SN74ALVCH16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS www.ti.com FEATURES • • • • • • • Member of the Texas Instruments Widebus™ Family Operates From 1.65 V to 3.6 V Max tpd of 3.6 ns at 3.3 V ±24-mA Output Drive at 3.3 V Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors Latch-Up Performance Exceeds 250 mA Per JESD 17 ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) – 200-V Machine Model (A115-A) XXXX DESCRIPTION/ORDERING INFORMATION This 16-bit transparent D-type latch is designed for 1.65-V to 3.6-V VCC operation. The SN74ALVCH16373 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. This device can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs. SCES020I – JULY 1995 – REVISED NOVEMBER 2005 DGG OR DL PACKAGE (TOP VIEW) 1OE 1Q1 1Q2 GND 1Q3 1Q4 VCC 1Q5 1Q6 GND 1Q7 1Q8 2Q1 2Q2 GND 2Q3 2Q4 VCC 2Q5 2Q6 GND 2Q7 2Q8 2OE 1 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 16 33 17 32 18 31 19 30 20 29 21 28 22 27 23 26 24 25 1LE 1D1 1D2 GND 1D3 1D4 VCC 1D5 1D6 GND 1D7 1D8 2D1 2D2 GND 2D3 2D4 VCC 2D5 2D6 GND 2D7 2D8 2LE A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the buslines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components. OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 1995–2005, Texas Instruments Incorporated SN74ALVCH16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS www.ti.com SCES020I – JULY 1995 – REVISED NOVEMBER 2005 ORDERING INFORMATION PACKAGE (1) TA FBGA – GRD FBGA – ZRD (Pb-free) ORDERABLE PART NUMBER SN74ALVCH16373GRDR Tape and reel SSOP – DL VH373 SN74ALVCH16373ZRDR Tube TOP-SIDE MARKING SN74ALVCH16373DL SN74ALVCH16373DLR Tape and reel ALVCH16373 74ALVCH16373DLG4 –40°C to 85°C 74ALVCH16373DLRG4 SN74ALVCH16373DGGR TSSOP – DGG Tape and reel 74ALVCH16373DGGE4 ALVCH16373 74ALVCH16373DGGRG4 VFBGA – GQL VFBGA – ZQL (Pb-free) (1) SN74ALVCH16373KR Tape and reel VH373 74ALVCH16373ZQLR Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. GQL OR ZQL PACKAGE (TOP VIEW) TERMINAL ASSIGNMENTS (1) (56-Ball GQL/ZQL Package) 1 2 3 4 5 6 A B C D E F G H J K 1 2 3 4 5 6 A 1OE NC NC NC NC 1LE B 1Q2 1Q1 GND GND 1D1 1D2 C 1Q4 1Q3 VCC VCC 1D3 1D4 D 1Q6 1Q5 GND GND 1D5 1D6 E 1Q8 1Q7 1D7 1D8 F 2Q1 2Q2 2D2 2D1 G 2Q3 2Q4 GND GND 2D4 2D3 H 2Q5 2Q6 VCC VCC 2D6 2D5 J 2Q7 2Q8 GND GND 2D8 2D7 K 2OE NC NC NC NC 2LE abc (1) abc NC – No internal connection GRD OR ZRD PACKAGE (TOP VIEW) 1 2 3 4 5 6 TERMINAL ASSIGNMENTS (1) (54-Ball GRD/ZRD Package) 1 2 3 4 5 6 A 1Q1 NC 1OE 1LE NC 1D1 B 1Q3 1Q2 NC NC 1D2 1D3 C 1Q5 1Q4 VCC VCC 1D4 1D5 D 1Q7 1Q6 GND GND 1D6 1D7 D E 2Q1 1Q8 GND GND 1D8 2D1 E F 2Q3 2Q2 GND GND 2D2 2D3 G 2Q5 2Q4 VCC VCC 2D4 2D5 H 2Q7 2Q6 NC NC 2D6 2D7 J 2Q8 NC 2OE 2LE NC 2D8 A B C F G H J (1) NC – No internal connection xxxxx 2 SN74ALVCH16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS www.ti.com SCES020I – JULY 1995 – REVISED NOVEMBER 2005 FUNCTION TABLE (EACH 8-BIT SECTION) INPUTS OE LE D OUTPUT Q L H H H L H L L L L X Q0 H X X Z LOGIC DIAGRAM (POSITIVE LOGIC) 1OE 1LE 1D1 1 2OE 48 2LE C1 47 1D 2 1Q1 24 25 C1 2D1 36 To Seven Other Channels 13 1D 2Q1 To Seven Other Channels Pin numbers shown are for the DGG and DL packages. Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) VCC Supply voltage range range (2) (3) VI Input voltage VO Output voltage range (2) (3) IIK Input clamp current VI < 0 IOK Output clamp current VO < 0 IO Continuous output current MIN MAX –0.5 4.6 V –0.5 VCC + 0.5 V –0.5 VCC + 0.5 Continuous current through each VCC or GND θJA Tstg (1) (2) (3) (4) Package thermal impedance (4) Storage temperature range V -50 mA -50 mA ±50 mA ±100 mA DGG package 70 DL package 63 GQL/ZQL package 42 GRD/ZRD package 36 –65 UNIT 150 °C/W °C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. This value is limited to 4.6 V maximum. The package thermal impedance is calculated in accordance with JESD 51-7. 3 SN74ALVCH16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS www.ti.com SCES020I – JULY 1995 – REVISED NOVEMBER 2005 Recommended Operating Conditions (1) VCC Supply voltage VIH High-level input voltage VCC = 1.65 V to 1.95 V MIN MAX 1.65 3.6 Low-level input voltage VI Input voltage VO Output voltage IOH High-level output current IOL Low-level output current ∆t/∆v Input transition rise or fall rate TA Operating free-air temperature (1) 4 V 0.65 × VCC VCC = 2.3 V to 2.7 V 1.7 VCC = 2.7 V to 3.6 V 2 V 0.35 × VCC VCC = 1.65 V to 1.95 V VIL UNIT VCC = 2.3 V to 2.7 V 0.7 VCC = 2.7 V to 3.6 V 0.8 V 0 VCC V 0 VCC V VCC = 1.65 V –4 VCC = 2.3 V –12 VCC = 2.7 V –12 VCC = 3 V –24 VCC = 1.65 V 4 VCC = 2.3 V 12 VCC = 2.7 V 12 VCC = 3 V 24 –40 mA mA 10 ns/V 85 °C All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. SN74ALVCH16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS www.ti.com SCES020I – JULY 1995 – REVISED NOVEMBER 2005 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS IOH = –100 µA 1.65 V to 3.6 V 1.65 V IOH = –6 mA 2.3 V 2 2.3 V 1.7 2.7 V 2.2 IOH = –12 mA II(hold) V 3V 2.4 3V 2 IOL = 100 µA 1.65 V to 3.6 V 0.2 IOL = 4 mA 1.65 V 0.45 IOL = 6 mA 2.3 V 0.4 2.3 V 0.7 2.7 V 0.4 3V 0.55 IOL = 24 mA UNIT 1.2 IOH = –24 mA IOL = 12 mA II MAX VCC – 0.2 IOH = –4 mA VOH VOL MIN TYP (1) VCC V ±5 VI = VCC or GND 3.6 V VI = 0.58 V 1.65 V 25 VI = 1.07 V 1.65 V –25 VI = 0.7 V 2.3 V 45 VI = 1.7 V 2.3 V –45 VI = 0.8 V 3V 75 VI = 2 V 3V –75 µA µA VI = 0 to 3.6 V (2) 3.6 V ±500 IOZ VO = VCC or GND 3.6 V ±10 µA ICC VI = VCC or GND IO = 0 3.6 V 40 µA ∆ICC One input at VCC – 0.6 V, Other inputs at VCC or GND 3 V to 3.6 V 750 µA Ci Co (1) (2) Control inputs Data inputs Outputs VI = VCC or GND 3.3 V VO = VCC or GND 3.3 V 3 pF 6 7 pF All typical values are at VCC = 3.3 V, TA = 25°C. This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. Timing Requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) VCC = 1.8 V MIN Pulse duration, LE high or low (1) tsu Setup time, data before LE↓ (1) th Hold time, data after LE↓ (1) tw (1) MAX VCC = 2.5 V ± 0.2 V MIN 3.3 MAX VCC = 2.7 V MIN MAX VCC = 3.3 V ± 0.3 V MIN UNIT MAX 3.3 3.3 ns 1 1 1.1 ns 1.5 1.7 1.4 ns This information was not available at the time of publication. 5 SN74ALVCH16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS www.ti.com SCES020I – JULY 1995 – REVISED NOVEMBER 2005 Switching Characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) FROM (INPUT) PARAMETER D tpd LE ten OE tdis (1) VCC = 1.8 V TO (OUTPUT) OE TYP VCC = 2.5 V ± 0.2 V VCC = 2.7 V MIN MAX (1) 1 (1) 1 Q (1) Q (1) Q MIN VCC = 3.3 V ± 0.3 V UNIT MAX MIN MAX 4.5 4.3 1.1 3.6 4.9 4.6 1 3.9 1 6 5.7 1 4.7 ns 1.2 5.1 4.5 1.4 4.1 ns ns This information was not available at the time of publication. Operating Characteristics TA = 25°C PARAMETER Cpd (1) 6 Power dissipation capacitance Outputs enabled Outputs disabled TEST CONDITIONS CL = 50 pF, This information was not available at the time of publication. f = 10 MHz VCC = 1.8 V VCC = 2.5 V VCC = 3.3 V TYP TYP TYP (1) 19 22 (1) 4 5 UNIT pF SN74ALVCH16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS www.ti.com SCES020I – JULY 1995 – REVISED NOVEMBER 2005 PARAMETER MEASUREMENT INFORMATION VLOAD S1 RL From Output Under Test Open GND CL (see Note A) RL TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open VLOAD GND LOAD CIRCUIT INPUT VCC 1.8 V 2.5 V ± 0.2 V 2.7 V 3.3 V ± 0.3 V VI tr/tf VCC VCC 2.7 V 2.7 V ≤2 ns ≤2 ns ≤2.5 ns ≤2.5 ns VM VLOAD CL RL V∆ VCC/2 VCC/2 1.5 V 1.5 V 2 × VCC 2 × VCC 6V 6V 30 pF 30 pF 50 pF 50 pF 1 kΩ 500 Ω 500 Ω 500 Ω 0.15 V 0.15 V 0.3 V 0.3 V tw VI Timing Input VM VM VM 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VM VM 0V tPLH Output Control (low-level enabling) tPLZ VLOAD/2 VM tPZH VOH VM VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES VM 0V Output Waveform 1 S1 at VLOAD (see Note B) tPHL VM VI VM tPZL VI Input VOLTAGE WAVEFORMS PULSE DURATION th VI Data Input VM 0V 0V tsu Output VI VM Input Output Waveform 2 S1 at GND (see Note B) VOL + V∆ VOL tPHZ VOH VM VOH − V∆ 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms 7 PACKAGE OPTION ADDENDUM www.ti.com 6-Aug-2007 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty 74ALVCH16373DGGRG4 ACTIVE TSSOP DGG 48 74ALVCH16373DLG4 ACTIVE SSOP DL 48 74ALVCH16373DLRG4 ACTIVE SSOP DL 74ALVCH16373GRDR ACTIVE BGA MI CROSTA R JUNI OR 74ALVCH16373GRE4 ACTIVE 74ALVCH16373ZQLR MSL Peak Temp (3) CU NIPDAU Level-1-260C-UNLIM Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 48 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM GRD 54 1000 SNPB Level-1-240C-UNLIM TSSOP DGG 48 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM ACTIVE BGA MI CROSTA R JUNI OR ZQL 56 1000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM 74ALVCH16373ZRDR ACTIVE BGA MI CROSTA R JUNI OR ZRD 54 1000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM SN74ALVCH16373DGGR ACTIVE TSSOP DGG 48 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ALVCH16373DL ACTIVE SSOP DL 48 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ALVCH16373DLR ACTIVE SSOP DL 48 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ALVCH16373KR NRND GQL 56 1000 SNPB Level-1-240C-UNLIM BGA MI CROSTA R JUNI OR 2000 Green (RoHS & no Sb/Br) Lead/Ball Finish 25 25 TBD TBD (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 6-Aug-2007 Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 16-Jul-2007 TAPE AND REEL INFORMATION Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com Device 16-Jul-2007 Package Pins Site Reel Diameter (mm) Reel Width (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 74ALVCH16373GRDR GRD 54 HIJ 330 16 5.8 8.3 1.55 8 16 Q1 74ALVCH16373ZQLR ZQL 56 HIJ 330 16 4.8 7.3 1.45 8 16 Q1 74ALVCH16373ZRDR ZRD 54 HIJ 330 16 5.8 8.3 1.55 8 16 Q1 SN74ALVCH16373DGGR DGG 48 MLA 330 24 8.6 15.8 1.8 12 24 Q1 SN74ALVCH16373DLR DL 48 MLA 330 32 11.35 16.2 3.1 16 32 Q1 SN74ALVCH16373KR GQL 56 HIJ 330 16 4.8 7.3 1.45 8 16 Q1 TAPE AND REEL BOX INFORMATION Device Package Pins Site Length (mm) Width (mm) Height (mm) 74ALVCH16373GRDR GRD 54 HIJ 346.0 346.0 33.0 74ALVCH16373ZQLR ZQL 56 HIJ 346.0 346.0 33.0 74ALVCH16373ZRDR ZRD 54 HIJ 346.0 346.0 33.0 SN74ALVCH16373DGGR DGG 48 MLA 333.2 333.2 31.75 SN74ALVCH16373DLR DL 48 MLA 346.0 346.0 49.0 SN74ALVCH16373KR GQL 56 HIJ 346.0 346.0 33.0 Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 16-Jul-2007 Pack Materials-Page 3 MECHANICAL DATA MSSO001C – JANUARY 1995 – REVISED DECEMBER 2001 DL (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 48 PINS SHOWN 0.025 (0,635) 0.0135 (0,343) 0.008 (0,203) 48 0.005 (0,13) M 25 0.010 (0,25) 0.005 (0,13) 0.299 (7,59) 0.291 (7,39) 0.420 (10,67) 0.395 (10,03) Gage Plane 0.010 (0,25) 1 0°–ā8° 24 0.040 (1,02) A 0.020 (0,51) Seating Plane 0.110 (2,79) MAX 0.004 (0,10) 0.008 (0,20) MIN PINS ** 28 48 56 A MAX 0.380 (9,65) 0.630 (16,00) 0.730 (18,54) A MIN 0.370 (9,40) 0.620 (15,75) 0.720 (18,29) DIM 4040048 / E 12/01 NOTES: A. B. C. D. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). Falls within JEDEC MO-118 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS003D – JANUARY 1995 – REVISED JANUARY 1998 DGG (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 48 PINS SHOWN 0,27 0,17 0,50 48 0,08 M 25 6,20 6,00 8,30 7,90 0,15 NOM Gage Plane 1 0,25 24 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 48 56 64 A MAX 12,60 14,10 17,10 A MIN 12,40 13,90 16,90 DIM 4040078 / F 12/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Telephony www.ti.com/telephony Low Power Wireless www.ti.com/lpw Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated