CED830G/CEU830G N-Channel Enhancement Mode Field Effect Transistor PRELIMINARY FEATURES 500V, 4.5A, RDS(ON) = 1.5Ω @VGS = 10V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. Lead free product is acquired. D TO-251 & TO-252 package. D G S CEU SERIES TO-252(D-PAK) ABSOLUTE MAXIMUM RATINGS Parameter G G D S CED SERIES TO-251(I-PAK) Tc = 25 C unless otherwise noted Symbol Limit 500 Units V VGS ±30 V ID 4.5 A IDM 18 A 68 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed S a Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C 0.54 W/ C TJ,Tstg -55 to 150 C Symbol Limit Units Thermal Resistance, Junction-to-Case RθJC 2.2 C/W Thermal Resistance, Junction-to-Ambient RθJA 50 C/W Operating and Store Temperature Range Thermal Characteristics Parameter This is preliminary information on a new product in development now . Details are subject to change without notice . 1 Rev 1. 2009.Nov http://www.cetsemi.com CED830G/CEU830G Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 500 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 500V, VGS = 0V 1 µA IGSSF VGS = 30V, VDS = 0V 100 nA IGSSR VGS = -30V, VDS = 0V -100 nA 4 V 1.5 Ω Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance Dynamic Characteristics VGS(th) VGS = VDS, ID = 250µA RDS(on) VGS = 10V, ID = 2.5A gFS VDS = 50V, ID = 4A 2.5 1.2 7 S 595 pF 90 pF 20 pF c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 1.0 MHz Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 250V, ID = 4A, VGS = 10V, RGEN = 14Ω 15 30 ns 14 28 ns 30 60 ns Turn-Off Fall Time tf 10 20 ns Total Gate Charge Qg 13 17 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 400V, ID = 4A, VGS = 10V 2.5 nC 5 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current Drain-Source Diode Forward Voltage IS f b VSD VGS = 0V, IS = 3.1A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature . b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2% . c.Guaranteed by design, not subject to production testing. d.Limited only by maximum temperature allowed . e.Pulse width limited by safe operating area . 2 4.5 A 1.6 V CED830G/CEU830G 12 VGS=10,9,8,7V 10 8 ID, Drain Current (A) ID, Drain Current (A) 12 VGS=6V 6 4 VGS=4V 2 0 0 2 4 6 8 10 12 2 3 4 5 6 Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) 600 450 300 Coss Crss 0 5 10 15 20 25 2.2 1.9 ID=2.5A VGS=10V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 1 -55 C Figure 1. Output Characteristics IS, Source-drain current (A) C, Capacitance (pF) 25 C TJ=125C VGS, Gate-to-Source Voltage (V) 150 VTH, Normalized Gate-Source Threshold Voltage 4 VDS, Drain-to-Source Voltage (V) Ciss 1.2 6 0 750 1.3 8 2 900 0 10 -25 0 25 50 75 100 125 150 VGS=0V 10 0 10 -1 10 -2 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 RDS(ON)Limit VDS=400V ID=4A 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CED830G/CEU830G 6 4 2 0 0 3 6 9 12 10 1 1ms 10ms DC 10 10 15 4 100ms 0 -1 TC=25 C TJ=150 C Single Pulse 10 0 10 1 10 2 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 PDM 0.1 -1 t1 0.05 0.02 0.01 Single Pulse 10 -2 10 -5 t2 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 0 10 1 3