75
PDIP Package
Low-K Test PCB
θJA = 104°C/W
1.5
1.25
SOIC Package
Low-K Test PCB
θJA = 176°C/W
TJ = 150°C
MSOP Package
Low-K Test PCB
θJA = 260°C/W
1
0.75
0.5
0.25
SOT-23 Package
Low-K Test PCB
θJA = 324°C/W
0
–55 –40 –25 –10 5 20 35 50 65 80 95 110 125
TA – Free-Air Temperature – °C
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.
Figure 53. Maximum Power Dissipation vs Free-Air Temperature
26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts  Release 8, the model generation
software used with Microsim PSpice . The Boyle macromodel (see Note 2) and subcircuit in Figure 54 are
generated using the TLV246x typical electrical and operating characteristics at TA = 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers”, IEEE
Journal of Solid-State Circuits, SC-9, 353 (1974).
99
EGND +
R2
3
VDD +
–
+
ISS
RSS
CSS
VD
–
53
RP
10
2
IN –
J1
FB
6
7
+
9
VLIM
+
VB
8
GA
GCM
J2
–
–
DC
RO1
OUT
IN +
1
11
12
RD1
5
DLN
DE
92
54
C1
DP
+
RD2
VE
GND
RO2
C2
.SUBCKT TLV246X 1 2 3 4 5
C1
11
12
2.46034E–12
C2
6
7
10.0000E–12
CSS
10
99
443.21E–15
DC
5
53
DY
DE
54
5
DY
DLP
90
91
DX
DLN
92
90
DX
DP
4
3
DX
EGND
99
0
POLY (2) (3,0) (4,0) 0 .5 .5
FB
7
99
POLY (5) VB VC VE VLP
+ VLN 0 21.600E6 –1E3 1E3 22E6 –22E6
GA
6
0
11
12 345.26E–6
GCM
0
6
10
99 15.4226E–9
ISS
10
4
DC 18.850E–6
HLIM
90
0
VLIM 1K
J1
11
2
10 JX1
J2
12
1
10 JX2
R2
6
9
100.00E3
–
–
–
+
90
HLIM
–
4
+ DLP
91
+
VLP
VLN
RD1
3
11
2.8964E3
RD2
3
12
2.8964E3
R01
8
5
5.6000
R02
7
99
6.2000
RP
3
4
8.9127
RSS
10
99
10.610E6
VB
9
0
DC 0
VC
3
53
DC .7836
VE
54
4
DC .7436
VLIM
7
8
DC 0
VLP
91
0
DC 117
VLN
0
92
DC 117
.MODEL DX D (IS=800.00E–18)
.MODEL DY D (IS=800.00E–18 Rs = 1m Cjo=10p)
.MODEL JX1 NJF (IS=1.0000E–12 BETA=6.3239E–3
+ VTO= –1)
.MODEL JX2 NJF (IS=1.0000E–12 BETA=6.3239E–3
+ VTO= –1)
.ENDS
Figure 54. Boyle Macromodels and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
macromodel information (continued)
.subckt TLV_246Y 1 2 3 4 5 6
c1
11
12
2.4603E–12
c2
72
7
10.000E–12
css
10
99
443.21E–15
dc
70
53
dy
de
54
70
dy
dlp
90
91
dx
dln
92
90
dx
dp
4
3
dx
egnd
99
0
poly(2) (3,0) (4,0) 0 .5 .5
fb
7
99
poly(5) vb vc ve vlp vln 0
21.600E6 –1E3 1E3 22E6 –22E6
ga
72
0
11 12 345.26E–6
gcm
0
72
10 99 15.422E–9
iss
74
4
dc 18.850E–6
hlim
90
0
vlim 1K
j1
11
2
10 jx1
j2
12
1
10 jx2
r2
72
9
100.00E3
rd1
3
11
2.8964E3
rd2
3
12
2.8964E3
ro1
8
70
5.6000
ro2
7
99
6.2000
rp
3
71
8.9127
rss
10
99
10.610E6
rs1
6
4
1G
rs2
6
4
1G
rs3
6
4
1G
rs4
6
4
1G
s1
71
4
6 4 s1x
s2
70
5
6 4 s1x
s3
10
74
6 4 s1x
s4
74
4
6 4 s2x
vb
9
0
dc 0
vc
3
53
dc .7836
ve
54
4
dc .7436
vlim
7
8
dc 0
vlp
91
0
dc 117
vln
0
92
dc 117
.model dx D(Is=800.00E–18)
.model dy D(Is=800.00E–18 Rs=1m Cjo=10p)
.model jx1 NJF(Is=1.0000E–12 Beta=6.3239E–3 Vto=–1)
.model jx2 NJF(Is=1.0000E–12 Beta=6.3239E–3 Vto=–1)
.model s1x VSWITCH(Roff=1E8 Ron=1.0 Voff=2.5 Von=0.0)
.model s2x VSWITCH(Roff=1E8 Ron=1.0 Voff=0 Von=2.5)
.ends
Figure 54. Boyle Macromodels and Subcircuit (Continued)
28
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
MECHANICAL DATA
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0.050 (1,27)
0.020 (0,51)
0.014 (0,35)
14
0.010 (0,25) M
8
0.008 (0,20) NOM
0.244 (6,20)
0.228 (5,80)
0.157 (4,00)
0.150 (3,81)
Gage Plane
0.010 (0,25)
1
7
0°– 8°
A
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
PINS **
0.004 (0,10)
8
14
16
A MAX
0.197
(5,00)
0.344
(8,75)
0.394
(10,00)
A MIN
0.189
(4,80)
0.337
(8,55)
0.386
(9,80)
DIM
4040047 / D 10/96
NOTES: B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
Falls within JEDEC MS-012
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
29
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
MECHANICAL DATA
DBV (R-PDSO-G5)
PLASTIC SMALL-OUTLINE PACKAGE
0,40
0,20
0,95
5
0,25 M
4
1,80
1,50
1
0,15 NOM
3,00
2,50
3
Gage Plane
3,10
2,70
0,25
0°– 8°
0,55
0,35
Seating Plane
1,30
1,00
0,10
0,05 MIN
4073253-4/B 10/97
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions include mold flash or protrusion.
30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
MECHANICAL DATA
DBV (R-PDSO-G6)
PLASTIC SMALL-OUTLINE PACKAGE
0,40
0,20
0,95
6
0,25 M
4
1,80
1,50
0,15 NOM
3,00
2,50
3
1
Gage Plane
3,10
2,70
0,25
0°– 8°
Seating Plane
1,30
1,00
0,10
0,05 MIN
4073253-5/B 10/97
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions include mold flash or protrusion.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
31
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
MECHANICAL DATA
DGK (R-PDSO-G8)
PLASTIC SMALL-OUTLINE PACKAGE
0,38
0,25
0,65
8
0,25 M
5
0,15 NOM
3,05
2,95
4,98
4,78
Gage Plane
0,25
1
0°– 6°
4
3,05
2,95
0,69
0,41
Seating Plane
1,07 MAX
0,15 MIN
0,10
4073329/A 02/97
NOTES: A.
B.
C.
D.
32
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion.
Falls within JEDEC MO-187
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
MECHANICAL DATA
DGS (S-PDSO-G10)
PLASTIC SMALL-OUTLINE PACKAGE
0,27
0,17
0,50
10
0,25 M
6
0,15 NOM
3,05
2,95
4,98
4,78
Gage Plane
0,25
1
0°– 6°
5
3,05
2,95
0,69
0,41
Seating Plane
1,07 MAX
0,15
0,05
0,10
4073272/A 12/97
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
33
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
MECHANICAL DATA
N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PIN SHOWN
PINS **
14
16
18
20
A MAX
0.775
(19,69)
0.775
(19,69)
0.920
(23.37)
0.975
(24,77)
A MIN
0.745
(18,92)
0.745
(18,92)
0.850
(21.59)
0.940
(23,88)
DIM
A
16
9
0.260 (6,60)
0.240 (6,10)
1
8
0.070 (1,78) MAX
0.035 (0,89) MAX
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0.010 (0,25) M
0°– 15°
0.010 (0,25) NOM
14/18 PIN ONLY
4040049/C 08/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)
34
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
MECHANICAL DATA
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE PACKAGE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0°– 15°
0.010 (0,25) M
0.010 (0,25) NOM
4040082 / B 03/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
35
TLV2460, TLV2461, TLV2462, TLV2463, TLV2464, TLV2465, TLV246xA
FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH SHUTDOWN
SLOS220F – JULY 1998 – REVISED OCTOBER 1999
MECHANICAL DATA
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
0,75
0,50
A
Seating Plane
0,15
0,05
1,20 MAX
0,10
PINS **
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064 / E 08/96
NOTES: A.
B.
C.
D.
36
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated