Freescale Semiconductor Data Sheet: Advance Information Document Number: MCF51JM128 Rev. 0, 01/2008 MCF51JM128 MCF51JM128 ColdFire Microcontroller 80 LQFP 14 mm × 14 mm 64 LQFP 10 mm × 10 mm 44 LQFP 10 mm × 10 mm 64 QFP 14 mm × 14 mm The MCF51JM128 is a member of the ColdFire® family of 32-bit reduced instruction set computing (RISC) microprocessors. This document provides an overview of the MCF51JM128 series, focusing on its highly integrated and diverse feature set. The MCF51JM128 series is based on the V1 ColdFire core and operates at processor core speeds up to 50.33 MHz. As part of Freescale’s Controller Continuum®, it is an ideal upgrade for designs based on the MC9S08JM60 series of 8-bit microcontrollers. The MCF51JM128 features the following functional units: • V1 ColdFire core with background debug module • Up to 128 KBytes of flash memory • Up to 16 Kbytes of static RAM (SRAM) • Multipurpose clock generator (MCG) • Dual-role Universal Serial Bus On-The-Go device (USBOTG) • Controller-area network (MSCAN) • Cryptographic acceleration unit (CAU) • Random number generator accelerator (RNGA) • Analog comparators (ACMP) • Analog-to-digital converter (ADC) with up to 12 channels • Two Inter-integrated circuit (IIC) modules • Two serial peripheral interfaces (SPI) • Two serial communications interfaces (SCI) • Carrier modulation timer (CMT) • Eight-channel timer/pulse-width modulators (TPM) • Real-time counter (RTC) • 66 general-purpose input/output (GPIO) modules plus Interrupt request input • Eight keyboard interrupts (KBI) • 16-bit Rapid GPIO This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2008. All rights reserved. Table of Contents 1 2 3 4 MCF51JM128 Family Configurations . . . . . . . . . . . . . . . . . . . .3 1.1 Device Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.2 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.3.1 Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 1.4 Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 1.5 Pinouts and Packaging . . . . . . . . . . . . . . . . . . . . . . . . . .9 Preliminary Electrical Characteristics . . . . . . . . . . . . . . . . . . .14 2.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .14 2.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .14 2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .15 2.4 Electrostatic Discharge (ESD) Protection Characteristics 16 2.5 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 2.6 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .23 2.7 Analog Comparator (ACMP) Electricals . . . . . . . . . . . .26 2.8 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .26 2.9 External Oscillator (XOSC) Characteristics . . . . . . . . .29 2.10 MCG Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .30 2.11 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 2.11.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . .32 2.11.2 Timer/PWM (TPM) Module Timing . . . . . . . . . .33 2.11.3 MSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 2.12 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 2.13 Flash Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .37 2.14 USB Electricals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 2.15 EMC Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 2.15.1 Radiated Emissions . . . . . . . . . . . . . . . . . . . . . .38 2.15.2 Conducted Transient Susceptibility . . . . . . . . . .38 Mechanical Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . .40 3.1 80-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 3.2 64-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 3.3 64-pin QFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 3.4 44-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 List of Figures Figure 1. MCF51JM128 Block Diagram . . . . . . . . . . . . . . . . . . . . 4 Figure 2. 80-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 3. 64-pin QFP and LQFP . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 4. 44-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 5. Typical IOH (Low Drive) vs VDD–VOH at VDD = 3 V . . . 20 Figure 6. Typical IOH (High Drive) vs VDD–VOH at VDD = 3 V. . . 20 Figure 7. Typical IOH (Low Drive) vs VDD–VOH at VDD = 5 V . . . 21 Figure 8. Typical IOH (High Drive) vs VDD–VOH at VDD = 5 V. . . 21 Figure 9. Typical IOL (Low Drive) vs VOL–VSS at VDD = 3 V . . . . 22 Figure 10.Typical IOL (High Drive) vs VOL–VSS at VDD = 3 V . . . Figure 11.Typical IOL (Low Drive) vs VOL–VSS at VDD = 5 V . . . Figure 12.Typical IOL (High Drive) vs VOL–VSS at VDD = 5 V . . . Figure 13.ADC Input Impedance Equivalency Diagram. . . . . . . Figure 14.Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 15.IRQ/KBIPx Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 16.Timer External Clock . . . . . . . . . . . . . . . . . . . . . . . . . Figure 17.Timer Input Capture Pulse . . . . . . . . . . . . . . . . . . . . . Figure 18.SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . Figure 19.SPI Master Timing (CPHA = 1) . . . . . . . . . . . . . . . . . Figure 20.SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . Figure 21.SPI Slave Timing (CPHA = 1) . . . . . . . . . . . . . . . . . . 22 23 23 27 32 32 33 33 35 35 36 36 List of Tables Table 1. MCF51JM128 Series Device Comparison . . . . . . . . . . 3 Table 2. MCF51JM128 Series Functional Units . . . . . . . . . . . . . 5 Table 3. Orderable Part Number Summary. . . . . . . . . . . . . . . . . 8 Table 4. Pin Assignments by Package and Pin Sharing Priority 11 Table 5. Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . 14 Table 6. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . 15 Table 7. Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 15 Table 8. ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . 16 Table 9. ESD and Latch-Up Protection Characteristics. . . . . . . 17 Table 10.DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 11. Supply Current Characteristics. . . . . . . . . . . . . . . . . . 23 Table 12.Analog Comparator Electrical Specifications. . . . . . . . 26 Table 13.5 Volt 12-bit ADC Operating Conditions . . . . . . . . . . . 26 Table 14.5 Volt 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 15.Oscillator Electrical Specifications (Temperature Range = –40 to 105×C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 16.MCG Frequency Specifications (Temperature Range = –40 to 125×C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 17.Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 18.TPM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 19.MSCAN Wake-up Pulse Characteristics . . . . . . . . . . . 33 Table 20.SPI Electrical Characteristic . . . . . . . . . . . . . . . . . . . . 34 Table 21.Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 22.Internal USB 3.3V Voltage Regulator Characteristics . 38 Table 23.Radiated Emissions. . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 24.Conducted Transient Susceptibility . . . . . . . . . . . . . . . 39 Table 25.Susceptibility Performance Classification . . . . . . . . . . 39 Table 26.Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 MCF51JM128 ColdFire Microcontroller, Rev. 0 2 Freescale Semiconductor MCF51JM128 Family Configurations 1 MCF51JM128 Family Configurations 1.1 Device Comparison The MCF51JM128 series consists of two devices. These are compared in Table 1. Table 1. MCF51JM128 Series Device Comparison MCF51JM128 MCF51JM64 Feature 80-pin 64-pin 44-pin 80-pin 64-pin Flash memory size (Kbytes) 128 64 RAM size (Kbytes) 16 8 V1 ColdFire core with BDM (background debug module) Yes ACMP (analog comparator) Yes 44-pin ADC (analog-to-digital converter) channels (12-bit) 12 8 12 8 CAN (controller area network) Yes No Yes No CAU (cryptographic acceleration unit) Yes No No Yes CMT (carrier modulator timer) Yes COP (computer operating properly) Yes IIC1 (inter-integrated circuit) Yes IIC2 Yes No No Yes IRQ (interrupt request input) No No Yes KBI (keyboard interrupts) 8 8 6 LVD (low-voltage detector) Yes MCG (multipurpose clock generator) Yes 8 8 6 Port I/O1 66 51 33 66 51 33 RGPIO (rapid general-purpose I/O) 16 6 0 16 6 0 6 6 4 RNGA (random number generator accelerator) Yes RTC (real-time counter) Yes SCI1 (serial communications interface) Yes SCI2 Yes SPI1 (serial peripheral interface) Yes SPI2 Yes TPM1 (timer/pulse-width modulator) channels 6 6 4 TPM2 channels 2 USB On-The-Go (Dual-role OTG device with on-chip transceiver) Yes XOSC (crystal oscillator) Yes 1 Up to 16 pins on Ports A, H, and J are shared with the ColdFire Rapid GPIO module. MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 3 MCF51JM128 Family Configurations 1.2 Block Diagram IRQ/TPMCLK TPM1 Port F: TPM1CH5 TPM1CH4 TPM1CH3 TPM1CH2 Port E: TPM1CH1 TPM1CH0 TPM2 Port F: TPM2CH1 TPM2CH0 TPMCLK SYSCTL COP LVD IRQ TPMCLK IIC1 Port C: SDA1 SCL1 IIC2 Port H: SCL2 SDA2 KBI Port B: KBIP5 KBIP4 Port D: KBIP3 KBIP2 Port G: KBIP7 KBIP6 KBIP1 KBIP0 FLASH 128 or 64 Kbytes Port G: MCG RAM VDD VDD VSS VSS INTC USB Port C: RXCAN Port F: TXCAN SCI1 Port E: RXD1 TXD1 SCI2 Port C: RXD2 TXD2 SPI1 Port E: SS1 SPSCK1 MOSI1 MISO1 SPI2 Port B: SS2 SPSCK2 MOSI2 MISO2 RNGA USBDN USBDP VUSB33 PTC7 PTC6/RXCAN PTC5/RXD2 PTC4 PTC3/TXD2 PTC2/IRO PTC1/SDA1 PTC0/SCL1 PTD7 PTD6 PTD5 PTD4/ADP11 PTD3/KBIP3/ADP10 PTD2/KBIP2/ACMPO PTD1/ACMP–/ADP9 PTD0/ACMP+/ADP8 PTE7/SS1 PTE6/SPSCK1 PTE5/MOSI1 PTE4/MISO1 PTE3/TPM1CH1 PTE2/TPM1CH0 PTE1/RXD1 PTE0/TXD1 PTF7/TXCAN PTF6 PTF5/TPM2CH1 PTF4/TPM2CH0 PTF3/TPM1CH5 PTF2/TPM1CH4 PTF1/TPM1CH3 PTF0/TPM1CH2 PTG7 PTG6 PTG5/EXTAL PTG4/XTAL PTG3/KBIP7 PTG2/KBIP6 PTG1/KBIP1 PTG0/KBIP0 PTH4/RGPIO10 PTH3/RGPIO9 PTH2/RGPIO8 PTH1/SCL2 PTH0/SDA2 PTJ4/RGPIO15 PTJ3/RGPIO14 PTJ2/RGPIO13 PTJ1/RGPIO12 PTJ0/RGPIO11 XTAL CAN VREG PTB7/ADP7 PTB6/ADP6 PTB5/KBIP5/ADP5 PTB4/KBIP4/ADP4 PTB3/SS2/ADP3 PTB2/SPSCK2/ADP2 PTB1/MOSI2/ADP1 PTB0/MISO2/ADP0 XOSC EXTAL 16 or 8 Kbytes Port J: RGPIO15 RGPIO14 RGPIO13 RGPIO12 RGPIO11 Port H: RGPIO10 RGPIO9 RGPIO RGPIO8 Port A: RGPIO7 RGPIO6 RGPIO5 RGPIO4 RGPIO3 RGPIO2 RGPIO1 RGPIO0 Port A RESET Port C: IRO Port B V1 ColdFire core CMT Port C ADC Port D DBG PTA7/RGPIO7 PTA6/RGPIO6 PTA5/RGPIO5 PTA4/RGPIO4 PTA3/RGPIO3 PTA2/RGPIO2 PTA1/RGPIO1 PTA0/RGPIO0 Port E CAU Port D: ACMPO ACMP ACMP– ACMP+ Port F BDM Port B: ADP7 ADP6 ADP5 ADP4 ADP3 ADP2 ADP1 ADP0 Port D: ADP11 ADP10 ADP9 ADP8 Port G BKGD/MS VREFH VREFL VDDAD VSSAD Port H VREFH VREFL VDDAD VSSAD Port J Figure 1 shows the connections between the MCF51JM128 series pins and modules. RTC Figure 1. MCF51JM128 Block Diagram 1.3 Features Table 2 describes the functional units of the MCF51JM128 series. MCF51JM128 ColdFire Microcontroller, Rev. 0 4 Freescale Semiconductor MCF51JM128 Family Configurations Table 2. MCF51JM128 Series Functional Units Unit Function CF1CORE (V1 ColdFire core) Executes programs and interrupt handlers BDM (background debug module) Provides a single-pin debugging interface (part of the V1 ColdFire core) DBG (debug) Provides debugging and emulation capabilities (part of the V1 ColdFire core) SYSCTL (system control) Provides LVD, COP, external interrupt request, and so on FLASH (flash memory) Provides storage for program code and constants RAM (random-access memory) Provides storage for program code, constants, and variables RGPIO (rapid general-purpose input/output) Allows I/O port access at CPU clock speeds VREG (voltage regulator) Controls power management throughout the device USBOTG (USB On-The-Go) Supports the USB On-The-Go dual-role controller ADC (analog-to-digital converter) Measures analog voltages at up to 12 bits of resolution TPM1, TPM2 (timer/pulse-width modulators) Provide a variety of timing-based features CF1_INTC (interrupt controller) Controls and prioritizes all device interrupts CAU (cryptographic acceleration unit) Co-processor support DES, 3DES, AES, MD5, and SHA-1 RNGA (random number generator accelerator) 32-bit random number generator that complies with FIPS-140 RTC (real-time counter) Provides a constant-time base with optional interrupt ACMP (analog comparator) Compares two analog inputs CMT (carrier modulator timer) Infrared output used for the Remote Controller IIC1, IIC2 (inter-integrated circuits) Supports the standard IIC communications protocol KBI (keyboard interrupt) Provides pin interrupt capabilities MCG (multipurpose clock generator) Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources XOSC (crystal oscillator) Supports low/high range crystals CAN (controller area network) Supports standard CAN communications protocol SCI1, SCI2 (serial communications interfaces) Serial communications UARTs that can support RS-232 and LIN protocols SPI1, SPI2 (serial peripheral interfaces) Provide a 4-pin synchronous serial interface 1.3.1 • • Feature List 32-Bit Version 1 ColdFire® Central Processor Unit (CPU) — Up to 50.33 MHz at 2.7 V – 5.5 V — Performance (Dhrystone 2.1): – 0.94 Dhrystone 2.1 MIPS per MHz when running from internal RAM – 0.76 Dhrystone 2.1 MIPS per MHz when running from flash — Implements Instruction Set Revision C (ISA_C) — Supports up to 30 peripheral interrupt requests and seven software interrupts On-chip memory MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 5 MCF51JM128 Family Configurations • • • • • • • — Up to 128 KBytes Flash memory with read/program/erase over full operating voltage and temperature range — Up to 16 KBytes static random access memory (RAM) — Security circuitry to prevent unauthorized access to RAM and flash contents Power-saving modes — Two low-power stop plus wait modes — Peripheral clock enable register can disable clocks to unused modules, thereby reducing currents; this behavior allows clocks to remain enabled to specific perhipherals in Stop3 mode — Very lower power real-time counter for use in run, wait, and stop modes with internal and external clock sources Four Clock Source Options — Oscillator (XOSC) — Loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz — FLL/PLL controlled by internal or external reference — Trimmable internal reference allows 0.2% resolution and 2% deviation System protection features — Watchdog computer operating properly (COP) reset with option to run from dedicated 1 kHz internal clock source or bus clock — Low-voltage detection with reset or interrupt; selectable trip points — Illegal opcode and illegal address detection with programmable reset or exception response — Flash block protection Debug support — Single-wire Background debug interface — 4 Program Counters plus two address (optional data) breakpoint registers with programmable 1- or 2-level trigger response — 64-entry processor status and debug data trace buffer with programmable start/stop conditions Universal Serial Bus (USB) On-The-Go dual-role controller — Full-speed USB device controller – Fully compliant with USB specification 1.1 and 2.0 – 16 bidirectional endpoints, with double buffering to provide the maximum throughput – Supports control, bulk, interrupt, and isochronous endpoints – Supports bus-powered capability with low-power consumption — Full-speed / low-speed host controller – Host mode allows control, bulk, interrupt, and isochronous transfers — OTG protocol logic — On-chip USB transceiver — On-chip 3.3 V USB regulator and pull-up/down resistors save system cost Controller area network (MSCAN) — Implementation of the CAN protocol — Version 2.0A/B — Five receive buffers with FIFO storage scheme — Three transmit buffers with internal prioritization using a “local priority” concept — Flexible maskable identifier filter programmable as 2x32-bit, 4x16-bit, or 8x8-bit — Programmable wakeup functionality with integrated low-pass filter — Programmable loopback mode supports self-test operation — Programmable bus-off recovery functionality — Internal timer for time-stamping of received and transmitted messages Cryptographic acceleration unit (CAU) — Co-processor support of DES, 3DES, AES, MD5, and SHA-1 MCF51JM128 ColdFire Microcontroller, Rev. 0 6 Freescale Semiconductor MCF51JM128 Family Configurations • • • • • • • • • • — Only available on MCF51JM128EVLK Random number generator accelerator (RNGA) — 32-bit random number generator that complies with FIPS-140 Analog-to-digital converter (ADC) — 12-channel, 12-bit resolution — Output formatted in 12-, 10-, or 8-bit right-justified format — Single or continuous conversion, and selectable asynchronous hardware conversion trigger — Operation in Stop3 mode — Automatic compare function — Internal temperature sensor Analog comparators (ACMP) — Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output — Option to compare to fixed internal bandgap reference voltage — Option to route output to TPM module — Operation in Stop3 mode Inter-integrated circuit (IIC) — Up to 100 kbps with maximum bus loading — Multi-master operation — Programmable slave address — Supports broadcast mode and 10-bit address extension Serial communications interfaces (SCI) — Two SCIs with full-duplex, non-return-to-zero (NRZ) format — LIN master extended break generation — LIN slave extended break detection — Programmable 8-bit or 9-bit character length — Wake up on active edge Serial peripheral interfaces (SPI) — Two serial peripheral interfaces with full-duplex or single-wire bidirectional — Double-buffered transmit and receive — Programmable transmit bit rate, phase, polarity, and Slave Select output — MSB-first or LSB-first shifting Timer/pulse width modulator (TPM) — 16-bit free-running or modulo up/down count operation — Up to eight channels, where each channel can be an input capture, output compare, or edge-aligned PWM — One interrupt per channel plus terminal count interrupt RTC — 8-bit modulus counter with binary- or decimal-based prescaler — External clock source for precise time base, time-of-day, calendar or task scheduling functions — Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external components Carrier modulator timer (CMT) — carrier generator, modulator, and transmitter drive the infrared out (IRO) pin — operation in independent high/low time control, baseband, FSK, and direct IRO control modes Input/Output — 66 GPIOs, 1 input-only pin, and 1 output-only pin — Eight keyboard interrupt pins with selectable polarity MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 7 MCF51JM128 Family Configurations — Hysteresis and configurable pull-up device on all input pins; configurable slew rate and drive strength on all output pins — 16 bits of Rapid GPIO connected to the processor’s local 32-bit platform bus with set, clear, and faster toggle functionality — 16 bits of high-speed GPIO functionality 1.4 Part Numbers Table 3. Orderable Part Number Summary Freescale Part Number Description Flash / SRAM (Kbytes) Package Temperature MCF51JM64VLK MCF51JM64 ColdFire Microcontroller 64 / 8 80 LQFP –40 to +105 °C MCF51JM64VLH MCF51JM64 ColdFire Microcontroller 64 / 8 64 LQFP –40 to +105 °C MCF51JM64VQH MCF51JM64 ColdFire Microcontroller 64 / 8 64 QFP –40 to +105 °C MCF51JM64VLD MCF51JM64 ColdFire Microcontroller 64 / 8 44 LQFP –40 to +105 °C MCF51JM123EVLK MCF51JM128 ColdFire Microcontroller with CAU Enabled 128 / 16 80 LQFP –40 to +105 °C MCF51JM128VLK MCF51JM128 ColdFire Microcontroller 128 / 16 80 LQFP –40 to +105 °C MCF51JM128VLH MCF51JM128 ColdFire Microcontroller 128 / 16 64 LQFP –40 to +105 °C MCF51JM128VQH MCF51JM128 ColdFire Microcontroller 128 / 16 64 QFP –40 to +105 °C MCF51JM128VLD MCF51JM128 ColdFire Microcontroller 128 / 16 44 LQFP –40 to +105 °C MCF51JM128 ColdFire Microcontroller, Rev. 0 8 Freescale Semiconductor MCF51JM128 Family Configurations 1.5 Pinouts and Packaging 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 PTJ3 / RGPIO14 PTJ2 / RGPIO13 PTJ1 / RGPIO12 PTJ0 / RGPIO11 PTD2 / KBIP2 / ACMPO VSSAD VREFL VREFH VDDAD PTD1 / ADP9 / ACMP– PTD0 / ADP8 / ACMP+ PTB7 / ADP7 PTB6 / ADP6 PTB5 / KBIP5 / ADP5 PTB4 / KBIP4 / ADP4 PTB3 / SS2 / ADP3 PTB2 / SPSCK2 / ADP2 PTB1 / MOSI2 / ADP1 PTB0 / MISO2 / ADP0 PTA7 / RGPIO7 PTH3 / RGPIO9 PTH4 / RGPIO10 PTE4 / MISO1 PTE5 / MOSI1 PTE6 / SPSCK1 PTE7 / SS1 VDD VSS USBDN USBDP VUSB33 PTG0 / KBIP0 PTG1 / KBIP1 PTA0 / RGPIO0 PTA1 / RGPIO1 PTA2 / RGPIO2 PTA3 / RGPIO3 PTA4 / RGPIO4 PTA5 / RGPIO5 PTA6 / RGPIO6 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 PTC4 IRQ / TPMCLK RESET PTF0 / TPM1CH2 PTF1 / TPM1CH3 PTF2 / TPM1CH4 PTF3 / TPM1CH5 PTF4 / TPM2CH0 PTC6 / RXCAN PTF7 / TXCAN PTF5 / TPM2CH1 PTF6 PTE0 / TXD1 PTE1 / RXD1 PTE2 / TPM1CH0 PTE3 / TPM1CH1 PTC7 PTH0 / SDA2 PTH1 / SCL2 PTH2 / RGPIO8 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PTC5 / RXD2 PTC3 / TXD2 PTC2 / IRO PTC1 / SDA1 PTC0 / SCL1 PTG7 PTG6 VDD VSS PTG5 / EXTAL PTG4 / XTAL BKGD/MS PTG3 / KBIP7 PTG2 / KBIP6 PTD7 PTD6 PTD5 PTD4 / ADP11 PTD3 / KBIP3 / ADP10 PTJ4 / RGPIO15 Figure 2 shows the pinout of the 80-pin LQFP. Figure 2. 80-pin LQFP MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 9 MCF51JM128 Family Configurations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PTD2 / KBIP2 / ACMPO VSSAD VREFL VREFH VDDAD PTD1 / ADP9 / ACMP– PTD0 / ADP8 / ACMP+ PTB7 / ADP7 PTB6 / ADP6 PTB5 / KBIP5 / ADP5 PTB4 / KBIP4 / ADP4 PTB3 / SS2 / ADP3 PTB2 / SPSCK2 / ADP2 PTB1 / MOSI2 / ADP1 PTB0 / MISO2 / ADP0 PTA5 / RGPIO5 PTE4 / MISO1 PTE5 / MOSI1 PTE6 / SPSCK1 PTE7 / SS1 VDD VSS USBDN USBDP VUSB33 PTG0 / KBIP0 PTG1 / KBIP1 PTA0 / RGPIO0 PTA1 / RGPIO1 PTA2 / RGPIO2 PTA3 / RGPIO3 PTA4 / RGPIO4 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PTC4 IRQ / TPMCLK RESET PTF0 / TPM1CH2 PTF1 / TPM1CH3 PTF2 / TPM1CH4 PTF3 / TPM1CH5 PTF4 / TPM2CH0 PTC6 / RXCAN PTF7 / TXCAN PTF5 / TPM2CH1 PTF6 PTE0 / TXD1 PTE1 / RXD1 PTE2 / TPM1CH0 PTE3 / TPM1CH1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PTC5 / RXD2 PTC3 / TXD2 PTC2 / IRO PTC1 / SDA1 PTC0 / SCL1 VSS PTG5 / EXTAL PTG4 / XTAL BKGD/MS PTG3 / KBIP7 PTG2 / KBIP6 PTD7 PTD6 PTD5 PTD4 / ADP11 PTD3 / KBIP3 / ADP10 Figure 3 shows the pinout of the 64-pin LQFP and QFP. Figure 3. 64-pin QFP and LQFP MCF51JM128 ColdFire Microcontroller, Rev. 0 10 Freescale Semiconductor MCF51JM128 Family Configurations 33 32 31 30 29 28 27 26 25 24 23 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 PTD2 / KBIP2 / ACMPO VSSAD / VREFL VDDAD / VREFH PTD1 / ADP9 / ACMP– PTD0 / ADP8 / ACMP+ PTB5 / KBIP5 / ADP5 PTB4 / KBIP4 / ADP4 PTB3 / SS2 / ADP3 PTB2 / SPSCK2 / ADP2 PTB1 / MOSI2 / ADP1 PTB0 / MISO2 / ADP0 PTE4 / MISO1 PTE5 / MOSI1 PTE6 / SPSCK1 PTE7 / SS1 VDD VSS USBDN USBDP VUSB33 PTG0 / KBIP0 PTG1 / KBIP1 PTC4 IRQ / TPMCLK RESET PTF0 / TPM1CH2 PTF1 / TPM1CH3 PTF4 / TPM2CH0 PTF5 / TPM2CH1 PTE0 / TXD1 PTE1 / RXD1 PTE2 / TPM1CH0 PTE3 / TPM1CH1 44 43 42 41 40 39 38 37 36 35 34 PTC5 / RXD2 PTC3 / TXD2 PTC2 / IRO PTC1 / SDA1 PTC0 / SCL1 VSS PTG5 / EXTAL PTG4 / XTAL BKGD / MS PTG3 / KBIP7 PTG2 / KBIP6 Figure 4 shows the pinout of the 44-pin LQFP. Figure 4. 44-pin LQFP Table 4 shows the package pin assignments. Table 4. Pin Assignments by Package and Pin Sharing Priority Pin Number <-- Lowest 80 64 44 Port Pin 1 1 1 PTC4 2 2 3 Priority --> Highest Alt 1 Alt 2 2 IRQ TPMCLK 3 3 RESET 4 4 4 PTF0 TPM1CH2 5 5 5 PTF1 TPM1CH3 6 6 — PTF2 TPM1CH4 7 7 — PTF3 TPM1CH5 8 8 6 PTF4 TPM2CH0 9 9 — PTC6 RXCAN 10 10 — PTF7 TXCAN 11 11 7 PTF5 TPM2CH1 12 12 — PTF6 13 13 8 PTE0 TXD1 14 14 9 PTE1 RXD1 15 15 10 PTE2 TPM1CH0 BUSCLK_OUT MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 11 MCF51JM128 Family Configurations Table 4. Pin Assignments by Package and Pin Sharing Priority (continued) Pin Number <-- Lowest Priority --> Highest 80 64 44 Port Pin Alt 1 Alt 2 16 16 11 PTE3 TPM1CH1 17 — — PTC7 18 — — PTH0 SDA2 19 — — PTH1 SCL2 20 — — PTH2 RGPIO8 21 — — PTH3 RGPIO9 22 — — PTH4 RGPIO10 23 17 12 PTE4 MISO1 24 18 13 PTE5 MOSI1 25 19 14 PTE6 SPSCK1 26 20 15 PTE7 SS1 27 21 16 VDD 28 22 17 VSS 29 23 18 USBDN 30 24 19 USBDP 31 25 20 VUSB33 32 26 21 PTG0 KBIP0 33 27 22 PTG1 KBIP1 34 28 — PTA0 RGPIO0 USB_SESSVLD 35 29 — PTA1 RGPIO1 USB_SESSEND 36 30 — PTA2 RGPIO2 USB_VBUSVLD 37 31 — PTA3 RGPIO3 USB_PULLUP(D+) 38 32 — PTA4 RGPIO4 USB_DM_DOWN 39 33 — PTA5 RGPIO5 USB_DP_DOWN 40 — — PTA6 RGPIO6 USB_ID 41 — — PTA7 RGPIO7 42 34 23 PTB0 MISO2 ADP0 43 35 24 PTB1 MOSI2 ADP1 44 36 25 PTB2 SPSCK2 ADP2 45 37 26 PTB3 SS2 ADP3 46 38 27 PTB4 KBIP4 ADP4 47 39 28 PTB5 KBIP5 ADP5 48 40 — PTB6 ADP6 USB_ALT_CLK MCF51JM128 ColdFire Microcontroller, Rev. 0 12 Freescale Semiconductor MCF51JM128 Family Configurations Table 4. Pin Assignments by Package and Pin Sharing Priority (continued) Pin Number <-- Lowest Priority --> Highest 80 64 44 Port Pin Alt 1 Alt 2 49 41 — PTB7 ADP7 50 42 29 PTD0 ADP8 ACMP+ 51 43 30 PTD1 ADP9 ACMP– 52 44 31 53 45 54 46 55 47 56 48 33 PTD2 KBIP2 57 — — PTJ0 RGPIO11 58 — — PTJ1 RGPIO12 59 — — PTJ2 RGPIO13 60 — — PTJ3 RGPIO14 61 — — PTJ4 RGPIO15 62 49 — PTD3 KBIP3 63 50 — PTD4 ADP11 64 51 — PTD5 65 52 — PTD6 66 53 — PTD7 67 54 34 PTG2 KBIP6 68 55 35 PTG3 KBIP7 69 56 36 70 57 37 PTG4 XTAL 71 58 38 PTG5 EXTAL 72 59 39 VSS 73 — — VDD 74 — — PTG6 75 — — PTG7 76 60 40 PTC0 SCL1 77 61 41 PTC1 SDA1 78 62 42 PTC2 IRO 79 63 43 PTC3 TXD2 80 64 44 PTC5 RXD2 VDDAD VREFH 32 VREFL VSSAD BKGD ACMPO ADP10 MS MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 13 Preliminary Electrical Characteristics 2 Preliminary Electrical Characteristics This section contains electrical specification tables and reference timing diagrams for the MCF51JM128 microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed. NOTE The parameters specified in this data sheet supersede any values found in the module specifications. 2.1 Parameter Classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate: Table 5. Parameter Classifications P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled C in the parameter tables where appropriate. 2.2 Absolute Maximum Ratings Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 6 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, VSS or VDD). MCF51JM128 ColdFire Microcontroller, Rev. 0 14 Freescale Semiconductor Preliminary Electrical Characteristics Table 6. Absolute Maximum Ratings Rating Symbol Value Unit Supply voltage VDD –0.3 to + 5.8 V Input voltage VIn – 0.3 to VDD + 0.3 V ID ± 25 mA IDD 120 mA Tstg –55 to +150 °C TJ 150 °C Instantaneous maximum current (applies to all port pins)1, 2, 3 Single pin limit Maximum current into VDD Storage temperature Maximum junction temperature 1 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two resistance values. 2 All functional non-supply pins are internally clamped to V SS and VDD. 3 Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load shunt current is greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples: if no system clock is present or if the clock rate is low, which would reduce overall power consumption. 2.3 Thermal Characteristics This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. To take PI/O into account in power calculations, determine the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD is small. Table 7. Thermal Characteristics Rating Operating temperature range (packaged) Thermal resistance Symbol Value Unit TA –40 to +105 °C 1,2,3,4 80-pin LQFP 1s 2s2p 52 40 64-pin LQFP 1s 2s2p θJA 65 47 °C/W 64-pin QFP 1s 2s2p 54 40 1s 2s2p 69 48 44-pin LQFP 1 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 15 Preliminary Electrical Characteristics 2 Junction to Ambient Natural Convection 1s - Single Layer Board, one signal layer 4 2s2p - Four Layer Board, 2 signal and 2 power layers 3 The average chip-junction temperature (TJ) in °C can be obtained from: TJ = TA + (PD × θJA) Eqn. 1 where: TA = Ambient temperature, °CθJA = Package thermal resistance, junction-to-ambient, °C/WPD = Pint + PI/OPint = IDD × VDD, Watts — chip internal powerPI/O = Power dissipation on input and output pins — user determined For most applications, PI/O << Pint and can be neglected. An approximate relationship between PD and TJ (if PI/O is neglected) is: PD = K ÷ (TJ + 273°C) Eqn. 2 K = PD × (TA + 273°C) + θJA × (PD)2 Eqn. 3 Solving equations 1 and 2 for K gives: where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations 1 and 2 iteratively for any value of TA. 2.4 Electrostatic Discharge (ESD) Protection Characteristics Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage. All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E. A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table 8. ESD and Latch-up Test Conditions Model Human Body Description Symbol Value Unit Series Resistance R1 1500 Ω Storage Capacitance C 100 pF Number of Pulse per pin – 3 Minimum input voltage limit –2.5 V Maximum input voltage limit 7.5 V Latch-up MCF51JM128 ColdFire Microcontroller, Rev. 0 16 Freescale Semiconductor Preliminary Electrical Characteristics Table 9. ESD and Latch-Up Protection Characteristics Num 2.5 Rating Symbol Min Max Unit 1 Human Body Model (HBM) VHBM +/– 2000 — V 2 Charge Device Model (CDM) VCDM +/– 500 — V 3 Latch-up Current at TA = 85°C ILAT +/– 100 — mA DC Characteristics This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes. Table 10. DC Characteristics Num C Parameter Symbol Operating voltage2 1 Output high voltage — Low Drive (PTxDSn = 0) 5 V, ILoad = –2 mA 3 V, ILoad = –0.6 mA 5 V, ILoad = –0.4 mA 3 V, ILoad = –0.24 mA 2 P Output high voltage — High Drive (PTxDSn = 1) 5 V, ILoad = –10 mA 3 V, ILoad = –3 mA PTC2/IRO 3 V, ILoad = –10 mA 5 V, ILoad = –2 mA 3 V, ILoad = –0.4 mA Min Typ1 Max Unit 2.7 — 5.5 V VDD – 1.5 VDD – 1.5 VDD – 0.8 VDD – 0.8 — — — — — — — — VOH V VDD – 1.5 VDD – 1.5 VDD – 0.5 VDD – 0.8 VDD – 0.8 Output low voltage — Low Drive (PTxDSn = 0) 5 V, ILoad = 2 mA 3 V, ILoad = 0.6 mA 5 V, ILoad = 0.4 mA 3 V, ILoad = 0.24 mA 3 5 — — — — — — — — 1.5 1.5 0.8 0.8 VOL P V Output low voltage — High Drive (PTxDSn = 1) 5 V, ILoad = 10 mA 3 V, ILoad = 3 mA PTC2/ IRO 3 V, ILoad = 16 mA 5 V, ILoad = 2 mA 3 V, ILoad = 0.4 mA 4 — — — — P Output high current — Max total IOH for all ports 5V 3V — — — — 1.5 1.5 1.2 0.8 0.8 IOHT — — — — 100 60 mA IOLT — — — — 100 60 mA P Output low current — Max total IOL for all ports 5V 3V MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 17 Preliminary Electrical Characteristics Table 10. DC Characteristics (continued) Num C 6 Parameter Symbol –40 °C 25 °C 105 °C –40 °C 25 °C 105 °C P Input hysteresis; all digital inputs P Input leakage current; input only pins 3 10 P High Impedance (off-state) leakage current 11 P Internal pullup resistors4 13 1.95 VIL — –40 °C 25 °C 105 °C VDD = 3V 12 2.76 2.80 2.81 Max Unit — V 1.75 1.77 1.76 P Input low voltage; all digital inputs VDD = 5V 9 3.25 VIH –40 °C 25 °C 105 °C VDD = 3V 8 Typ1 P Input high voltage; all digital inputs VDD = 5V 7 Min P Internal pulldown resistors 3 5 2.02 2.01 2.03 1.75 1.22 1.22 1.21 1.05 V Vhys 0.06 x VDD mV |IIn| — 0.1 1 μA |IOZ| — 0.1 1 μA RPU 20 45 65 kΩ RPD 20 45 65 kΩ 900 1425 1300 2400 1575 3090 CIn — — 8 pF Internal pullup resistor to USBDP (to VUSB33) Idle RPUPD Transmit kΩ 14 C Input Capacitance; all non-supply pins 15 P POR rearm voltage VPOR 0.9 1.4 2.0 V 16 D POR rearm time tPOR 10 — — μs MCF51JM128 ColdFire Microcontroller, Rev. 0 18 Freescale Semiconductor Preliminary Electrical Characteristics Table 10. DC Characteristics (continued) Num C 17 18 19 20 21 P P C P P 22 C 23 T Parameter Symbol Min Typ1 Max VLVD1 Low-voltage detection threshold — high range VDD falling VDD rising Low-voltage detection threshold — low range V 3.9 4.0 4.0 4.1 4.1 4.2 VLVD0 VDD falling VDD rising Low-voltage warning threshold — high range 1 V 2.48 2.54 2.56 2.62 2.64 2.70 VLVW3 VDD falling VDD rising Low-voltage warning threshold — high range 0 V 4.5 4.6 4.6 4.7 4.7 4.8 VLVW2 VDD falling VDD rising Low-voltage warning threshold low range 1 V 4.2 4.3 4.3 4.4 4.4 4.5 VLVW1 VDD falling VDD rising Low-voltage warning threshold — low range 0 V 2.84 2.90 2.92 2.98 3.00 3.06 V VLVW0 VDD falling VDD rising Low-voltage inhibit reset/recover hysteresis 2.66 2.72 2.74 2.80 2.82 2.88 — — 100 60 — — Vhys 5V 3V Unit mV 1 Typical values are based on characterization data at 25°C unless otherwise stated. Operating voltage with USB enabled can be found in Section 2.14, “USB Electricals.” 3 Measured with V = V In DD or VSS. 4 Measured with V = V . In SS 5 Measured with VIn = VDD. 2 MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 19 Preliminary Electrical Characteristics IOH (mA) IOH Low Drive @ 3V VDD 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 25C 105C -40c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 VDD-VOH (V) Figure 5. Typical IOH (Low Drive) vs VDD–VOH at VDD = 3 V IOH High Drive @ 3V VDD 5 IOH (mA) 0 -5 25C 105C -40c -10 -15 -20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 VDD-VOH (V) Figure 6. Typical IOH (High Drive) vs VDD–VOH at VDD = 3 V MCF51JM128 ColdFire Microcontroller, Rev. 0 20 Freescale Semiconductor Preliminary Electrical Characteristics IOH (mA) IOH Low Drive @ 5V VDD 1 0 -1 -2 -3 -4 -5 -6 -7 25C 105C -40c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 VDD-VOH (V) 1 1.1 1.2 Figure 7. Typical IOH (Low Drive) vs VDD–VOH at VDD = 5 V IOH High Drive @ 5V VDD 5 0 IO H (m A -5 -10 -15 25C 105C -20 -25 -40c -30 -35 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 VDD -VO H (V) 1 1.1 1.2 Figure 8. Typical IOH (High Drive) vs VDD–VOH at VDD = 5 V MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 21 Preliminary Electrical Characteristics IOL Low Drive @ 3V VDD 6 IOL (mA 5 4 3 25C 105C ` 2 -40c 1 0 -1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 VOL-VSS (V) Figure 9. Typical IOL (Low Drive) vs VOL–VSS at VDD = 3 V IOL High Drive @ 3V VDD 20 IO L (mA 15 10 25C ` 105C 5 -40c 0 -5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 VOL-VSS (V) Figure 10. Typical IOL (High Drive) vs VOL–VSS at VDD = 3 V MCF51JM128 ColdFire Microcontroller, Rev. 0 22 Freescale Semiconductor Preliminary Electrical Characteristics IOL Low Drive @ 5V V DD 10 IOL (mA 8 6 25C ` 4 105C -40c 2 0 -2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 VOL-VSS (V) Figure 11. Typical IOL (Low Drive) vs VOL–VSS at VDD = 5 V IOL (mA IOL High Drive @ 5V VDD 35 30 25 20 15 10 5 0 -5 25C ` 105C -40c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 VOL-VSS (V) Figure 12. Typical IOL (High Drive) vs VOL–VSS at VDD = 5 V 2.6 Supply Current Characteristics Table 11. Supply Current Characteristics Num C Parameter Symbol current3 1 2 Run supply measured at (CPU clock = 2 MHz, fBus = 1 MHz; BLPE mode) Run supply current3 measured at (CPU clock = 16 MHz, fBus = 8 MHz, FBE mode) VDD (V) 5 RIDD RIDD Typical1 Max2 TBD TBD4 TBD 3 TBD 5 TBD TBD4 3 TBD TBD Unit mA mA MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 23 Preliminary Electrical Characteristics Table 11. Supply Current Characteristics Num 2 2 3 4 C VDD (V) Typical1 Max2 5 TBD TBD 3 TBD TBD 5 61.12 60.99 62.80 TBD TBD TBD mA –40 °C 25 °C 105 °C 3 60.73 60.92 61.97 TBD TBD TBD mA –40 °C 25 °C 105 °C 5 TBD 1.77 TBD TBD TBD TBD μA –40 °C 25 °C 105 °C 3 TBD 1.72 TBD TBD TBD TBD μA –40 °C 25 °C 105 °C 5 141.29 44.10 44.56 TBD TBD TBD μA –40 °C 25 °C 105 °C 3 100.63 36.79 44.26 TBD TBD TBD μA –40 °C 25 °C 105 °C 5 302.77 195.45 199.25 TBD TBD TBD μA 228.60 169.51 188.54 TBD TBD TBD μA 232.56 88.45 87.37 TBD TBD TBD μA 166.12 73.36 87.18 TBD TBD TBD μA Parameter Symbol Run supply current3 measured at (CPU clock = 48 MHz, fBus = 24 MHz, PEE mode) Run supply current3 measured at (fBus = 25 MHz) –40 °C 25 °C 105 °C RIDD RIDD Unit mA Stop2 mode supply current with RTC adder S2IDD Stop3 mode supply current S3IDD 4 4 Stop3 mode supply current with LVD adder S3IDD –40 °C 25 °C 105 °C 3 –40 °C 25 °C 105 °C 5 Stop3 mode supply current with OSC adder –40 °C 25 °C 105 °C S3IDD 3 MCF51JM128 ColdFire Microcontroller, Rev. 0 24 Freescale Semiconductor Preliminary Electrical Characteristics Table 11. Supply Current Characteristics Num 4 C Parameter Symbol Typical1 Max2 Unit 215.10 87.89 86.64 TBD TBD TBD μA Stop3 mode supply current with RTC adder –40 °C 25 °C 105 °C 4 VDD (V) 5 S3IDD –40 °C 25 °C 105 °C 3 146.60 72.84 86.44 TBD TBD TBD μA –40 °C 25 °C 105 °C 5 517.83 411.12 422.42 TBD TBD TBD μA 3 503.15 396.05 423.14 TBD TBD TBD μA 5 544.79 455.98 468.47 TBD TBD TBD μA –40 °C 25 °C 105 °C 3 534.00 428.26 455.56 TBD TBD TBD μA –40 °C 25 °C 105 °C 5 40.53 39.22 38.10 TBD TBD TBD μA 3 31.11 30.97 30.32 TBD TBD TBD μA 5 300 nA 3 300 nA 5 110 μA 3 90 μA 5 5 μA 3 5 μA Stop4 mode supply current S4IDD –40 °C 25 °C 105 °C 4 Stop4 mode supply current with LVD adder –40 °C 25 °C 105 °C 4 S4IDD Wait mode supply current WIDD –40 °C 25 °C 105 °C 5 6 7 RTC adder to stop2 or stop34, 25°C LVD adder to stop3 (LVDE = LVDSE = 1) Adder to stop3 for oscillator enabled5 (ERCLKEN =1 and EREFSTEN = 1) 1 Typicals are measured at 25°C. Values given here are preliminary estimates prior to completing characterization. 3 All modules except USB and ADC active, Oscillator disabled (ERCLKEN = 0), using external clock resource for input, and does not include any DC loads on port pins. 4 Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode. 2 MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 25 Preliminary Electrical Characteristics 5 Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0) 2.7 Analog Comparator (ACMP) Electricals Table 12. Analog Comparator Electrical Specifications Num C Rating Symbol Min Typical Max Unit VDD 2.7 — 5.5 V 1 Supply voltage 2 Supply current (active) IDDAC — 20 35 μA 3 Analog input voltage VAIN VSS – 0.3 — VDD V 4 Analog input offset voltage VAIO 20 40 mV 5 Analog Comparator hysteresis 6 VH 3.0 6.0 20.0 mV Analog input leakage current IALKG -- -- 1.0 μA 7 Analog Comparator initialization delay tAINIT — — 1.0 μs 8 Bandgap Voltage Reference Factory trimmed at VDD = 3.0 V, Temp = 25°C VBG 1.19 1.20 1.21 V 2.8 ADC Characteristics Table 13. 5 Volt 12-bit ADC Operating Conditions Symb Min Typ1 Max Unit VDDAD 2.7 — 5.5 V Delta to VDD (VDD-VDDAD)2 ΔVDDAD -100 0 +100 mV )2 ΔVSSAD -100 0 +100 mV Ref Voltage High VREFH 2.7 VDDAD VDDAD V Ref Voltage Low VREFL VSSAD VSSAD VSSAD V Input Voltage VADIN VREFL — VREFH V Input Capacitance CADIN — 4.5 5.5 pF Input Resistance RADIN — 3 5 kΩ — — — — 2 5 10 bit mode fADCK > 4MHz fADCK < 4MHz — — — — 5 10 8 bit mode (all valid fADCK) — — 10 0.4 — 8.0 0.4 — 4.0 Characteristic Supply voltage Ground voltage Analog Source Resistance Conditions Absolute Delta to VSS (VSS-VSSAD 12 bit mode fADCK > 4MHz fADCK < 4MHz ADC Conversion High Speed (ADLPC=0) Clock Freq. Low Power (ADLPC=1) 1 RAS fADCK kΩ Comment External to MCU MHz Typical values assume VDDAD = 5.0V, Temp = 25°C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production. MCF51JM128 ColdFire Microcontroller, Rev. 0 26 Freescale Semiconductor Preliminary Electrical Characteristics 2 DC potential difference. SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS RAS ADC SAR ENGINE RADIN + VADIN VAS – CAS + – RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 13. ADC Input Impedance Equivalency Diagram Table 14. 5 Volt 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) C Symb Min Typ1 Max Unit Supply CurrentADLPC= 1ADLSMP=1AD CO=1 T IDDAD — 133 — μA Supply CurrentADLPC= 1ADLSMP=0AD CO=1 T IDDAD — 218 — μA Supply CurrentADLPC= 0ADLSMP=1AD CO=1 T IDDAD — 327 — μA Supply CurrentADLPC= 0ADLSMP=0AD CO=1 P IDDAD — 0.582 1 mA IDDAD — 0.011 1 μA fADACK 2 3.3 5 MHz 1.25 2 3.3 Characteristic Conditions Supply Current Stop, Reset, Module Off ADC Asynchronous Clock Source High Speed (ADLPC=0) Low Power (ADLPC=1) T Comment tADACK = 1/fADACK MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 27 Table 14. 5 Volt 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued) C Symb Min Typ1 Max Unit Comment Conversion Time Short Sample (ADLSMP=0) (Including Long Sample (ADLSMP=1) sample time) T tADC — 20 — — 40 — ADCK cycles See Table 13 for conversion time variances Sample Time T — 3.5 — — 23.5 — — ±3.0 — P — ±1 ±2.5 8 bit mode T — ±0.5 ±1.0 12 bit mode T — ±1.75 — 10 bit mode3 P — ±0.5 ±1.0 8 bit mode3 T — ±0.3 ±0.5 12 bit mode T — ±1.5 — 10 bit mode T — ±0.5 ±1.0 8 bit mode T — ±0.3 ±0.5 — ±1.5 — Characteristic Conditions Short Sample (ADLSMP=0) tADS Long Sample (ADLSMP=1) Total Unadjusted 12 bit mode Error 10 bit mode Differential Non-Linearity Integral Non-Linearity T ETUE DNL INL Zero-Scale Error 12 bit mode T 10 bit mode P — ±0.5 ±1.5 8 bit mode T — ±0.5 ±0.5 12 bit mode T — ±1 — 10 bit mode T — ±0.5 ±1 8 bit mode T — ±0.5 ±0.5 12 bit mode D — -1 to 0 — 10 bit mode — — ±0.5 8 bit mode — — ±0.5 — ±1 — 10 bit mode — ±0.2 ±2.5 8 bit mode — ±0.1 ±1 Full-Scale Error Quantization Error Input Leakage Error 1 12 bit mode D EZS EFS EQ EIL ADCK cycles LSB2 Includes quantization LSB2 LSB2 LSB2 VADIN = VSSAD LSB2 VADIN = VDDAD LSB2 LSB2 Pad leakage4 * RAS Typical values assume VDDAD = 5.0V, Temp = 25°C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 1 LSB = (V N REFH - VREFL)/2 3 Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes 4 Based on input pad leakage current. Refer to pad electricals. Preliminary Electrical Characteristics 2.9 External Oscillator (XOSC) Characteristics Table 15. Oscillator Electrical Specifications (Temperature Range = –40 to 105°C Ambient) Num C Rating 1 Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode 2 High range (RANGE = 1) PEE or PBE mode 3 High range (RANGE = 1, HGO = 1) BLPE mode High range (RANGE = 1, HGO = 0) BLPE mode 2 Load capacitors Symbol Min Typ1 Max Unit flo 32 1 1 1 1 — — — — — 38.4 5 16 16 8 kHz MHz MHz MHz MHz fhi-fll fhi-pll fhi-hgo fhi-lp C1 C2 See crystal or resonator manufacturer’s recommendation. Feedback resistor 3 RF Low range (32 kHz to 38.4 kHz) 10 1 High range (1 MHz to 16 MHz) MΩ MΩ Series resistor Low range Low Gain (HGO = 0) — — High Gain (HGO = 1) 4 High range ≥ 8 MHz 4 MHz 1 MHz 6 1 2 3 4 5 5 — — RS Low Gain (HGO = 0) High Gain (HGO = 1) 5 0 100 Crystal start-up time 4, 5 Low range (HGO = 0) Low range (HGO = 1) High range (HG0 = 0)5 High range (HG0 = 1)5 t CSTL-LP t CSTL-HGO t CSTH-LP t CSTH-HGO Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode 2 BLPE mode fextal kΩ — 0 — — — — 0 0 0 0 10 20 — — — — 200 400 5 TBD — — — — ms 0.03125 0 — — 5 40 MHz MHz Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value. When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz. When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2MHz. This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications. 