CEPF630/CEBF630 CEFF630 N-Channel Enhancement Mode Field Effect Transistor FEATURES VDSS RDS(ON) ID @VGS CEPF630 Type 200V 0.35Ω 10A 10V CEBF630 200V 0.35Ω 10A 10V CEFF630 200V 0.35Ω 10A d 10V D Super high dense cell design for extremely low RDS(ON). High power and current handing capability. Lead free product is acquired. G D G D S G S CEB SERIES TO-263(DD-PAK) G CEP SERIES TO-220 ABSOLUTE MAXIMUM RATINGS Parameter D S Tc = 25 C unless otherwise noted Limit Symbol TO-220/263 Drain-Source Voltage VDS Gate-Source Voltage VGS Drain Current-Continuous Drain Current-Pulsed S CEF SERIES TO-220F ID IDM a Maximum Power Dissipation @ TC = 25 C e PD - Derate above 25 C Operating and Store Temperature Range TJ,Tstg TO-220F 200 Units V ±20 V A 10 10 d 40 40 d 75 33 W 0.27 W/ C 0.6 -55 to 150 A C Thermal Characteristics Parameter Symbol Limit Units Thermal Resistance, Junction-to-Case RθJC 1.5 3.7 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 65 C/W Rev 2. 2007.March http://www.cetsemi.com Details are subject to change without notice . 1 CEPF630/CEBF630 CEFF630 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 200 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 160V, VGS = 0V 25 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA 4 V 350 mΩ Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance Dynamic Characteristics VGS(th) VGS = VDS, ID = 250µA RDS(on) VGS = 10V, ID = 5A gFS VDS = 10V, ID = 5A 2 6 S 680 pF 105 pF 40 pF c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 1.0 MHz Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 100V, ID = 5A, VGS = 10V, RGEN = 50Ω 50 100 ns 80 160 ns 55 110 ns Turn-Off Fall Time tf 40 80 ns Total Gate Charge Qg 27 54 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 160V, ID =5.9A, VGS = 10V 4 nC 14.7 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 10A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature . b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2% . c.Guaranteed by design, not subject to production testing. d.Limited only by maximum temperature allowed . e.Pulse width limited by safe operating area . f.Full package IS(max) = 6.4A . g.Full package VSD test condition IS = 6.4A . 4 - 191 10 A 1.5 V 4 CEPF630/CEBF630 CEFF630 20 10 ID, Drain Current (A) ID, Drain Current (A) 12 8 VGS=10,8,6,5V 6 4 VGS=4V 2 0 0 1 2 3 4 5 RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) 450 300 Coss 150 Crss 0 5 10 15 20 25 1 2 3 4 5 3.0 2.5 ID=5A VGS=10V 2.0 1.5 1.0 0.5 0.0 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 0 Figure 2. Transfer Characteristics Ciss 1.1 1.0 0.9 0.8 0.7 0.6 -50 TJ=125 C 5 Figure 1. Output Characteristics 600 1.2 -55 C VGS, Gate-to-Source Voltage (V) 750 1.3 10 VDS, Drain-to-Source Voltage (V) 900 0 15 0 6 25 C -25 0 25 50 75 100 125 150 VGS=0V 10 1 10 0 10 -1 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 4 - 192 10 10 VDS=160V ID=5.9A 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEPF630/CEBF630 CEFF630 6 4 2 0 4 8 12 16 20 24 28 10ms RDS(ON)Limit 100ms 10 1 1ms 10ms DC 10 0 2 TC=25 C TJ=150 C Single Pulse 0 10 0 10 1 10 2 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on V IN RL D VGS RGEN toff tr td(on) VOUT td(off) tf 90% 90% VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 10 0.1 -1 PDM 0.05 0.02 0.01 Single Pulse t1 -2 10 -5 t2 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 - 193 10 0 10 1 4