Freescale Semiconductor Addendum Document Number: QFN_Addendum Rev. 0, 07/2014 Addendum for New QFN Package Migration This addendum provides the changes to the 98A case outline numbers for products covered in this book. Case outlines were changed because of the migration from gold wire to copper wire in some packages. See the table below for the old (gold wire) package versus the new (copper wire) package. To view the new drawing, go to Freescale.com and search on the new 98A package number for your device. For more information about QFN package use, see EB806: Electrical Connection Recommendations for the Exposed Pad on QFN and DFN Packages. © Freescale Semiconductor, Inc., 2014. All rights reserved. Part Number MC68HC908JW32 Package Description Original (gold wire) Current (copper wire) package document number package document number 48 QFN 98ARH99048A 98ASA00466D MC9RS08LA8 48 QFN 98ARL10606D 98ASA00466D MC9S08GT16A 32 QFN 98ARH99035A 98ASA00473D MC9S908QE32 32 QFN 98ARE10566D 98ASA00473D MC9S908QE8 32 QFN 98ASA00071D 98ASA00736D MC9S08JS16 24 QFN 98ARL10608D 98ASA00734D MC9S08QG8 24 QFN 98ARL10605D 98ASA00474D MC9S08SH8 24 QFN 98ARE10714D 98ASA00474D MC9RS08KB12 24 QFN 98ASA00087D 98ASA00602D MC9S08QG8 16 QFN 98ARE10614D 98ASA00671D MC9RS08KB12 8 DFN 98ARL10557D 98ASA00672D 6 DFN 98ARL10602D 98ASA00735D MC9S08AC16 MC9S908AC60 MC9S08AC128 MC9S08AW60 MC9S08GB60A MC9S08GT16A MC9S08JM16 MC9S08JM60 MC9S08LL16 MC9S08QE128 MC9S08QE32 MC9S08RG60 MCF51CN128 MC9S08QB8 MC9S08QG8 MC9RS08KA2 Addendum for New QFN Package Migration, Rev. 0 2 Freescale Semiconductor Freescale Semiconductor Data Sheet: Technical Data Document Number: MCF51CN128 Rev. 4, 5/2009 MCF51CN128 MCF51CN128 ColdFire Microcontroller Cover: MCF51CN128 The MCF51CN128 device is a low-cost, low-power, high-performance 32-bit ColdFire V1 microcontroller (MCU) featuring 10/100 BASE-T/TX fast ethernet controller (FEC), media independent interface (MII) to connect an external physical transceiver (PHY), and multi-function external bus interface. MCF51CN128 also has multiple communication interfaces for various ethernet gateway applications. MCF51CN128 is the first ColdFire V1 device to incorporate ethernet and external bus interface along with new features to minimize power consumption and increase functionality in low-power modes. The MCF51CN128 features the following functional units: • 32-bit ColdFire V1 Central Processing Unit (CPU) – Up to 50.33 MHz ColdFire CPU from 3.6 V to 3.0 V, up to 40 MHz CPU from 3.0 V to 2.1 V, and up to 20 MHz CPU from 2.1 V to 1.8 V across temperature range of –40 °C to 85 °C – Provides 0.94 Dhrystone 2.1 MIPS per MHz performance when running from internal RAM (0.76 DMIPS/MHz from flash) – ColdFire Instruction Set Revision C (ISA_C) – Support for up to 45 peripheral interrupt requests and 7 software interrupts • On-Chip Memory – 128 KB Flash, 24 KB RAM – Flash read/program/erase over full operating voltage and temperature – On-chip memory aliased to create a contiguous memory space with off-chip memory – Security circuitry to prevent unauthorized access to Peripherals, RAM, and flash contents • Ethernet – FEC—10/100 BASE-T/TX, bus-mastering fast ethernet controller with direct memory access (DMA); supports half or full duplex; operation is limited to 3.0 V to 3.6 V 80 LQFP 14 mm × 14 mm 48 QFN 7 mm × 7 mm – MII—media independent interface to connect ethernet controller to external PHY; includes output clock for external PHY • External Bus – Mini-FlexBus—Multi-function external bus interface; supports up to 1 MB memories, gate-array logic, simple slave device or glueless interfaces to standard chip-selected asynchronous memories – Programmable options: access time per chip select, burst and burst-inhibited transfers per chip select, transfer direction, and address setup and hold times • Power-Saving Modes – Two low-power stop modes, one of which allows limited use of some peripherals (ADC, KBI, RTC) – Reduced-power wait mode shuts off CPU and allows full use of all peripherals; FEC can remain active and conduct DMA transfers to RAM and assert an interrupt to wake up the CPU upon completion – Low-power run and wait modes allow peripherals to run while the voltage regulator is in standby – Peripheral clock enable register can disable clocks to unused modules, thereby reducing currents – Low-power external oscillator that can be used in stop3 mode to provide accurate clock source to active peripherals – Low-power real-time counter for use in run, wait, and stop modes with internal and external clock sources – 6 μs typical wake-up time from stop3 mode – Pins and clocks to peripherals not available in smaller packages are automatically disabled for reduced current consumption; no user interaction is needed • Clock Source Options – Oscillator (XOSC) — Loop-control pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 25 MHz – Multi-Purpose Clock Generator (MCG) — Flexible clock source module with either frequency-locked-loop (FLL) or phase-lock loop (PLL) clock options. FLL can be controlled by internal or external reference and Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © Freescale Semiconductor, Inc., 2009. All rights reserved. 64 LQFP 10 mm × 10 mm • • • • includes precision trimming of internal reference, allowing 0.2% resolution and 2% deviation over temperature and voltage. PLL derives a higher accuracy clock source derived by an external reference System Protection – Watchdog computer operating properly (COP) reset with option to run from dedicated 1-kHz internal clock source or bus clock – Low-voltage detection with reset or interrupt; selectable trip points – Illegal opcode and illegal address detection with programmable reset or exception response – Flash block protection Development Support – Single-wire background debug module (BDM) interface; supports same electrical interface used by the S08, 9S12, and 9S12x families debug modules – 4 PC plus 2 address (optional data) breakpoint registers with programmable 1- or 2-level trigger response – 64-entry processor status and debug data trace buffer with programmable start/stop conditions Peripherals – ADC—Up to 12 channel, 12-bit resolution; 2.5 μs conversion time; automatic compare function; 1.7 mV/°C temperature sensor; internal bandgap reference channel; operation in stop3; fully functional from 3.6 V to 1.8 V – SCI—Three modules with optional 13-bit break – SPI—Two interfaces with full-duplex or single-wire bi-directional; double-buffered transmit and receive; master or slave mode; MSB-first or LSB-first shifting – IIC—Two IICs with up to 100 kbps with maxmimum bus loading; multi-master operation; programmable slave address; interrupt-driven byte-by-byte data transfer; supports broadcast mode and 11-bit addressing – TPM—Two 3-channel, 16-bit resolution modules; selectable input capture, output compare, or buffered edge- or center-aligned PWM on each channel – RTC—8-bit modulus counter with binary- or decimal-based prescaler; external clock source for precise time base, time-of-day, calendar- or task-scheduling functions; free-running on-chip low-power oscillator (1 kHz) for cyclic wake-up without external components; runs in all MCU modes – MTIM—Two 8-bit resolution modulo timers with 8-bit prescaler Input/Output – Up to 70 general-purpose input/output (GPIO) pins, all with pin mux controls to select alternate functions – 16 keyboard interrupt (KBI) pins with selectable polarity – Hysteresis and configurable pull-up device or input filtering on all input pins; configurable slew rate and drive strength on all output pins – 16 Rapid GPIO pins connected to the CPU’s high-speed local bus with set, clear, and toggle functionality (PTD and PTF) MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 2 Freescale Semiconductor Table of Contents 1 2 3 4 5 6 7 MCF51CN128 Series Comparison . . . . . . . . . . . . . . . . . . . . . .4 1.1 Device Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.2 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.2 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .12 3.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .12 3.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .13 3.5 ESD Protection and Latch-Up Immunity . . . . . . . . . . . .14 3.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .18 3.8 External Oscillator (XOSC) Characteristics . . . . . . . . .20 3.9 Multipurpose Clock Generator (MCG) Specifications . .21 3.10 Mini-FlexBus Timing Specifications . . . . . . . . . . . . . . .23 3.11 Fast Ethernet Timing Specifications . . . . . . . . . . . . . . .24 3.11.1 Receive Signal Timing Specifications . . . . . . . .24 3.11.2 Transmit Signal Timing Specifications . . . . . . . .25 3.11.3 Asynchronous Input Signal Timing Specifications25 3.11.4 MII Serial Management Timing Specifications .26 3.12 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 3.12.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . .26 3.12.2 TPM Module Timing . . . . . . . . . . . . . . . . . . . . .28 3.12.3 SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 3.12.4 ADC Characteristics . . . . . . . . . . . . . . . . . . . . .32 3.12.5 Flash Specifications. . . . . . . . . . . . . . . . . . . . . .35 3.13 EMC Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 3.13.1 Radiated Emissions . . . . . . . . . . . . . . . . . . . . . .36 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Mechanical Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . .36 6.1 80-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 6.2 64-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 6.3 48-pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 List of Tables Table 1.. MCF51CN128 Series Device Comparison . . . . . . . . . . .4 Table 2.. Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . . .8 Table 3.. Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . .12 Table 4.. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .12 Table 5.. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .13 Table 6.. ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . .14 Table 7.. ESD and Latch-Up Protection Characteristics . . . . . . .14 Table 8.. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Table 9.. Supply Current Characteristics . . . . . . . . . . . . . . . . . . .18 Table 10..XOSC and ICS Specifications (Temperature Range = –40 to 85 °C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Table 11..MCG Frequency Specifications (Temperature Range = –40 to 125 °C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Table 12..Mini-FlexBus AC Timing Specifications . . . . . . . . . . . .23 Table 13..Receive Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 14..Transmit Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 15..MII Transmit Signal Timing . . . . . . . . . . . . . . . . . . . . . 25 Table 16..MII Serial Management Channel Signal Timing . . . . . 26 Table 17..Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 18..TPM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 19..SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 20..12-bit ADC Operating Conditions . . . . . . . . . . . . . . . . 32 Table 21..12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 22..Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 23..Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 24..Package Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 25..Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 List of Figures Figure 1..MCF51CN128 Series Block Diagram . . . . . . . . . . . . . . 5 Figure 2..Pin Assignments in 80-Pin LQFP Package. . . . . . . . . . 6 Figure 3..Pin Assignments in 64-Pin LQFP Package. . . . . . . . . . 7 Figure 4..Pin Assignments in 48-Pin QFN Package. . . . . . . . . . . 8 Figure 5..Pull-up and Pull-down Typical Resistor Values . . . . . . 16 Figure 6..Typical Low-Side Driver (Sink) Characteristics — Low Drive (PTxDSn = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 7..Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 8..Typical High-Side (Source) Characteristics — Low Drive (PTxDSn = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 9..Typical High-Side (Source) Characteristics — High Drive (PTxDSn = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 10..Typical Run IDD for FBE and FEI, IDD vs. VDD (ADC off, All Other Modules Enabled) . . . . . . . . . . . . . 19 Figure 11..Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 12..Typical Crystal or Resonator Circuit: Low Range/Low Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 13..Mini-FlexBus Read Timing . . . . . . . . . . . . . . . . . . . . 23 Figure 14..Mini-FlexBus Write Timing . . . . . . . . . . . . . . . . . . . . 24 Figure 15..MII Receive Signal Timing Diagram . . . . . . . . . . . . . 25 Figure 16..MII Transmit Signal Timing Diagram . . . . . . . . . . . . . 25 Figure 17..MII Async Inputs Timing Diagram . . . . . . . . . . . . . . . 25 Figure 18..MII Serial Management Channel TIming Diagram . . 26 Figure 19..Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 20..IRQ/KBIPx Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 21..Timer External Clock. . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 22..Timer Input Capture Pulse . . . . . . . . . . . . . . . . . . . . 28 Figure 23..SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . 30 Figure 24..SPI Master Timing (CPHA =1) . . . . . . . . . . . . . . . . . 30 Figure 25..SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . 31 Figure 26..SPI Slave Timing (CPHA = 1) . . . . . . . . . . . . . . . . . . 31 Figure 27..ADC Input Impedance Equivalency Diagram . . . . . . 33 MCF51CN128 ColdFire Microcontroller Advance Information Data Sheet, Rev. 4 3 Freescale Semiconductor MCF51CN128 Series Comparison 1 MCF51CN128 Series Comparison 1.1 Device Comparison The following table compares the various device derivatives available within the MCF51CN128 series. Table 1. MCF51CN128 Series Device Comparison MCF51CN128 Feature 80-pin 64-pin Flash memory size (KB) 128 RAM size (KB) 24 V1 ColdFire core equiped with BDM (background debug module) and 2X3 Crossbar switch Yes ADC (analog-to-digital converter) channels (12-bit) 12 FEC (Fast Ethernet Controller with MII Interface) Yes COP (computer operating properly) Yes IIC1 (inter-integrated circuit) Yes IIC2 Yes IRQ (interrupt request input) Yes KBI (keyboard interrupts) 16 12 LVD (low-voltage detector) Yes MCG (multipurpose clock generator) Yes Port I/O 1 RGPIO (rapid general-purpose I/O) 48-pin 6 70 54 38 16 16 8 RTC (real-time counter) Yes SCI1, SCI2 & SCI3 (serial communications interface) Yes SPI1 & SPI2 (serial peripheral interface) Yes TPM1 (Timer/PWM Module) channels 3 3 3 TPM2 channels 3 3 3 Yes2 MTIM1 & MTIM2 External Timer Clocks Mini-FlexBus XOSC (crystal oscillator) 1 2 2 1 1 Yes 0 0 Yes All GPIO are muxed with other functions TMRCLK2 is not available on the 48 pin package, although MTIM2 can be used as an internal timebase using on-chip clock sources. MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 4 Freescale Semiconductor MCF51CN128 Series Comparison 1.2 Block Diagram ColdFire V1 core KBI Port F/H: TPM2CH2 TPM2CH1 TPM2CH0 Port B, F or H* : TPM2CLK RESET/PTC3 TPM2 SIM COP Port F: RGPIO15 RGPIO14 RGPIO13 RGPIO12 RGPIO11 RGPIO10 RGPIO9 RGPIO8 LVD FLASH 128 KB RAM 24 KB MII Port A: MII_TX_CLK MII_RX_CLK MII_TX_EN MII_TXD0 MII_TXD1 MII_TXD2 MII_TXD3 Port B: MII_TX_ER MII_RX_DV MII_RXD0 MII_RXD1 MII_RXD2 MII_RXD3 MII_RX_ER MII_CRS Port C: MII_COL MII_MDC MII_MDIO FEC VDD1 VSS1 VDD2 VSS2 VDD3 VSS3 VDD4 VSS4 RGPIO Port D: RGPIO7 RGPIO6 RGPIO5 RGPIO4 RGPIO3 RGPIO2 RGPIO1 RGPIO0 Port F: FB_D7-FB_D0 Port H: FB_A19-FB_A16 FB_A11-FB_A8 Port G: FB_CS1 FB_CS0 OE Mini-FlexBus FB_RW FB_A5-FB_A2 Port I: FB_A15-FB_A12 FB_A7-FB_A6 Port E: FB_A1-FB_A0 VREG Port C: External Interrupt IRQ Port D: MCG Port B Port E: TPM1CH2 TPM1CH1 TPM1CH0 Port B, F or H* : TPM1CLK TPM1 XOSC EXTAL XTAL Port A: CLKOUT Port E BKGD/MS/PTD6/RGPIO6 Port E: KBI2P7 KBI2P6 KBI2P5 KBI2P4 KBI2P3 KBI2P2 KBI2P1 KBI2P0 Port G/I: KBI1P7 KBI1P6 KBI1P5 KBI1P4 KBI1P3 KBI1P2 KBI1P1 KBI1P0 Port C INTC Port C/G: SDA2 SCL2 Port D IIC2 RTC MTIM1 Port B, F or H* : MTIM1CLK MTIM2 Port B, F or H* : MTIM2CLK SCI1 Port D: RXD1 TXD1 SCI2 Port D: RXD2 TXD2 SCI3 Port E: RXD3 TXD3 SPI1 Port C: SS1 SPSCK1 MOSI1 MISO1 Port D/E: SS2 SPI2 SPSCK2 MOSI2 MISO2 Port F BDM Port D: BKGD/MS Port C/G: SDA1 IIC1 SCL1 Port G ADC DBG Port C: ADP3ADP0 Port D: ADP8ADP4 Port E: ADP11ADP9 PTA7/MII_RX_DV/MOSI2 PTA6/MII_RXD0/MISO2 PTA5/MII_RXD1/SPSCK2 PTA4/MII_RXD2/RXD3 PTA3/MII_RXD3/TXD3 PTA2/MII_MDC/SCL2 PTA1/MII_MDIO/SDA2 PTA0/PHYCLK PTB7/MII_TXD2/TPM2CH1 PTB6/MII_TXD1/TPM2CH0 PTB5/MII_TXD0/SPSCK1 PTB4/MII_TX_EN/MISO1 PTB3/MII_TX_CLK/MOSI1 PTB2/MII_TX_ER/SS1 PTB1/MII_RX_ER/TMRCLK1 PTB0/MII_RX_CLK/SS2 PTC7/SDA2/SPSCK1/ADP8 PTC6/SCL2/MISO1/ADP9 PTC5/MOSI1/ADP10 PTC4/IRQ/SS1/ADP11 PTC2/MII_CRS/SDA1 PTC1/MII_COL/SCL1 PTC0/MII_TXD3/TPM2CH2 PTD7/RGPIO7/SPSCK2/ADP3 BKGD/MS/PTD6/RGPIO6 PTD5/RGPIO5/XTAL PTD4/RGPIO4/EXTAL PTD3/RGPIO3/RXD2/ADP4 PTD2/RGPIO2/TXD2/ADP5 PTD1/RGPIO1/RXD1/ADP6 PTD0/RGPIO0/TXD1/ADP7 PTE7/KBI2P7/FB_CS0/RXD3 PTE6/KBI2P6/FB_D0/TXD3 PTE5/KBI2P5/IRQ/TPM1CH2 PTE4/KBI2P4/CLKOUT/TPM1CH1 PTE3/KBI2P3/TPM1CH0 PTE2/KBI2P2/SS2/ADP0 PTE1/KBI2P1/MOSI2/ADP1 PTE0/KBI2P0/MISO2/ADP2 PTF7/RGPIO15/FB_A13/FB_AD13/TPM2CH2 PTF6/RGPIO14/FB_A14/FB_AD14/TPM2CH1 PTF5/RGPIO13/FB_D4/TPM2CH0 PTF4/RGPIO12/FB_D5/TMRCLK2 PTF3/RGPIO11/FB_A16/FB_AD16 PTF2/RGPIO10/FB_A17/FB_AD17 PTF1/RGPIO9/FB_A18/FB_AD18 PTF0/RGPIO8/FB_A19/FB_AD19 PTG7/KBI1P7/FB_D1 PTG6/KBI1P6/FB_D2 PTG5/KBI1P5/FB_D3 PTG4/KBI1P4/FB_RW PTG3/KBI1P3/FB_A5/FB_AD5/SDA1 PTG2/KBI1P2/FB_A6/FB_AD6/SCL1 PTG1/KBI1P1/FB_A7/FB_AD7/SDA2 PTG0/KBI1P0/FB_A8/FB_AD8/SCL2 Port H VDDA VREFH VSSA VREFL PTH7/FB_A9/FB_AD9/TPM2CH2 PTH6/FB_A10/FB_AD10/TPM2CH1 PTH5/FB_A11/FB_AD11 PTH4/FB_A12/FB_AD12 PTH3/FB_D6/TPM2CH0 PTH2/FB_D7/TMRCLK1 PTH1/FB_OE PTH0/FB_A15/FB_AD15 Port J VDDA/ VREFH VSSA/ VREFL Port A The following figure shows the connections between the MCF51CN128 series pins and modules. PTJ5/FB_A0/FB_AD0 PTJ4/FB_A1/FB_AD1 PTJ3/FB_A2/FB_AD2 PTJ2/FB_A3/FB_AD3 PTJ1/FB_A4/FB_AD4 PTJ0/FB_ALE/FB_CS1 * TPMx and MTIMx external clocks each have the choice of being assigned to either TMRCLK1 or TMRCLK2. Figure 1. MCF51CN128 Series Block Diagram MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 5 Pin Assignments 2 Pin Assignments 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 80-Pin LQFP 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 PTG7/KBI1P7/FB_D1 PTG6/KBI1P6/FB_D2 PTG5/KBI1P5/FB_D3 PTG4/KBI1P4/FB_RW PTG3/KBI1P3/FB_A5/FB_AD5/SDA1 PTG2/KBI1P2/FB_A6/FB_AD6/SCL1 PTG1/KBI1P1/FB_A7/FB_AD7/SDA2 PTG0/KBI1P0/FB_A8/FB_AD8/SCL2 PTD3/RGPIO3/RXD2/ADP4 PTD2/RGPIO2/TXD2/ADP5 PTD1/RGPIO1/RXD1/ADP6 PTD0/RGPIO0/TXD1/ADP7 PTC7/SDA2/SPSCK1/ADP8 PTC6/SCL2/MISO1/ADP9 PTC5/MOSI1/ADP10 PTC4/IRQ/SS1/ADP11 VSSA VDDA VSS3 VDD3 VDD2 VSS2 PTB2/MII_TX_ER/SS1 PTB3/MII_TX_CLK/MOSI1 PTB4/MII_TX_EN/MISO1 PTB5/MII_TXD0/SPSCK1 PTB6/MII_TXD1/TPM2CH0 PTB7/MII_TXD2/TPM2CH1 PTC0/MII_TXD3/TPM2CH2 PTC1/MII_COL/SCL1 PTC2/MII_CRS/SDA1 RESET/PTC3 PTF4/RGPIO12/FB_D5/TMRCLK2 PTF5/RGPIO13/FB_D4/TPM2CH0 PTF6/RGPIO14/FB_A14/FB_AD14/TPM2CH1 PTF7/RGPIO15/FB_A13/FB_AD13/TPM2CH2 PTH4/FB_A12/FB_AD12 PTH5/FB_A11/FB_AD11 PTH6/FB_A10/FB_AD10/TPM2CH1 PTH7/FB_A9/FB_AD9/TPM2CH2 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 VDD1 VSS1 PTA0/PHYCLK PTA1/MII_MDIO/SDA2 PTA2/MII_MDC/SCL2 PTA3/MII_RXD3/TXD3 PTA4/MII_RXD2/RXD3 PTA5/MII_RXD1/SPSCK2 PTA6/MII_RXD0/MISO2 PTA7/MII_RX_DV/MOSI2 PTB0/MII_RX_CLK/SS2 PTB1/MII_RX_ER/TMRCLK1 PTF0/RGPIO8/FB_A19/FB_AD19 PTF1/RGPIO9/FB_A18/FB_AD18 PTF2/RGPIO10/FB_A17/FB_AD17 PTF3/RGPIO11/FB_A16/FB_AD16 PTH0/FB_A15/FB_AD15 PTH1/FB_OE PTH2/FB_D7/TMRCLK1 PTH3/FB_D6/TPM2CH0 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PTJ5/FB_A0/FB_AD0 PTJ4/FB_A1/FB_AD1 PTJ3/FB_A2/FB_AD2 PTJ2/FB_A3/FB_AD3 PTJ1/FB_A4/FB_AD4 PTJ0/FB_ALE/FB_CS1 PTE7/KBI2P7/FB_CS0/RXD3 PTE6/KBI2P6/FB_D0/TXD3 PTE5/KBI2P5/IRQ/TPM1CH2 PTE4/KBI2P4/CLKOUT/TPM1CH1 PTE3/KBI2P3/TPM1CH0 PTE2/KBI2P2/SS2/ADP0 PTE1/KBI2P1/MOSI2/ADP1 PTE0/KBI2P0/MISO2/ADP2 PTD7/RGPIO7/SPSCK2/ADP3 BKGD/MS/PTD6/RGPIO6 PTD5/RGPIO5/XTAL PTD4/RGPIO4/EXTAL VSS4 VDD4 This section describes the pin assignments for the available packages. See for pin availability by package pin-count. Figure 2. Pin Assignments in 80-Pin LQFP Package MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 6 Freescale Semiconductor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 64-Pin LQFP 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PTG3/KBI1P3/FB_A5/FB_AD5/SDA1 PTG2/KBI1P2/FB_A6/FB_AD6/SCL1 PTG1/KBI1P1/FB_A7/FB_AD7/SDA2 PTG0/KBI1P0/FB_A8/FB_AD8/SCL2 PTD3/RGPIO3/RXD2/ADP4 PTD2/RGPIO2/TXD2/ADP5 PTD1/RGPIO1/RXD1/ADP6 PTD0/RGPIO0/TXD1/ADP7 PTC7/SDA2/SPSCK1/ADP8 PTC6/SCL2/MISO1/ADP9 PTC5/MOSI1/ADP10 PTC4/IRQ/SS1/ADP11 VSSA VDDA VSS3 VDD3 VDD2 VSS2 PTB2/MII_TX_ER/SS1 PTB3/MII_TX_CLK/MOSI1 PTB4/MII_TX_EN/MISO1 PTB5/MII_TXD0/SPSCK1 PTB6/MII_TXD1/TPM2CH0 PTB7/MII_TXD2/TPM2CH1 PTC0/MII_TXD3/TPM2CH2 PTC1/MII_COL/SCL1 PTC2/MII_CRS/SDA1 RESET/PTC3 PTF4/RGPIO12/FB_D5/TMRCLK2 PTF5/RGPIO13/FB_D4/TPM2CH0 PTF6/RGPIO14/FB_A14/FB_AD14/TPM2CH1 PTF7/RGPIO15/FB_A13/FB_AD13/TPM2CH2 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VDD1 VSS1 PTA0/PHYCLK PTA1/MII_MDIO/SDA2 PTA2/MII_MDC/SCL2 PTA3/MII_RXD3/TXD3 PTA4/MII_RXD2/RXD3 PTA5/MII_RXD1/SPSCK2 PTA6/MII_RXD0/MISO2 PTA7/MII_RX_DV/MOSI2 PTB0/MII_RX_CLK/SS2 PTB1/MII_RX_ER/TMRCLK1 PTF0/RGPIO8/FB_A19/FB_AD19 PTF1/RGPIO9/FB_A18/FB_AD18 PTF2/RGPIO10/FB_A17/FB_AD17 PTF3/RGPIO11/FB_A16/FB_AD16 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PTJ1/FB_A4/FB_AD4 PTJ0/FB_ALE/FB_CS1 PTE7/KBI2P7/FB_CS0/RXD3 PTE6/KBI2P6/FB_D0/TXD3 PTE5/KBI2P5/IRQ/TPM1CH2 PTE4/KBI2P4/CLKOUT/TPM1CH1 PTE3/KBI2P3/TPM1CH0 PTE2/KBI2P2/SS2/ADP0 PTE1/KBI2P1/MOSI2/ADP1 PTE0/KBI2P0/MISO2/ADP2 PTD7/RGPIO7/SPSCK2/ADP3 BKGD/MS/PTD6/RGPIO6 PTD5/RGPIO5/XTAL PTD4/RGPIO4/EXTAL VSS4 VDD4 Pin Assignments Figure 3. Pin Assignments in 64-Pin LQFP Package MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 7 PTE0/KBI2P0/MISO2/ADP2 PTD7/RGPIO7/SPSCK2/ADP3 BKGD/MS/PTD6/RGPIO6 PTD5/RGPIO5/XTAL PTD4/RGPIO4/EXTAL VSS4 VDD4 43 42 41 40 39 38 37 44 PTE1/KBI2P1/MOSI2/ADP1 45 PTE2/KBI2P2/SS2/ADP0 46 PTE3/KBI2P3/TPM1CH0 47 PTE4/KBI2P4/CLKOUT/TPM1CH1 48 PTE5/KBI2P5/IRQ/TPM1CH2 Pin Assignments VDD1 1 36 PTD3/RGPIO3/RXD2/ADP4 VSS1 2 35 PTD2/RGPIO2/TXD2/ADP5 PTA0/PHYCLK 3 34 PTD1/RGPIO1/RXD1/ADP6 PTA1/MII_MDIO/SDA2 4 33 PTD0/RGPIO0/TXD1/ADP7 PTA2/MII_MDC/SCL2 5 32 PTC7/SDA2/SPSCK1/ADP8 PTA3/MII_RXD3/TXD3 6 PTA4/MII_RXD2/RXD3 7 30 PTC5/MOSI1/ADP10 PTA5/MII_RXD1/SPSCK2 8 29 PTC4/IRQ/SS1/ADP11 PTA6/MII_RXD0/MISO2 9 28 VSSA PTA7/MII_RX_DV/MOSI2 10 27 VDDA PTB0/MII_RX_CLK/SS2 11 26 VSS3 PTB1/MII_RX_ER/TMRCLK1 12 25 VDD3 31 PTC6/SCL2/MISO1/ADP9 RESET/PTC3 24 PTC2/MII_CRS/SDA1 23 PTC1/MII_COL/SCL1 22 PTC0/MII_TXD3/TPM2CH2 21 PTB7/MII_TXD2/TPM2CH1 20 PTB6/MII_TXD1/TPM2CH0 19 PTB5/MII_TXD0/SPSCK1 18 PTB3/MII_TX_CLK/MOSI1 17 PTB3/MII_TX_CLK/MOSI1 16 PTB2/MII_TX_ER/SS1 15 VSS2 14 VDD2 13 48-Pin QFN Figure 4. Pin Assignments in 48-Pin QFN Package NOTE There is no electrical connection to the flag for 48-pin QFN packages. Table 2. Package Pin Assignments 80-Pin 64-Pin 48-Pin Default Function Alt 1 Alt 2 Alt 3 Comment 1 1 1 VDD1 — — — — 2 2 2 VSS1 — — — — 3 3 3 PTA0 PHYCLK — — — MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 8 Freescale Semiconductor Pin Assignments Table 2. Package Pin Assignments (continued) 80-Pin 64-Pin 48-Pin Default Function Alt 1 Alt 2 Alt 3 Comment 4 4 4 PTA1 MII_MDIO — SDA2 — 5 5 5 PTA2 MII_MDC — SCL2 — 6 6 6 PTA3 MII_RXD3 TXD3 — — 7 7 7 PTA4 MII_RXD2 RXD3 — — 8 8 8 PTA5 MII_RXD1 SPSCK2 — — 9 9 9 PTA6 MII_RXD0 MISO2 — — 10 10 10 PTA7 MII_RX_DV MOSI2 — — 11 11 11 PTB0 MII_RX_CLK SS2 — — 12 12 12 PTB1 MII_RX_ER — TMRCLK1 — 13 13 — PTF0/RGPIO8 — FB_A19/FB_AD19 — 14 14 — PTF1/RGPIO9 — FB_A18/FB_AD18 — RGPIO_ENB selects between standard GPIO and RGPIO 15 15 — PTF2/RGPIO10 — FB_A17/FB_AD17 — 16 16 — PTF3/RGPIO11 — FB_A16/FB_AD16 — 17 — — PTH0 — FB_A15/FB_AD15 — — 18 — — PTH1 — FB_OE — — 19 — — PTH2 — FB_D7 TMRCLK1 — 20 — — PTH3 — FB_D6 TPM2CH0 — 21 17 13 VDD2 — — — — 22 18 14 VSS2 — — — — 23 19 15 PTB2 MII_TX_ER SS1 — — 24 20 16 PTB3 MII_TX_CLK MOSI1 — — 25 21 17 PTB4 MII_TX_EN MISO1 — — 26 22 18 PTB5 MII_TXD0 SPSCK1 — — 27 23 19 PTB6 MII_TXD1 — TPM2CH0 — 28 24 20 PTB7 MII_TXD2 — TPM2CH1 — 29 25 21 PTC0 MII_TXD3 — TPM2CH2 — 30 26 22 PTC1 MII_COL — SCL1 — 31 27 23 PTC2 MII_CRS — SDA1 — MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 9 Pin Assignments Table 2. Package Pin Assignments (continued) 80-Pin 64-Pin 48-Pin Default Function Alt 1 Alt 2 Alt 3 Comment 32 28 24 RESET PTC3 — — This pin is a bi-directional open drain pin and has an internal pullup. There is no clamp diode to VDD. DSE and SRE port controls for this bit have no effect. 33 29 — PTF4/RGPIO12 — FB_D5 TMRCLK2 34 30 — PTF5/RGPIO13 — FB_D4 TPM2CH0 RGPIO_ENB selects between standard GPIO and RGPIO 35 31 — PTF6/RGPIO14 — FB_A14/FB_AD14 TPM2CH1 36 32 — PTF7/RGPIO15 — FB_A13/FB_AD13 TPM2CH2 37 — — PTH4 — FB_A12/FB_AD12 — — 38 — — PTH5 — FB_A11/FB_AD11 — — 39 — — PTH6 — FB_A10/FB_AD10 TPM2CH1 — 40 — — PTH7 — FB_A9/FB_AD9 TPM2CH2 — 41 33 25 VDD3 — — — — 42 34 26 VSS3 — — — — 43 35 27 VDDA — — — — 44 36 28 VSSA — — — — 45 37 29 PTC4 IRQ SS1 ADP11 — 46 38 30 PTC5 — MOSI1 ADP10 — 47 39 31 PTC6 SCL2 MISO1 ADP9 — 48 40 32 PTC7 SDA2 SPSCK1 ADP8 — 49 41 33 PTD0/RGPIO0 — TXD1 ADP7 50 42 34 PTD1/RGPIO1 — RXD1 ADP6 RGPIO_ENB selects between standard GPIO and RGPIO 51 43 35 PTD2/RGPIO2 — TXD2 ADP5 52 44 36 PTD3/RGPIO3 — RXD2 ADP4 53 45 — PTG0 KBI1P0 FB_A8/FB_AD8 SCL2 — 54 46 — PTG1 KBI1P1 FB_A7/FB_AD7 SDA2 — 55 47 — PTG2 KBI1P2 FB_A6/FB_AD6 SCL1 — 56 48 — PTG3 KBI1P3 FB_A5/FB_AD5 SDA1 — 57 — — PTG4 KBI1P4 FB_RW — — 58 — — PTG5 KBI1P5 FB_D3 — — 59 — — PTG6 KBI1P6 FB_D2 — — MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 10 Freescale Semiconductor Electrical Characteristics Table 2. Package Pin Assignments (continued) 1 80-Pin 64-Pin 48-Pin Default Function Alt 1 Alt 2 Alt 3 Comment 60 — — PTG7 KBI1P7 FB_D1 — — 61 49 37 VDD4 — — — — 62 50 38 VSS4 — — — — 63 51 39 PTD4/RGPIO4 — — EXTAL 64 52 40 PTD5/RGPIO5 — — XTAL RGPIO_ENB selects between standard GPIO and RGPIO 65 53 41 BKGD/MS PTD6/RGPIO6 — — This pin has an internal pullup. PTD6/RGPIO6 can only be programmed as an output.1 66 54 42 PTD7RGPIO7 — SPSCK2 ADP3 RGPIO_ENB selects between standard GPIO and RGPIO 67 55 43 PTE0 KBI2P0 MISO2 ADP2 — 68 56 44 PTE1 KBI2P1 MOSI2 ADP1 — 69 57 45 PTE2 KBI2P2 SS2 ADP0 — 70 58 46 PTE3 KBI2P3 — TPM1CH0 — 71 59 47 PTE4 KBI2P4 CLKOUT TPM1CH1 — 72 60 48 PTE5 KBI2P5 IRQ TPM1CH2 — 73 61 — PTE6 KBI2P6 FB_D0 TXD3 — 74 62 — PTE7 KBI2P7 FB_CS0 RXD3 — 75 63 — PTJ0 FB_ALE FB_CS1 — — 76 64 — PTJ1 — FB_A4/FB_AD4 — — 77 — — PTJ2 — FB_A3/FB_AD3 — — 78 — — PTJ3 — FB_A2/FB_AD2 — — 79 — — PTJ4 — FB_A1/FB_AD1 — — 80 — — PTJ5 — FB_A0/FB_AD0 — — RGPIO_ENB selects between standard GPIO and RGPIO. When PTD6 is set as RGPIO output, and "1" is driven to PTD6 via RGPIO function, a read of register RGPIODATA6 always returns a "0" because V1 RGPIO design looks for IO enable when the return value of RGPIO function reads data. As PTD6 is set to RGPIO output only, it returns "0" always to RGPIODATA6, athough PTD6 pin is driven to high. 3 Electrical Characteristics 3.1 Introduction This section contains electrical and timing specifications for the MCF51CN128 series of microcontrollers available at the time of publication. MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 11 Electrical Characteristics 3.2 Parameter Classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate: Table 3. Parameter Classifications P These parameters are guaranteed during production testing on each individual device. C These parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T These parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D These parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. 3.3 Absolute Maximum Ratings Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD) or the programmable pull-up resistor associated with the pin is enabled. Table 4. Absolute Maximum Ratings Rating Symbol Value Unit Supply voltage VDD –0.3 to +3.8 V Maximum current into VDD IDD 120 mA Digital input voltage VIn –0.3 to VDD + 0.3 V Instantaneous maximum current Single pin limit (applies to all port pins)1, 2, 3 ID ± 25 mA Tstg –55 to 150 °C Storage temperature range 1 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two resistance values. 2 All functional non-supply pins are internally clamped to V SS and VDD. 3 Power supply must maintain regulation within operating V DD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption). MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 12 Freescale Semiconductor Electrical Characteristics 3.4 Thermal Characteristics This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take PI/O into account in power calculations, determine the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small. Table 5. Thermal Characteristics Rating Operating temperature range (packaged) Maximum junction temperature Symbol Value Unit TA TL to TH (–40 to 85 or 0 to 70)1 °C TJM 95 °C Thermal resistance Single-layer board 48-pin QFN 81 θJA 64-pin LQFP 80-pin LQFP 69 °C/W 60 Thermal resistance Four-layer board 48-pin QFN 26 θJA 64-pin LQFP 80-pin LQFP 1 50 °C/W 47 Depending on device. The average chip-junction temperature (TJ) in °C can be obtained from: TJ = TA + (PD × θJA) Eqn. 1 where: TA = Ambient temperature, °C θJA = Package thermal resistance, junction-to-ambient, °C/W PD = Pint + PI/O Pint = IDD × VDD, Watts — chip internal power PI/O = Power dissipation on input and output pins — user determined For most applications, PI/O << Pint and can be neglected. An approximate relationship between PD and TJ (if PI/O is neglected) is: PD = K ÷ (TJ + 273°C) Eqn. 2 Solving Equation 1 and Equation 2 for K gives: K = PD × (TA + 273°C) + θJA × (PD)2 Eqn. 3 where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively for any value of TA. MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 13 Electrical Characteristics 3.5 ESD Protection and Latch-Up Immunity Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage. All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM). A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table 6. ESD and Latch-up Test Conditions Model Description Human Body Machine Symbol Value Unit Series resistance R1 1500 Ω Storage capacitance C 100 pF Number of pulses per pin — 3 Series resistance R1 0 Ω Storage capacitance C 200 pF Number of pulses per pin — 3 Minimum input voltage limit — – 2.5 V Maximum input voltage limit — 7.5 V Latch-up Table 7. ESD and Latch-Up Protection Characteristics No. 1 Rating1 Symbol Min Max Unit 1 Human body model (HBM) VHBM ± 2000 — V 2 Machine model (MM) VMM ± 200 — V 3 Charge device model (CDM) VCDM ± 500 — V 4 Latch-up current at TA = 85°C ILAT ± 100 — mA Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 14 Freescale Semiconductor Electrical Characteristics 3.6 DC Characteristics This section includes information about power supply requirements and I/O pin characteristics. Table 8. DC Characteristics Num C 1 — Operating Voltage2 C 2 Characteristic Output high voltage Symbol Condition Min Typ1 Max Unit — — 1.83 — 3.6 V 1.8 V, ILoad = –2 mA VDD – 0.5 — — 2.7 V, ILoad = –10 mA VDD – 0.5 — — 2.3 V, ILoad = –6 mA VDD – 0.5 — — 1.8V, ILoad = –3 mA VDD – 0.5 — — — — — 100 1.8 V, ILoad = 2 mA — — 0.5 2.7 V, ILoad = 10 mA — — 0.5 2.3 V, ILoad = 6 mA — — 0.5 1.8 V, ILoad = 3 mA — — 0.5 — — — 100 VDD > 2.7 V 0.70 x VDD — — VDD > 1.8 V 0.85 x VDD — — VDD > 2.7 V — — 0.35 x VDD VDD >1.8 V — — 0.30 x VDD All I/O pins, low-drive strength P All I/O pins, high-drive strength T VOH C 3 4 D Output high current C Output low voltage Max total IOH for all ports IOHT All I/O pins, low-drive strength P All I/O pins, high-drive strength T VOL C Max total IOL for all ports Output low current 5 D P Input high voltage C all digital inputs 6 P Input low voltage all digital inputs IOLT VIH 7 VIL C 8 C Input hysteresis 9 P Input leakage current 10 P Hi-Z (off-state) leakage current 11 P Pull resistors all digital inputs, when enabled Single pin limit 12 DC injection 4, 5, 6 D current V mA V mA V all digital inputs Vhys — 0.06 x VDD — — mV all input only pins (Per pin) |IIn| VIn = VDD or VSS — 0.1 1 μA all input/output (per pin) |IOZ| VIn = VDD or VSS — 0.1 1 μA RP — 17.5 — 52.5 kΩ –0.2 — 0.2 mA –5 — 5 mA CIn — — 8 pF Total MCU limit, includes sum of all stressed pins IIC VIN < VSS, VIN > VDD 13 C Input Capacitance, all pins 14 C POR re-arm voltage7 VPOR 0.9 1.4 1.79 V 15 D POR re-arm time tPOR 10 — — μs 16 P 2.15 2.24 2.32 2.39 2.45 2.49 V Low-voltage detection threshold — high range8 VLVDH9 VDD falling VDD rising MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 15 Electrical Characteristics Table 8. DC Characteristics (continued) Num C Characteristic Symbol Condition Min Typ1 Max Unit 17 P Low-voltage detection threshold — low range8 VLVDL VDD falling VDD rising 1.70 1.80 1.83 1.89 1.95 2.00 V 18 P Low-voltage warning threshold — high range8 VLVWH VDD falling VDD rising 2.50 2.50 2.62 2.62 2.70 2.70 V 19 P Low-voltage warning threshold — low range8 VLVWL VDD falling VDD rising 2.25 2.29 2.32 2.39 2.45 2.49 V 20 P Bandgap Voltage Reference10 VBG — 1.15 1.17 1.18 V Typical values are measured at 25 °C. Characterized, not tested As an exception, the Fast Ethernet Controller (FEC) is only operational above the operating voltage of 3 V. 3 As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above VLVDL. 4 All functional non-supply pins are internally clamped to VSS and VDD. 5 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. 6 Power supply must maintain regulation within operating V DD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption). 7 Maximum is highest voltage that POR is guaranteed. 8 Low voltage detection and warning limits measured at 1 MHz bus frequency. 9 Run at 1 MHz bus frequency 10 Factory trimmed at V DD = 3.3 V, Temp = 25 °C 1 PULL-UP RESISTOR TYPICALS 85°C 25°C –40°C PULL-UP RESISTOR (kΩ) 40 35 30 25 20 1.8 2 2.2 2.4 2.6 2.8 VDD (V) 3 3.2 3.4 3.6 PULL-DOWN RESISTANCE (kΩ) 2 40 35 PULL-DOWN RESISTOR TYPICALS 85°C 25°C –40°C 30 25 20 1.8 2.3 2.8 VDD (V) 3.3 3.6 Figure 5. Pull-up and Pull-down Typical Resistor Values MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 16 Freescale Semiconductor Electrical Characteristics TYPICAL VOL VS IOL AT VDD = 3.3 V 1.2 85°C 25°C –40°C 1 0.15 VOL (V) 0.8 VOL (V) TYPICAL VOL VS VDD 0.2 0.6 0.4 0.2 0.1 85°C, IOL = 2 mA 25°C, IOL = 2 mA –40°C, IOL = 2 mA 0.05 0 0 0 5 10 IOL (mA) 15 1 20 2 3 VDD (V) 4 Figure 6. Typical Low-Side Driver (Sink) Characteristics — Low Drive (PTxDSn = 0) 0.4 85°C 25°C –40°C 0.8 0.4 0.2 0.2 0.1 0 0 0 85°C 25°C –40°C 0.3 0.6 VOL (V) VOL (V) TYPICAL VOL VS VDD TYPICAL VOL VS IOL AT VDD = 3.3 V 1 10 20 30 IOL = 10 mA IOL = 6 mA IOL = 3 mA 1 2 3 4 VDD (V) IOL (mA) Figure 7. Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1) TYPICAL VDD – VOH VS IOH AT VDD = 3.3 V 0.25 85°C 25°C –40°C 1 VDD – VOH (V) VDD – VOH (V) 1.2 0.8 0.6 0.4 TYPICAL VDD – VOH VS VDD AT SPEC IOH 85°C, IOH = 2 mA 25°C, IOH = 2 mA –40°C, IOH = 2 mA 0.2 0.15 0.1 0.05 0.2 0 0 0 –5 –10 IOH (mA)) –15 –20 1 2 VDD (V) 3 4 Figure 8. Typical High-Side (Source) Characteristics — Low Drive (PTxDSn = 0) MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 17 Electrical Characteristics TYPICAL VDD – VOH VS VDD AT SPEC IOH TYPICAL VDD – VOH VS IOH AT VDD = 3.3 V 0.8 85°C 25°C –40°C 0.6 0.4 0.2 0 0 –5 –10 –15 –20 IOH (mA) –25 85°C 25°C –40°C 0.3 VDD – VOH (V) VDD – VOH (V) 0.4 0.2 IOH = –10 mA IOH = –6 mA 0.1 IOH = –3 mA 0 –30 1 2 3 4 VDD (V) Figure 9. Typical High-Side (Source) Characteristics — High Drive (PTxDSn = 1) 3.7 Supply Current Characteristics This section includes information about power supply current in various operating modes. Table 9. Supply Current Characteristics Num C P T Parameter Symbol T C T Run supply current FEI mode, all modules off 2 T T Run supply current LPRS=0, all modules off 3 RIDD T C T Run supply current LPRS=1, all modules off, running from Flash RIDD T C 49 — 8 MHz 21 — 1 MHz 4.6 — 25 MHz 44 47 36 — 8 MHz 15.5 — 1 MHz 3.9 — 203 — 3.3 3.3 3.3 16 kHz FBELP 154 — 50 — 11 13.7 4.57 — 8 MHz 2 — 1 MHz 0.73 — 16 kHz FBELP 3.3 20 MHz WIDD T 75 25 MHz Wait mode supply current FEI mode, all modules off 5 60 16 kHz FBILP T 4 Max 20 MHz RIDD T Typ1 20 MHz RIDD T VDD (V) 25 MHz Run supply current FEI mode, all modules on 1 Bus Freq 3.3 mA –40 to 85 °C mA –40 to 85 °C μA –40 to 85 °C μA –40 to 85 °C μA –-40 to 85 °C 0 to 70 °C 0.35 P C Temp (°C) 11 Stop2 mode supply current 3.3 6 Unit 45 S2IDD μA n/a 1.8 12 0 to 70 °C 16.2 –40 to 85 °C 0.35 C –40 to 85 °C MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 18 Freescale Semiconductor Electrical Characteristics Table 9. Supply Current Characteristics (continued) Num C C P Parameter Symbol Bus Freq 3.3 0.52 n/a 1.8 Unit Temp (°C) 0 to 70 °C μA –40 to 85 °C 15 0 to 70 °C 32.4 –40 to 85 °C 0.52 C 1 Max 55 S3IDD C Typ1 14 Stop3 mode supply current No clocks active 7 VDD (V) 8 T EREFSTEN=1 32 kHz 500 — nA –40 to 85 °C 9 T IREFSTEN=1 32 kHz 70 — μA –40 to 85 °C 10 T TPM PWM 100 Hz 12 — μA –40 to 85 °C 11 T 15 — μA –40 to 85 °C 12 T 13 14 Low power mode adders: SCI, SPI, or IIC — 300 bps 3.3 RTC using LPO 1 kHz 200 — nA –40 to 85 °C T RTC using ICSERCLK 32 kHz 1 — μA –40 to 85 °C T LVD n/a 100 — μA –40 to 85 °C Data in Typical column was characterized at 3.3 V, 25 °C or is typical recommended value. Figure 10. Typical Run IDD for FBE and FEI, IDD vs. VDD (ADC off, All Other Modules Enabled) MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 19 Electrical Characteristics 3.8 External Oscillator (XOSC) Characteristics Reference Figure 11 and Figure 12 for crystal or resonator circuits. Table 10. XOSC and ICS Specifications (Temperature Range = –40 to 85 °C Ambient) Num C Characteristic 1 Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) C High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0) 2 D 3 Feedback resistor Low range, low power (RANGE=0, HGO=0)2 D Low range, High Gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X) 4 Series resistor — Low range, low power (RANGE = 0, HGO = 0)2 Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) D High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz 5 6 Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings Crystal start-up time 4 Low range, low power Low range, high power C High range, low power High range, high power D Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) External with FLL / PLL enabled (FEE / PEE) External with bypass (FBE.FBELP,PBE, PBELP) Symbol Min Typ1 Max Unit flo fhi fhi 32 1 1 — — — 38.4 25 8 kHz MHz MHz See Note2 See Note3 C1,C2 RF RS t CSTL t CSTH fextal — — — — 10 1 — — — — — — — 0 100 — — — Ω — — — 0 0 0 0 10 20 ΚΩ — — — — 200 400 5 15 — — — — ms 0.03125 0 — — 50.33 50.33 MHz MHz MΩ Data in Typical column was characterized at 3.3 V, 25 °C or is typical recommended value. Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE=HGO=0. 3 See crystal or resonator manufacturer’s recommendation. 4 Proper PC board layout procedures must be followed to achieve specifications. 1 2 MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 20 Freescale Semiconductor Electrical Characteristics XOSC EXTAL XTAL RS RF C1 Crystal or Resonator C2 Figure 11. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain XOSC EXTAL XTAL Crystal or Resonator Figure 12. Typical Crystal or Resonator Circuit: Low Range/Low Gain 3.9 Multipurpose Clock Generator (MCG) Specifications Table 11. MCG Frequency Specifications (Temperature Range = –40 to 125 °C Ambient) Num C Rating Symbol Min Typical Max Unit fint_ft — 32.768 — kHz 1 Internal reference frequency - factory P trimmed at VDD = and temperature = 25 °C 2 P Average internal reference frequency untrimmed 1 fint_ut 25 — 41.66 kHz 3 P Average internal reference frequency user trimmed fint_t 31.25 — 39.06 kHz 4 D Internal reference startup time tirefst — 60 100 us 5 DCO output frequency range untrimmed 1 — value provided for reference: fdco_ut = 1024 X fint_ut fdco_ut 25.6 33.48 42.66 MHz 6 P DCO output frequency range - trimmed fdco_t 32 — 40 MHz 7 Resolution of trimmed DCO output C frequency at fixed voltage and temperature (using FTRIM) Δfdco_res_t — ± 0.1 ± 0.2 %fdco MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 21 Electrical Characteristics Table 11. MCG Frequency Specifications (continued)(Temperature Range = –40 to 125 °C Ambient) Num C Rating Symbol Min Typical Max Unit Δfdco_res_t — ± 0.2 ± 0.4 %fdco 8 Resolution of trimmed DCO output C frequency at fixed voltage and temperature (not using FTRIM) 9 Total deviation of trimmed DCO output P frequency over voltage and temperature Δfdco_t — + 0.5 -1.0 ±2 %fdco 10 Total deviation of trimmed DCO output C frequency over fixed voltage and temperature range of 0 - 70 °C Δfdco_t — ± 0.5 ±1 %fdco 11 C FLL acquisition time 2 tfll_acquire — — 1 ms 12 D PLL acquisition time 3 tpll_acquire — — 1 ms 13 C CJitter — 0.02 0.2 %fdco 14 D VCO operating frequency fvco 7.0 — 55.0 MHz 15 D Lock entry frequency tolerance5 Dlock ± 1.49 — ± 2.98 % 16 D Lock exit frequency tolerance6 Dunl ± 4.47 — ± 5.97 % 17 D Lock time - FLL tfll_lock — — tfll_acquire+ 1075(1/fint_t s Long term Jitter of DCO output clock (averaged over 2ms interval) 4 ) 18 tpll_lock D Lock time - PLL — — tpll_acquire+ 1075(1/fpll_r s ef) 19 Loss of external clock minimum D frequency - RANGE = 0 floc_low (3/5) x fint — — kHz 1 TRIM register at default value (0x80) and FTRIM control bit at default value (0x0). This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 3 This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 4 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBUS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval. 5 Below D lock minimum, the MCG is guaranteed to enter lock. Above Dlock maximum, the MCG does not enter lock. But if the MCG is already in lock, then the MCG may stay in lock. 2 6 Below Dunl minimum, the MCG does not exit lock if already in lock. Above Dunl maximum, the MCG is guaranteed to exit lock. MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 22 Freescale Semiconductor Electrical Characteristics 3.10 Mini-FlexBus Timing Specifications A multi-function external bus interface called Mini-FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 25.1666 MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple chip-select based interface can be used. All processor bus timings are synchronous; that is, input setup/hold and output delay are given in respect to the rising edge of a reference clock, MB_CLK. The MB_CLK frequency is half the internal system bus frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Mini-FlexBus output clock (MB_CLK). All other timing relationships can be derived from these values. Table 12. Mini-FlexBus AC Timing Specifications 1 2 Num C Characteristic Min Max Unit Notes — — Frequency of Operation — 25.1666 MHz — MB1 D Clock Period 39.73 — ns — MB2 P Output Valid — 20 ns 1 MB3 D Output Hold 1.0 — ns 1 MB4 P Input Setup 22 — ns 2 MB5 D Input Hold 10 — ns 2 Specification is valid for all MB_A[19:0], MB_D[7:0], MB_CS[1:0], MB_OE, MB_R/W, and MB_ALE. Specification is valid for all MB_D[7:0]. S0 S1 S2 S3 S0 FB_CLK MB1 FB_A[19:16] MB3 ADDR[19:0] MB2 8-bit Non-Mux’d Bus FB_D[7:0] ADDR[31:24] MB5 DATA[7:0] MB4 FB_AD[19:16] ADDR[19:16] 16-bit Mux’d Bus FB_AD[15:0] ADDR[15:0] DATA[15:0] FB_R/W FB_ALE FB_CSn, FB_OE Figure 13. Mini-FlexBus Read Timing MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 23 Electrical Characteristics S0 S1 S2 S3 S0 FB_CLK MB1 MB3 ADDR[19:8] FB_AD[19:8] MB2 8-bit Non-Mux’d Bus FB_AD[7:0] ADDR[7:0] FB_AD[19:16] DATA[7:0] ADDR[19:16] 16-bit Mux’d Bus FB_AD[15:0] ADDR[15:0] DATA[15:0] FB_R/W FB_ALE FB_CSn FB_OE Figure 14. Mini-FlexBus Write Timing 3.11 Fast Ethernet Timing Specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. 3.11.1 Receive Signal Timing Specifications The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices. Table 13. Receive Signal Timing MII Mode Num C Characteristic Unit Min Max — — RXCLK frequency — 25 MHz E1 P RXD[3:0], RXDV, RXER to RXCLK setup 5 — ns E2 D RXCLK to RXD[3:0], RXDV, RXER hold 5 — ns E3 D RXCLK pulse width high 35% 65% RXCLK period E4 D RXCLK pulse width low 35% 65% RXCLK period MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 24 Freescale Semiconductor Electrical Characteristics E4 RXCLK (Input) E3 E1 RXD[n:0] RXDV, RXER E2 Valid Data Figure 15. MII Receive Signal Timing Diagram 3.11.2 Transmit Signal Timing Specifications Table 14. Transmit Signal Timing MII Mode Num C Characteristic Unit Min Max — — TXCLK frequency — 25 MHz E5 D TXCLK to TXD[3:0], TXEN, TXER invalid 5 — ns E6 P TXCLK to TXD[3:0], TXEN, TXER valid — 25 ns E7 D TXCLK pulse width high 35% 65% tTXCLK E8 D TXCLK pulse width low 35% 65% tTXCLK E8 TXCLK (Input) E7 E6 E5 TXD[n:0] TXEN, TXER Valid Data Figure 16. MII Transmit Signal Timing Diagram 3.11.3 Asynchronous Input Signal Timing Specifications Table 15. MII Transmit Signal Timing Num C E9 D Characteristic CRS, COL minimum pulse width Min Max Unit 1.5 — TXCLK period CRS, COL E9 Figure 17. MII Async Inputs Timing Diagram MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 25 Electrical Characteristics 3.11.4 MII Serial Management Timing Specifications Table 16. MII Serial Management Channel Signal Timing Num C E10 D E11 Characteristic Symbol Min Max Unit MDC cycle time tMDC 400 — ns D MDC pulse width — 40 60 % tMDC E12 D MDC to MDIO output valid — — 375 ns E13 D MDC to MDIO output invalid — 30 — ns E14 D MDIO input to MDC setup — 5 — ns E15 D MDIO input to MDC hold — 15 — ns E10 E11 MDC (Output) E11 E13 E12 Valid Data MDIO (Output) E14 MDIO (Input) E15 Valid Data Figure 18. MII Serial Management Channel TIming Diagram 3.12 AC Characteristics This section describes timing characteristics for each peripheral system. 3.12.1 Control Timing Table 17. Control Timing Num C Rating 1 D Bus frequency (tcyc = 1/fBus) VDD > 2.7 V 2.7 V > VDD > 2.1 V 2.1 V > VDD > 1.8 V 2 D Internal low power oscillator period width2 Symbol Min Typ1 Max dc dc dc — — — 50.33 40 20 Unit fBus tLPO 700 — 1300 μs textrst 100 — — ns MHz 3 D External reset pulse 4 D Reset low drive trstdrv 34 x tcyc — — ns 5 D BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes tMSSU 500 — — ns MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 26 Freescale Semiconductor Electrical Characteristics Table 17. Control Timing (continued) Symbol Min Typ1 Max Unit tMSH 100 — — μs IRQ pulse width Asynchronous path2 Synchronous path4 tILIH, tIHIL 100 2 x tcyc — — — — ns Keyboard interrupt pulse width Asynchronous path2 Synchronous path4 tILIH, tIHIL 100 2 x tcyc — — — — ns Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF)5 Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1) tRise, tFall — — 16 23 — — Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1) tRise, tFall — — 5 9 — — Stop3 recovery time, from interrupt event to vector fetch tSTPREC — 6 10 Num C 6 D BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes 3 7 D 8 D 9 10 Rating ns C C ns μs Typical values are based on characterization data at VDD = 3.3 V, 25 °C unless otherwise stated. This is the shortest pulse that is guaranteed to be recognized as a reset or interrupt pin request. Shorter pulses are not guaranteed to override reset requests from internal sources. 3 To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t MSH after VDD rises above VLVD. 4 This is the minimum assertion time in which the interrupt may be recognized. The correct protocol is to assert the interrupt request until it is explicitly negated by the interrupt service routine. 5 Timing is shown with respect to 20% V DD and 80% VDD levels. Temperature range –40 °C to 85 °C. 1 2 textrst RESET PIN Figure 19. Reset Timing tIHIL KBIPx IRQ/KBIPx tILIH Figure 20. IRQ/KBIPx Timing MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 27 Electrical Characteristics 3.12.2 TPM Module Timing Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock. Table 18. TPM Input Timing No. C Function Symbol Min Max Unit 1 D External clock frequency fTCLK 0 fBus/4 Hz 2 D External clock period tTCLK 4 — tcyc 3 D External clock high time tclkh 1.5 — tcyc 4 D External clock low time tclkl 1.5 — tcyc 5 D Input capture pulse width tICPW 1.5 — tcyc tTCLK tclkh TCLK tclkl Figure 21. Timer External Clock tICPW TPMCHn TPMCHn tICPW Figure 22. Timer Input Capture Pulse MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 28 Freescale Semiconductor Electrical Characteristics 3.12.3 SPI Timing Table 19 and Figure 23 through Figure 26 describe the timing requirements for the SPI system. Table 19. SPI Timing No. C Function Symbol Min Max Unit — D Operating frequency Master Slave fBus/2048 0 fBus/2 fBus/4 Hz Hz 1 D SPSCK period Master Slave 2 4 2048 — tcyc tcyc D Enable lead time Master Slave tLead 2 1/2 1 — — tSPSCK tcyc D Enable lag time Master Slave tLag 3 1/2 1 — — tSPSCK tcyc 4 D Clock (SPSCK) high or low time Master Slave tcyc – 30 tcyc – 30 1024 tcyc — ns ns D Data setup time (inputs) Master Slave tSU 5 15 15 — — ns ns D Data hold time (inputs) Master Slave tHI 6 0 25 — — ns ns 7 D Slave access time ta — 1 tcyc 8 D Slave MISO disable time tdis — 1 tcyc 9 D Data valid (after SPSCK edge) Master Slave — — 25 25 ns ns 10 D Data hold time (outputs) Master Slave 0 0 — — ns ns 11 D Rise time Input Output tRI tRO — — tcyc – 25 25 ns ns 12 D Fall time Input Output tFI tFO — — tcyc – 25 25 ns ns fop tSPSCK tWSPSCK tv tHO MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 29 Electrical Characteristics SS1 (OUTPUT) 2 1 SPSCK (CPOL = 0) (OUTPUT) 3 11 4 4 12 SPSCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 6 MSB IN2 BIT 6 . . . 1 9 9 MOSI (OUTPUT) LSB IN MSB OUT2 10 BIT 6 . . . 1 LSB OUT NOTES: 1. SS output mode (DDS7 = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 23. SPI Master Timing (CPHA = 0) SS(1) (OUTPUT) 1 2 12 11 11 12 3 SPSCK (CPOL = 0) (OUTPUT) 4 4 SPSCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 6 MSB IN(2) 9 MOSI (OUTPUT) PORT DATA BIT 6 . . . 1 LSB IN 10 MASTER MSB OUT(2) BIT 6 . . . 1 MASTER LSB OUT PORT DATA NOTES: 1. SS output mode (DDS7 = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 24. SPI Master Timing (CPHA =1) MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 30 Freescale Semiconductor Electrical Characteristics SS (INPUT) 1 12 11 11 12 3 SPSCK (CPOL = 0) (INPUT) 2 4 4 SPSCK (CPOL = 1) (INPUT) 8 7 MISO (OUTPUT) MSB OUT SLAVE BIT 6 . . . 1 SLAVE LSB OUT SEE NOTE 6 5 MOSI (INPUT) 10 10 9 BIT 6 . . . 1 MSB IN LSB IN NOTE: 1. Not defined but normally MSB of character just received Figure 25. SPI Slave Timing (CPHA = 0) SS (INPUT) 1 3 2 12 11 11 12 SPSCK (CPOL = 0) (INPUT) 4 4 SPSCK (CPOL = 1) (INPUT) 9 MISO (OUTPUT) SEE NOTE 7 MOSI (INPUT) SLAVE 10 MSB OUT 5 BIT 6 . . . 1 8 SLAVE LSB OUT 6 MSB IN BIT 6 . . . 1 LSB IN NOTE: 1. Not defined but normally LSB of character just received Figure 26. SPI Slave Timing (CPHA = 1) MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 31 Electrical Characteristics 3.12.4 ADC Characteristics Table 20. 12-bit ADC Operating Conditions C Characteristic Supply voltage Conditions Absolute D 2 Delta to VDD (VDD-VDDAD) Delta to VSS (VSS-VSSAD)2 Symb Min Typ1 Max Unit VDDAD 1.8 — 3.6 V ΔVDDAD -100 0 +100 mV ΔVSSAD -100 0 +100 mV D Ground voltage D Ref Voltage High VREFH 1.8 VDDAD VDDAD V D Ref Voltage Low VREFL VSSAD VSSAD VSSAD V D Input Voltage VADIN VREFL — VREFH V C Input Capacitance CADIN — 4.5 5.5 C Input Resistance RADIN — 5 7 — — — — 2 5 10 bit mode fADCK > 4MHz fADCK < 4MHz — — — — 5 10 8 bit mode (all valid fADCK) — — 10 0.4 — 8.0 0.4 — 4.0 Analog Source Resistance C D 12 bit mode fADCK > 4MHz fADCK < 4MHz ADC Conversion High Speed (ADLPC=0) Clock Freq. Low Power (ADLPC=1) Comment pF kΩ RAS External to MCU kΩ fADCK MHz Typical values assume VDDAD = 3.3 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 DC potential difference. 1 MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 32 Freescale Semiconductor Electrical Characteristics SIMPLIFIED INPUT PIN EQUIVALENT ZADIN CIRCUIT SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS RAS RADIN ADC SAR ENGINE + VADIN VAS CAS + – – RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 27. ADC Input Impedance Equivalency Diagram Table 21. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) C Symb Min Typ1 Max Supply Current ADLPC=1 ADLSMP=1 ADCO=1 T IDDAD — 120 — Supply Current ADLPC=1 ADLSMP=0 ADCO=1 T Supply Current ADLPC=0 ADLSMP=1 ADCO=1 T Supply Current ADLPC=0 ADLSMP=0 ADCO=1 T Characteristic Conditions Unit Comment μA IDDAD — 202 — μA IDDAD — 288 — μA IDDAD — 0.532 1 mA Supply Current Stop, Reset, Module Off D IDDAD — 0.007 0.8 ADC Asynchronous Clock Source High Speed (ADLPC=0) P fADACK 2 3.3 5 Low Power (ADLPC=1) C 1.25 2 3.3 μA tADACK = 1/fADACK MHz MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 33 Electrical Characteristics Table 21. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued) C Symb Min Typ1 Max Unit Comment P tADC — 20 — — 40 — ADCK cycles — 3.5 — — 23.5 — See the ADC chapter in the MCF51CN128 Reference Manual for conversion time variances — ±3.0 — P — ±1 ±2.5 8 bit mode T — ±0.5 ±1.0 12 bit mode T — ±1.75 — 10 bit mode3 P — ±0.5 ±1.0 8 bit mode3 T — ±0.3 ±0.5 12 bit mode T — ±1.5 — 10 bit mode P — ±0.5 ±1.0 8 bit mode T — ±0.3 ±0.5 — ±1.5 — Characteristic Conditions Conversion Time Short Sample (ADLSMP=0) (Including Long Sample (ADLSMP=1) sample time) Sample Time Short Sample (ADLSMP=0) P Long Sample (ADLSMP=1) C Total Unadjusted 12 bit mode Error 10 bit mode Differential Non-Linearity Integral Non-Linearity C T tADS ETUE DNL INL Zero-Scale Error 12 bit mode T 10 bit mode P — ±0.5 ±1.5 8 bit mode T — ±0.5 ±0.5 12 bit mode T — ±1.0 — 10 bit mode P — ±0.5 ±1 8 bit mode T — ±0.5 ±0.5 12 bit mode D — -1 to 0 — 10 bit mode — — ±0.5 8 bit mode — — ±0.5 — ±2 — 10 bit mode — ±0.2 ±4 8 bit mode — ±0.1 ±1.2 — 1.646 — — 1.769 — — 701.2 — Full-Scale Error Quantization Error Input Leakage Error Temp Sensor Slope Temp Sensor Voltage 12 bit mode D -40°C to 25°C D EZS EFS EQ EIL m 25°C to 85°C 25°C D VTEMP25 ADCK cycles LSB2 Includes Quantization LSB2 LSB2 LSB2 VADIN = VSSAD LSB2 VADIN = VDDAD LSB2 LSB2 Pad leakage4 * RAS{test=pad leakage test} mV/°C mV Typical values assume VDDAD = 3.3 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 1 LSB = (V N REFH - VREFL)/2 3 Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes 4 Based on input pad leakage current. Refer to pad electricals. 1 MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 34 Freescale Semiconductor Electrical Characteristics 3.12.5 Flash Specifications This section provides details about program/erase times and program-erase endurance for the flash memory. Program and erase operations do not require any special power sources other than the normal VDD supply. For more detailed information about program/erase operations, see the Memory section of the MCF51CN128 Reference Manual. Table 22. Flash Characteristics C Characteristic Symbol Min Typical Max Unit D Supply voltage for program/erase -40 °C to 85 °C Vprog/erase 1.8 — 3.6 V D Supply voltage for read operation VRead 1.8 — 3.6 V fFCLK 150 — 200 kHz tFcyc 5 — 6.67 μs frequency1 D Internal FCLK D Internal FCLK period (1/FCLK) P Longword program time (random location)(2) mode)(2) tprog 9 tFcyc P Longword program time (burst tBurst 4 tFcyc P Page erase time2 tPage 4000 tFcyc P Mass erase time(2) tMass 20,000 tFcyc D Longword program current3 D Page erase current 3 RIDDBP — 9.7 — mA RIDDPE — 7.6 — mA 10,000 — — 100,000 — — cycles 15 100 — years endurance4 C Program/erase TL to TH = –40°C to + 85°C T = 25°C C Data retention5 tD_ret 1 The frequency of this clock is controlled by a software setting. These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase. 3 The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures with VDD = 3.3 V, bus frequency = 8.0 MHz. 4 Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory. 5 Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory. 2 3.13 EMC Performance Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance. MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 35 Ordering Information 3.13.1 Radiated Emissions Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device. 4 Ordering Information This section contains ordering information for MCF51CN128 devices. Table 23. Ordering Information Memory Freescale Part Number1 Flash RAM Temperature Range (°C) Package2 MCF51CN128CLK 128K 24K –40 to +85 80-pin LQFP MCF51CN128CLH 128K 24K –40 to +85 64-pin LQFP MCF51CN128CGT 128K 24K –40 to +85 48-pin QFN 1 See the MCF51CN128 Reference Manual (document MCF51CN128RM), for a complete description of modules included on each device. 2 See Table 24 for package information. 5 Package Information Table 24. Package Descriptions Pin Count 6 Package Type Abbreviation Designator Case No. Document No. 80 Low Quad Flat Package LQFP LK 917A 98ASS23237W 64 Low Quad Flat Package LQFP LH 840F 98ASS23234W 48 Quad Flat No-Leads QFN GT 1314 98ARH99048A Mechanical Outline Drawings The following pages are mechanical drawings for the packages described in Table 24. For the latest available drawings, visit freescale web site (http://www.freescale.com) and enter the package’s document number into the keyword search box. MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 36 Freescale Semiconductor Mechanical Outline Drawings 6.1 80-pin LQFP MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 37 Mechanical Outline Drawings MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 38 Freescale Semiconductor Mechanical Outline Drawings MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 39 Mechanical Outline Drawings 6.2 64-pin LQFP MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 40 Freescale Semiconductor Mechanical Outline Drawings MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 41 Mechanical Outline Drawings MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 42 Freescale Semiconductor Mechanical Outline Drawings 6.3 48-pin QFN MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 43 Mechanical Outline Drawings MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 44 Freescale Semiconductor Mechanical Outline Drawings MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 45 Mechanical Outline Drawings MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 46 Freescale Semiconductor Revision History 7 Revision History This section lists the changes between versions of MCF51CN128 Data Sheet document. Table 25. Revision History Revision Number Date Description of Changes 1 August 2008 Alpha Customer Release. 2 January 2009 Pre-Launch Release. 3 January 2009 Launch Release. 4 May 2009 • Changed LVDH trip and recovery values in Table 8. • Fixed Mini-FlexBus maximum frequency to 25.1666 MHz in Section 3.10, “Mini-FlexBus Timing Specifications.” • Updated FEC feature list to describe ethernet operation between 3.0 V to 3.6 V. • In Table 8, added a footnote to the operating voltage. It describes an exception to the Fast Ethernet Controller (FEC), because it is only operational above the operating voltage of 3 V. • Corrected Freescale part numbers in Table 23. • In Table 21, changed IDDAD classification to T. MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4 Freescale Semiconductor 47 How to Reach Us: Home Page: www.freescale.com E-mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] Document Number: MCF51CN128 Rev. 4 5/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009. All rights reserved.