4 MHz crystal MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 29 Preliminary Electrical Characteristics MCU EXTAL XTAL RS RF C1 2.10 Crystal or Resonator C2 MCG Specifications Table 16. MCG Frequency Specifications (Temperature Range = –40 to 125°C Ambient) Num C Rating Symbol Min Typical Max Unit 1 Internal reference frequency - factory P trimmed at VDD = 5 V and temperature = 25 °C fint_ft — 31.25 — kHz 2 P Average internal reference frequency untrimmed 1 fint_ut 25 32.7 41.66 kHz 3 P Average internal reference frequency user trimmed fint_t 31.25 — 39.0625 kHz 4 D Internal reference startup time tirefst — 60 100 us 5 DCO output frequency range untrimmed 1 — value provided for reference: fdco_ut = 1024 X fint_ut fdco_ut 25.6 33.48 42.66 MHz 6 P DCO output frequency range - trimmed fdco_t 32 — 40 MHz 7 Resolution of trimmed DCO output C frequency at fixed voltage and temperature (using FTRIM) Δfdco_res_t — ± 0.1 ± 0.2 %fdco 8 Resolution of trimmed DCO output C frequency at fixed voltage and temperature (not using FTRIM) Δfdco_res_t — ± 0.2 ± 0.4 %fdco 9 Total deviation of trimmed DCO output P frequency over voltage and temperature Δfdco_t — + 0.5 -1.0 ±2 %fdco 10 Total deviation of trimmed DCO output C frequency over fixed voltage and temperature range of 0 - 70 °C Δfdco_t — ± 0.5 ±1 %fdco 11 C FLL acquisition time 2 tfll_acquire — — 1 ms 12 D PLL acquisition time 3 tpll_acquire — — 1 ms MCF51JM128 ColdFire Microcontroller, Rev. 0 30 Freescale Semiconductor Preliminary Electrical Characteristics Table 16. MCG Frequency Specifications (continued)(Temperature Range = –40 to 125°C Ambient) Num C Rating Long term Jitter of DCO output clock (averaged over 2ms interval) 4 Symbol Min Typical Max Unit CJitter — 0.02 0.2 %fdco fvco 7.0 — 55.0 MHz fpll_jitter_625ns — 0.5665 — %fpll 13 C 14 D VCO operating frequency 17 T 18 D Lock entry frequency tolerance 6 Dlock ± 1.49 — ± 2.98 % 19 D Lock exit frequency tolerance 7 Dunl ± 4.47 — ± 5.97 % 20 D Lock time - FLL tfll_lock — — tfll_acquire+ 1075(1/fint_t s Jitter of PLL output clock measured over 625 ns5 ) 21 tpll_lock D Lock time - PLL — — tpll_acquire+ 1075(1/fpll_r s ef) 22 1 2 3 4 5 6 7 Loss of external clock minimum D frequency - RANGE = 0 floc_low (3/5) x fint — — kHz TRIM register at default value (0x80) and FTRIM control bit at default value (0x0). This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBUS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval. 625 ns represents 5 time quanta for CAN applications, under worst case conditions of 8 MHz CAN bus clock, 1 Mbps CAN bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit. Below Dlock minimum, the MCG is guaranteed to enter lock. Above Dlock maximum, the MCG does not enter lock. But if the MCG is already in lock, then the MCG may stay in lock. Below Dunl minimum, the MCG does not exit lock if already in lock. Above Dunl maximum, the MCG is guaranteed to exit lock. 2.11 AC Characteristics This section describes ac timing characteristics for each peripheral system. MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 31 Preliminary Electrical Characteristics 2.11.1 Control Timing Table 17. Control Timing Num C Parameter Symbol Min Typ1 Max Unit — 24 MHz 1 Bus frequency (tcyc = 1/fBus) fBus dc 2 Internal low-power oscillator period tLPO 700 1300 μs 3 External reset pulse width2 (tcyc = 1/fSelf_reset) textrst 100 — ns 4 Reset low drive trstdrv 66 x tcyc — ns 5 Active background debug mode latch setup time tMSSU 500 — ns 6 Active background debug mode latch hold time tMSH 100 — ns 7 IRQ pulse width Asynchronous path2 Synchronous path3 tILIH, tIHIL 100 1.5 x tcyc — — ns KBIPx pulse width Asynchronous path2 Synchronous path3 tILIH, tIHIL 100 1.5 x tcyc — — ns Port rise and fall time (load = 50 pF)4 Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1) tRise, tFall — — 3 30 8 9 ns 1 Typical values are based on characterization data at VDD = 5.0V, 25°C unless otherwise stated. This is the shortest pulse guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources. 3 This is the minimum pulse width guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case. 4 Timing is shown with respect to 20% V DD and 80% VDD levels. Temperature range –40°C to 105°C. 2 textrst RESET PIN Figure 14. Reset Timing tIHIL IRQ/KBIPx IRQ/KBIPx tILIH Figure 15. IRQ/KBIPx Timing MCF51JM128 ColdFire Microcontroller, Rev. 0 32 Freescale Semiconductor Preliminary Electrical Characteristics 2.11.2 Timer/PWM (TPM) Module Timing Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock. Table 18. TPM Input Timing NUM C Function Symbol Min Max Unit 1 — External clock frequency fTPMext dc fBus/4 MHz 2 — External clock period tTPMext 4 — tcyc 3 D External clock high time tclkh 1.5 — tcyc 4 D External clock low time tclkl 1.5 — tcyc 5 D Input capture pulse width tICPW 1.5 — tcyc tTPMext tclkh TPMxCLK tclkl Figure 16. Timer External Clock tICPW TPMxCHn TPMxCHn tICPW Figure 17. Timer Input Capture Pulse 2.11.3 MSCAN Table 19. MSCAN Wake-up Pulse Characteristics 1 Num C Parameter Symbol 1 D MSCAN Wake-up dominant pulse filtered tWUP 2 D MSCAN Wake-up dominant pulse pass tWUP Min Typ1 5 Max Unit 2 μs 5 μs Typical values are based on characterization data at VDD = 5.0V, 25°C unless otherwise stated. MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 33 Preliminary Electrical Characteristics 2.12 SPI Characteristics Table 20 and Figure 18 through Figure 21 describe the timing requirements for the SPI system. Table 20. SPI Electrical Characteristic Num1 1 2 3 4 5 6 7 8 Characteristic2 C Symbol Min Max Unit Master Slave fop fop fBus/2048dc fBus/2 fBus/4 Hz Master Slave tSCK tSCK 2 4 2048 tcyc tcyc Master Slave tLead tLead — 1/2 1/2 — tSCKtS Master Slave tLag tLag — 1/2 1/2 — tSCKtS Clock (SPSCK) high time Master and Slave tSCKH 1/2 tSCK – 25 — ns Clock (SPSCK) low time Master and Slave tSCKL 1/2 tSCK – 25 — ns Master Slave tSI(M) tSI(S) 30 30 — — ns ns Master Slave tHI(M) tHI(S) 30 30 — — ns ns Operating frequency Cycle time Enable lead time Enable lag time — CK CK Data setup time (inputs) Data hold time (inputs) 9 Access time, slave3 tA 0 40 ns 10 Disable time, slave4 tdis — 40 ns 11 Data setup time (outputs) Master Slave tSO tSO 25 25 — — ns ns Master Slave tHO tHO –10 –10 — — ns ns 12 Data hold time (outputs) 1 Refer to Figure 18 through Figure 21. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins. 3 Time to data active from high-impedance state. 4 Hold time to high-impedance state. 2 MCF51JM128 ColdFire Microcontroller, Rev. 0 34 Freescale Semiconductor Preliminary Electrical Characteristics SS1 (OUTPUT) 3 1 2 SCK (CPOL = 0) (OUTPUT) 5 4 SCK (CPOL = 1) (OUTPUT) 5 4 6 MISO (INPUT) 7 MSB IN2 BIT 6 . . . 1 10 MOSI (OUTPUT) LSB IN 11 10 MSB OUT2 BIT 6 . . . 1 LSB OUT NOTES: 1. SS output mode (MODFEN = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 18. SPI Master Timing (CPHA = 0) SS(1) (OUTPUT) 1 3 2 SCK (CPOL = 0) (OUTPUT) 5 4 SCK (CPOL = 1) (OUTPUT) 5 4 6 MISO (INPUT) 7 MSB IN(2) LSB IN 11 10 MOSI (OUTPUT) BIT 6 . . . 1 MSB OUT(2) BIT 6 . . . 1 LSB OUT NOTES: 1. SS output mode (MODFEN = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 19. SPI Master Timing (CPHA = 1) MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 35 Preliminary Electrical Characteristics SS (INPUT) 3 1 SCK (CPOL = 0) (INPUT) 5 4 2 SCK (CPOL = 1) (INPUT) 5 4 8 MISO (OUTPUT) 11 10 BIT 6 . . . 1 MSB OUT SLAVE SEE NOTE SLAVE LSB OUT 7 6 MOSI (INPUT) 9 BIT 6 . . . 1 MSB IN LSB IN NOTE: 1. Not defined but normally MSB of character received Figure 20. SPI Slave Timing (CPHA = 0) SS (INPUT) 3 1 2 SCK (CPOL = 0) (INPUT) 5 4 SCK (CPOL = 1) (INPUT) 5 4 10 MISO (OUTPUT) SEE NOTE 8 MOSI (INPUT) SLAVE 11 MSB OUT 6 BIT 6 . . . 1 9 SLAVE LSB OUT 7 MSB IN BIT 6 . . . 1 LSB IN NOTE: 1. Not defined but normally LSB of character received Figure 21. SPI Slave Timing (CPHA = 1) MCF51JM128 ColdFire Microcontroller, Rev. 0 36 Freescale Semiconductor Preliminary Electrical Characteristics 2.13 Flash Specifications This section provides details about program/erase times and program-erase endurance for the Flash memory. Program and erase operations do not require any special power sources other than the normal VDD supply. Table 21. Flash Characteristics Num C Characteristic Symbol Min Typ1 Max Unit 1 Supply voltage for program/erase Vprog/erase 2.7 5.5 V 2 Supply voltage for read operation VRead 2.7 5.5 V 3 Internal FCLK frequency2 fFCLK 150 200 kHz 4 Internal FCLK period (1/FCLK) tFcyc 5 6.67 μs 5 Byte program time (random location)(2) tprog 9 tFcyc 6 Byte program time (burst mode)(2) tBurst 4 tFcyc 7 Page erase time3 tPage 4000 tFcyc 8 Mass erase time(2) tMass 20,000 tFcyc 9 Program/erase endurance4 TL to TH = –40°C to + 105°C T = 25°C 10 C Data retention5 tD_ret 10,000 — — 100,000 — — cycles 15 100 — years 1 Typical values are based on characterization data at VDD = 5.0 V, 25°C unless otherwise stated. The frequency of this clock is controlled by a software setting. 3 These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase. 4 Typical endurance for Flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical Endurance for Nonvolatile Memory. 5 Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory. 2 2.14 USB Electricals The USB electricals for the USBOTG module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org. If the Freescale USBOTG implementation requires additional or deviant electrical characteristics, this space would be used to communicate that information. MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 37 Preliminary Electrical Characteristics Table 22. Internal USB 3.3V Voltage Regulator Characteristics Symbol Unit Min Typ Max Regulator operating voltage Vregin V 3.9 — 5.5 Vreg output Vregout V 3 3.3 3.6 Vusb33 input with internal Vreg disabled Vusb33in V 3 3.3 3.6 IVRQ mA — 0.5 — VREG Quiescent Current 2.15 EMC Performance Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance. 2.15.1 Radiated Emissions Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device. The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels. Table 23. Radiated Emissions Parameter Symbol Conditions Frequency fOSC/fBUS VRE_TEM VDD = 5.5V TA = +25oC package type 64 LQFP 0.15 – 50 MHz 4 MHz crystal 24 MHz Bus Radiated emissions, electric field 1 50 – 150 MHz Level1 (Max) Unit TBD dBμV TBD 150 – 500 MHz TBD 500 – 1000 MHz TBD IEC Level TBD — SAE Level TBD — Data based on qualification test results. 2.15.2 Conducted Transient Susceptibility Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale test method. The measurement is performed with the microcontroller installed on a custom EMC evaluation board and running specialized EMC test software designed in compliance with the test method. The conducted susceptibility is determined by injecting the transient susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC MCF51JM128 ColdFire Microcontroller, Rev. 0 38 Freescale Semiconductor Preliminary Electrical Characteristics 61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is greater than or equal to the reported levels unless otherwise indicated by footnotes below the table. Table 24. Conducted Transient Susceptibility Parameter Symbol Conducted susceptibility, electrical fast transient/burst (EFT/B) 1 VCS_EFT Conditions VDD = 5.5V TA = +25oC package type 64 LQFP fOSC/fBUS 4MHz crystal 24 MHz Bus Result Amplitude1 (Min) A TBD B TBD C TBD D TBD Unit kV Data based on qualification test results. Not tested in production. The susceptibility performance classification is described in Table 25. Table 25. Susceptibility Performance Classification Result Performance Criteria A No failure The MCU performs as designed during and after exposure. B Self-recovering failure C Soft failure The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the RESET pin is asserted. D Hard failure The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the power to the MCU is cycled. E Damage The MCU does not perform as designed during and after exposure. The MCU cannot be returned to proper operation due to physical damage or other permanent performance degradation. The MCU does not perform as designed during exposure. The MCU returns automatically to normal operation after exposure is removed. MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 39 Mechanical Outline Drawings 3 Mechanical Outline Drawings 3.1 80-pin LQFP MCF51JM128 ColdFire Microcontroller, Rev. 0 40 Freescale Semiconductor Mechanical Outline Drawings MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 41 Mechanical Outline Drawings MCF51JM128 ColdFire Microcontroller, Rev. 0 42 Freescale Semiconductor Mechanical Outline Drawings 3.2 64-pin LQFP MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 43 Mechanical Outline Drawings MCF51JM128 ColdFire Microcontroller, Rev. 0 44 Freescale Semiconductor Mechanical Outline Drawings MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 45 Mechanical Outline Drawings 3.3 64-pin QFP MCF51JM128 ColdFire Microcontroller, Rev. 0 46 Freescale Semiconductor Mechanical Outline Drawings MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 47 Mechanical Outline Drawings MCF51JM128 ColdFire Microcontroller, Rev. 0 48 Freescale Semiconductor Mechanical Outline Drawings 3.4 44-pin LQFP MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 49 Mechanical Outline Drawings MCF51JM128 ColdFire Microcontroller, Rev. 0 50 Freescale Semiconductor Revision History 4 Revision History MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 51 Revision History MCF51JM128 ColdFire Microcontroller, Rev. 0 52 Freescale Semiconductor Revision History MCF51JM128 ColdFire Microcontroller, Rev. 0 Freescale Semiconductor 53 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] Document Number: MCF51JM128 Rev. 0 01/2008 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved.