深圳市南天星电子科技有限公司 专业代理飞思卡尔 (Freescale) 飞思卡尔主要产品 8 位微控制器 16 位微控制器 数字信号处理器与控制器 i.MX 应用处理器 基于 ARM®技术的 Kinetis MCU 32/64 位微控制器与处理器 模拟与电源管理器件 射频器件(LDMOS,收发器) 传感器(压力,加速度,磁场, 触摸,电池) 飞思卡尔产品主要应用 汽车电子 数据连接 消费电子 工业控制 医疗保健 电机控制 网络 智能能源 深圳市南天星电子科技有限公司 电话:0755-83040796 传真:0755-83040790 邮箱:[email protected] 网址:www.soustar.com.cn 地址:深圳市福田区福明路雷圳大厦 2306 室 Freescale Semiconductor Data Sheet: Technical Data Document Number: MC9S08QE128 Rev. 7, 10/2008 MC9S08QE128 MC9S08QE128 Series Covers: MC9S08QE128, MC9S08QE96, MC9S08QE64 • 8-Bit HCS08 Central Processor Unit (CPU) – Up to 50.33-MHz HCS08 CPU above 2.4V, 40-MHz CPU above 2.1V, and 20-MHz CPU above 1.8V, across temperature range – HC08 instruction set with added BGND instruction – Support for up to 32 interrupt/reset sources • On-Chip Memory – Flash read/program/erase over full operating voltage and temperature – Random-access memory (RAM) – Security circuitry to prevent unauthorized access to RAM and flash contents • Power-Saving Modes – Two low power stop modes; reduced power wait mode – Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode – Very low power external oscillator can be used in stop3 mode to provide accurate clock to active peripherals – Very low power real time counter for use in run, wait, and stop modes with internal and external clock sources – 6 μs typical wake up time from stop modes • Clock Source Options – Oscillator (XOSC) — Loop-control Pierce oscillator; Crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz – Internal Clock Source (ICS) — FLL controlled by internal or external reference; precision trimming of internal reference allows 0.2% resolution and 2% deviation; supports CPU freq. from 2 to 50.33 MHz • System Protection – Watchdog computer operating properly (COP) reset with option to run from dedicated 1-kHz internal clock source or bus clock – Low-voltage detection with reset or interrupt; selectable trip points – Illegal opcode detection with reset – Flash block protection • Development Support – Single-wire background debug interface – Breakpoint capability to allow single breakpoint setting during in-circuit debugging (plus two more breakpoints) – On-chip in-circuit emulator (ICE) debug module containing two comparators and nine trigger modes. 80-LQFP Case 917A 14 mm2 64-LQFP Case 840F 10 mm2 48-QFN Case 1314 7 mm2 44-LQFP Case 824D 10 mm2 32-LQFP Case 873A 7 mm2 • • • • • • • • Eight deep FIFO for storing change-of-flow addresses and event-only data. Debug module supports both tag and force breakpoints. ADC — 24-channel, 12-bit resolution; 2.5 μs conversion time; automatic compare function; 1.7 mV/°C temperature sensor; internal bandgap reference channel; operation in stop3; fully functional from 3.6V to 1.8V ACMPx — Two analog comparators with selectable interrupt on rising, falling, or either edge of comparator output; compare option to fixed internal bandgap reference voltage; outputs can be optionally routed to TPM module; operation in stop3 SCIx — Two SCIs with full duplex non-return to zero (NRZ); LIN master extended break generation; LIN slave extended break detection; wake up on active edge SPIx— Two serial peripheral interfaces with Full-duplex or single-wire bidirectional; Double-buffered transmit and receive; MSB-first or LSB-first shifting IICx — Two IICs with; Up to 100 kbps with maximum bus loading; Multi-master operation; Programmable slave address; Interrupt driven byte-by-byte data transfer; supports broadcast mode and 10 bit addressing TPMx — One 6-channel and two 3-channel; Selectable input capture, output compare, or buffered edge- or center-aligned PWMs on each channel RTC — 8-bit modulus counter with binary or decimal based prescaler; External clock source for precise time base, time-of-day, calendar or task scheduling functions; Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external components Input/Output – 70 GPIOs and 1 input-only and 1 output-only pin – 16 KBI interrupts with selectable polarity – Hysteresis and configurable pull-up device on all input pins; Configurable slew rate and drive strength on all output pins. – SET/CLR registers on 16 pins (PTC and PTE) Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © Freescale Semiconductor, Inc., 2008. All rights reserved. Table of Contents 1 2 3 MC9S08QE128 Series Comparison. . . . . . . . . . . . . . . . . . . . .4 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 3.2 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .12 3.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .12 3.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .13 3.5 ESD Protection and Latch-Up Immunity . . . . . . . . . . . .14 3.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .18 3.8 External Oscillator (XOSC) Characteristics . . . . . . . . .21 3.9 Internal Clock Source (ICS) Characteristics . . . . . . . . .22 3.10 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 4 5 6 7 3.10.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . 3.10.2 TPM Module Timing . . . . . . . . . . . . . . . . . . . . . 3.10.3 SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.11 Analog Comparator (ACMP) Electricals . . . . . . . . . . . 3.12 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 3.13 Flash Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Device Numbering System . . . . . . . . . . . . . . . . . . . . . Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Mechanical Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 26 27 30 30 33 34 34 34 35 49 49 MC9S08QE128 Series Data Sheet, Rev. 7 2 Freescale Semiconductor MODULE (TPM1) TPM1CLK CPU ACMP1O ANALOG COMPARATOR (ACMP1) ACMP1+ ACMP1- BKP IIC MODULE (IIC1) ANALOG COMPARATOR (ACMP2) USER FLASH 128K / 96K / 64K TPM2CLK SCL1 SDA1 ACMP2+ ACMP2O ACMP2TPM3CH5-0 PTC7/TxD2/ACMP2PTC6/RxD2/ACMP2+ PTC5/TPM3CH5/ACMP2O PTC4/TPM3CH4/RSTO PTC3/TPM3CH3 PTC2/TPM3CH2 PTC1/TPM3CH1 PTC0/TPM3CH0 PTD7/KBI2P7 PTD6/KBI2P6 PTD5/KBI2P5 PTD4/KBI2P4 PTD3/KBI2P3/SS2 PTD2/KBI2P2/MISO2 PTD1/KBI2P1/MOSI2 PTD0/KBI2P0/SPSCK2 PTE7/TPM3CLK PTE6 PTE5 PTE4 PTE3/SS1 PTE2/MISO1 PTE1/MOSI1 PTE0/TPM2CLK/SPSCK1 PTF7/ADP17 PTF6/ADP16 PTF5/ADP15 PTF4/ADP14 PTF3/ADP13 PTF2/ADP12 PTF1/ADP11 PTF0/ADP10 PTG7/ADP23 PTG6/ADP22 PTG5/ADP21 PTG4/ADP20 PTG3/ADP19 PTG2/ADP18 PTG1 PTG0 6 6-CHANNEL TIMER/PWM MODULE (TPM3) PORT B IRQ MODULE (TPM2) 3 PORT C INT TPM2CH2-0 IRQ LVD 3-CHANNEL TIMER/PWM PORT D OSCILLATOR (XOSC) RESETS AND INTERRUPTS MODES OF OPERATION POWER MANAGEMENT PTB7/SCL1/EXTAL PTB6/SDA1/XTAL PTB5/TPM1CH1/SS1 PTB4/TPM2CH1/MISO1 PTB3/KBI1P7/MOSI1/ADP7 PTB2/KBI1P6/SPSCK1/ADP6 PTB1/KBI1P5/TxD1/ADP5 PTB0/KBI1P4/RxD1/ADP4 PORT E HCS08 SYSTEM CONTROL COP EXTAL XTAL INTERNAL CLOCK SOURCE (ICS) PORT F BDC PORT A 3-CHANNEL TIMER/PWM PORT G RESET BKGD/MS HCS08 CORE PTA7/TPM2CH2/ADP9 PTA6/TPM1CH2/ADP8 PTA5/IRQ/TPM1CLK/RESET PTA4/ACMP1O/BKGD/MS PTA3/KBI1P3/SCL1/ADP3 PTA2/KBI1P2/SDA1/ADP2 PTA1/KBI1P1/TPM2CH0/ADP1/ACMP1PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+ TPM1CH2-0 TPM3CLK USER RAM 10 8K / 6K / 4K SERIAL COMMUNICATIONS INTERFACE (SCI1) DEBUG MODULE (DBG) SERIAL PERIPHERAL INTERFACE MODULE (SPI2) REAL TIME COUNTER (RTC) VDD VDD VSS VSS VOLTAGE REGULATOR INTERFACE (SCI2) SERIAL PERIPHERAL INTERFACE MODULE (SPI1) PORT J PTJ7 PTJ6 PTJ5 PTJ4 PTJ3 PTJ2 PTJ1 PTJ0 SERIAL COMMUNICATIONS SS2 MISO2 MOSI2 SPSCK2 TxD2 RxD2 SS1 MISO1 MOSI1 SPSCK1 24-CHANNEL,12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) VREFH VREFL VDDA VSSA SDA2 SCL2 IIC MODULE (IIC2) PORT H PTH7/SDA2 PTH6/SCL2 PTH5 PTH4 PTH3 PTH2 PTH1 PTH0 TxD1 RxD1 - VREFH/VREFL internally connected to VDDA/VSSA in 48-pin and 32-pin packages - VDD and VSS pins are each internally connected to two pads in 32-pin package Figure 1. MC9S08QE128 Series Block Diagram MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 3 MC9S08QE128 Series Comparison 1 MC9S08QE128 Series Comparison The following table compares the various device derivatives available within the MC9S08QE128 series. Table 1. MC9S08QE128 Series Features by MCU and Package Feature MC9S08QE128 MC9S08QE96 MC9S08QE64 Flash size (bytes) 131072 98304 65536 RAM size (bytes) 8064 6016 4096 Pin quantity 80 64 48 44 80 64 48 ACMP1 yes ACMP2 yes ADC channels 24 22 10 10 24 22 10 DBG yes ICS yes IIC1 yes IIC2 yes yes no no yes IRQ no 1 44 32 10 22 10 10 10 no yes no no no 16 16 16 16 16 16 16 16 16 16 12 70 54 38 34 70 54 38 34 54 38 34 26 yes SCI1 yes SCI2 yes SPI1 yes SPI2 yes TPM1 channels 3 TPM2 channels 3 TPM3 channels 6 1 48 16 RTC XOSC 64 yes KBI Port I/O yes 44 yes Port I/O count does not include the input only PTA5/IRQ/TPM1CLK/RESET or the output only PTA4/ACMP1O/BKGD/MS. MC9S08QE128 Series Data Sheet, Rev. 7 4 Freescale Semiconductor Pin Assignments 2 Pin Assignments PTD1/KBI2P1/MOSI2 PTD0/KBI2P0/SPSCK2 PTH7/SDA2 PTH6/SCL2 PTH5 PTH4 PTE7/TPM3CLK VDD VDDAD VREFH VREFL VSSAD VSS PTB7/SCL1/EXTAL PTB6/SDA1/XTAL PTH3 PTH2 PTH1 PTH0 PTC7/TxD2/ACMP2PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+ PTA1/KBI1P1/TPM2CH0/ADP1/ACMP1- PTE0/TPM2CLK/SPSCK1 PTE1/MOSI1 PTG0 PTG1 PTG2/ADP18 PTG3/ADP19 PTE2/MISO1 PTE3/SS1 PTG4/ADP20 PTG5/ADP21 PTG6/ADP22 PTG7/ADP23 PTC6/RxD2/ACMP2+ PTA5/IRQ/TPM1CLK/RESET PTC4/TPM3CH4/RSTO PTC5/TPM3CH5/ACMP2O 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 PTA2/KBI1P2/SDA1/ADP2 PTA3/KBI1P3/SCL1/ADP3 PTD2/KBI2P2/MISO2 PTD3/KBI2P3/SS2 PTD4/KBI2P4 PTJ0 PTJ1 PTF0/ADP10 PTF1/ADP11 VSS VDD PTE4 PTA6/TPM1CH2/ADP8 PTA7/TPM2CH2/ADP9 PTF2/ADP12 PTF3/ADP13 PTJ2 PTJ3 PTB0/KBI1P4/RxD1/ADP4 PTB1/KBI1P5/TxD1/ADP5 PTD5/KBI2P5 PTJ7 PTJ6 PTJ5 PTJ4 PTC1/TPM3CH1 PTC0/TPM3CH0 PTF7/ADP17 PTF6/ADP16 PTF5/ADP15 PTF4/ADP14 PTB3/KBI1P7/MOSI1/ADP7 PTB2/KBI1P6/SPSCK1/ADP6 PTE5 PTB5/TPM1CH1/SS1 PTB4/TPM2CH1/MISO1 PTC3/TPM3CH3 PTC2/TPM3CH2 PTD7/KBI2P7 PTD6/KBI2P6 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 PTE6 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PTA4/ACMP1O/BKGD/MS This section describes the pin assignments for the available packages. See Table 2 for pin availability by package pin-count. Pins in bold are added from the next smaller package. Figure 2. Pin Assignments in 80-Pin LQFP MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 5 PTD1/KBI2P1/MOSI2 PTD0/KBI2P0/SPSCK2 PTH7/SDA2 PTH6/SCL2 PTE7/TPM3CLK VDD VDDAD VREFH VREFL VSSAD VSS PTB7/SCL1/EXTAL PTB6/SDA1/XTAL PTH1 PTH0 PTC7/TxD2/ACMP2PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+ PTA1/KBI1P1/TPM2CH0/ADP1/ACMP1- PTC6/RxD2/ACMP2+ PTE0/TPM2CLK/SPSCK1 PTE1/MOSI1 PTG0 PTG1 PTG2/ADP18 PTG3/ADP19 PTE2/MISO1 PTE3/SS1 PTA5/IRQ/TPM1CLK/RESET PTC4/TPM3CH4/RSTO PTC5/TPM3CH5/ACMP2O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PTA2/KBI1P2/SDA11/ADP2 PTA3/KBI1P3/SCL1/ADP3 PTD2/KBI2P2/MISO2 PTD3/KBI2P3/SS2 PTD4/KBI2P4 PTF0/ADP10 PTF1/ADP11 VSS VDD PTE4 PTA6/TPM1CH2/ADP8 PTA7/TPM2CH2/ADP9 PTF2/ADP12 PTF3/ADP13 PTB0/KBI1P4/RxD1/ADP4 PTB1/KBI1P5/TxD1/ADP5 PTD5/KBI2P5 PTC1/TPM3CH1 PTC0/TPM3CH0 PTF7/ADP17 PTF6/ADP16 PTF5/ADP15 PTF4/ADP14 PTB3/KBI1P7/MOSI1/ADP7 PTB2/KBI1P6/SPSCK1/ADP6 PTE5 PTB5/TPM1CH1/SS1 PTB4/TPM2CH1/MISO1 PTC3/TPM3CH3 PTC2/TPM3CH2 PTD7/KBI2P7 PTD6/KBI2P6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PTE6 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PTA4/ACMP1O/BKGD/MS Pin Assignments Pins in bold are added from the next smaller package. Figure 3. Pin Assignments in 64-Pin LQFP Package MC9S08QE128 Series Data Sheet, Rev. 7 6 Freescale Semiconductor PTE5 13 PTB7/SCL1/EXTAL 10 27 PTA7/TPM2CH2/ADP9 PTB6/SDA11/XTAL 11 26 PTB0/KBI1P4/RxD1/ADP4 PTE6 12 25 PTB1/KBI1P5/TxD1/ADP5 Freescale Semiconductor PTB2/KBI1P6/SPSCK1/ADP6 24 PTB3/KBI1P7/MOSI1/ADP7 23 PTC0/TPM3CH0 22 PTC1/TPM3CH1 21 PTD5/KBI2P5 20 PTD6/KBI2P6 19 PTD7/KBI2P7 18 PTC2/TPM3CH2 17 PTC3/TPM3CH3 16 PTB4/TPM2CH1/MISO1 15 PTB5/TPM1CH1/SS1 14 48 PTA4/ACMP1O/BKGD/MS PTD1/KBI2P1/MOSI2 1 36 PTA2/KBI1P2/SDA1/ADP2 PTD0/KBI2P0/SPSCK2 2 35 PTA3/KBI1P3/SCL1/ADP3 PTA1/KBI1P1/TPM2CH0/ADP1/ACMP137 PTA1/KBI1P1/TPM2CH0/AD 38 PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+ 39 PTC7/TxD2/ACMP2- 40 PTC6/RxD2/ACMP2+ 41 PTE3/SS1 42 PTE2/MISO1 43 PTE1/MOSI1 44 PTE0/TPM2CLK/SPSCK1 45 PTC5/TPM3CH5/ACMP2O 46 PTC4/TPM3CH4/RSTO 47 PTA5/IRQ/TPM1CLK/RESET Pin Assignments PTE7/TPM3CLK 3 34 PTD2/KBI2P2/MISO2 VDD 4 33 PTD3/KBI2P3/SS2 VDDAD 5 32 PTD4/KBI2P4 VREFH 6 31 VSS VREFL 7 30 VDD VSSAD 8 29 PTE4 VSS 9 28 PTA6/TPM1CH2/ADP8 Figure 4. Pin Assignments in 48-Pin QFN Package MC9S08QE128 Series Data Sheet, Rev. 7 7 PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+ PTA1/KBI1P1/TPM2CH0/ADP1/ACMP1- 35 34 PTC7/TxD2/ACMP236 PTC6/RxD2/ACMP2+ 37 PTE2 38 PTE1 39 PTE0/TPM2CLK 40 PTC4/TPM3CH4/RSTO PTC5/TPM3CH5/ACMP2O 41 PTD0/KBI2P0/SPSCK2 42 1 43 PTD1/KBI2P1/MOSI2 44 PTA4/ACMP1O/BKGD/MS PTA5/IRQ/TPM1CLK/RESET Pin Assignments VREFL 7 27 VDD VSSAD 8 26 PTA6/TPM1CH2/ADP8 VSS 9 25 PTA7/TPM2CH2/ADP9 10 24 PTB0/KBI1P4/RxD1/ADP4 23 PTB1/KBI1P5/TxD1/ADP5 PTB7/SCL1/EXTAL PTB5/TPM1CH1/SS1 PTB6/SDA1/XTAL 11 22 VSS PTB2/KBI1P6/SPSCK1/ADP6 28 21 6 PTB3/KBI1P7/MOSI1/ADP7 VREFH 20 PTD4/KBI2P4 PTC0/TPM3CH0 29 19 5 PTC1/TPM3CH1 VDDAD 18 PTD3/KBI2P3/SS2 PTD5/KBI2P5 30 17 4 PTD6/KBI2P6 VDD 16 PTD2/KBI2P2/MISO2 PTD7/KBI2P7 31 15 3 PTC2/TPM3CH2 PTE7/TPM3CLK 14 PTA3/KBI1P3/SCL1/ADP3 PTC3/TPM3CH3 32 13 2 PTB4/TPM2CH1/MISO1 PTA2/KBI1P2/SDA1/ADP2 12 33 Figure 5. Pin Assignments in 44-Pin LQFP Package MC9S08QE128 Series Data Sheet, Rev. 7 8 Freescale Semiconductor PTA4/ACMP1O/BKGD/MS PTA5/IRQ/TPM1CLK/RESET PTC4/TPM3CH4/RSTO PTC5/TPM3CH5/ACMP2O PTC6/RxD2/ACMP2+ PTC7/TxD2/ACMP2- PTA0/KBIP0/TPM1CH0/ADP0/ACMP1 PTA1/KBIP1/TPM2CH0/ADP1/ACMP1 Pin Assignments 32 31 30 29 28 27 26 25 VDD 3 22 PTD2/KBI2P2/MISO2 VREFH/VDDAD 4 21 PTD3/KBI2P3/SS2 VREFL/VSSAD 5 20 PTA6/TPM1CH2/ADP8 VSS 6 19 PTA7/TPM2CH2/ADP9 PTB7/SCL1/EXTAL 7 18 PTB0/KBI1P4/RxD1/ADP4 PTB6/SDA1/XTAL 8 17 PTB1/KBI1P5/TxD1/ADP5 9 10 11 12 13 14 15 16 PTB2/KBI1P6/SPSCK1/ADP6 PTA3/KBIP3/SCL1/ADP3 PTB3/KBI1P7/MOSI1/ADP7 23 PTC0/TPM3CH0 2 PTC1/TPM3CH1 PTD0/KBI2P0/SPSCK2 PTC2/TPM3CH2 PTA2/KBIP2/SDA1/ADP2 PTC3/TPM3CH3 24 PTB4/TPM2CH1/MISO1 1 PTB5/TPM1CH1/SS1 PTD1/KBI2P1/MOSI2 Figure 6. Pin Assignments 32-Pin LQFP Package MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 9 Pin Assignments Table 2. MC9S08QE128 Series Pin Assignment by Package and Pin Count Pin Number 80 64 48 44 32 Lowest ←⎯ Priority ⎯→ Highest Port Pin Alt 1 Alt 2 Alt 3 Alt 4 1 1 1 1 1 PTD1 KBI2P1 MOSI2 2 2 2 2 2 PTD0 KBI2P0 SPSCK2 3 3 — — — PTH7 SDA2 4 4 — — — PTH6 SCL2 5 — — — — PTH5 6 — — — — PTH4 7 5 3 3 — PTE7 8 6 4 4 3 VDD TPM3CLK 9 7 5 5 4 VDDA 10 8 6 6 — VREFH 11 9 7 7 — VREFL 12 10 8 8 5 VSSA 13 11 9 9 6 14 12 10 10 7 PTB7 SCL1 VSS EXTAL 15 13 11 11 8 PTB6 SDA1 XTAL 16 — — — — PTH3 17 — — — — PTH2 18 14 — — — PTH1 19 15 — — — PTH0 20 16 12 — — PTE6 21 17 13 — — PTE5 22 18 14 12 9 PTB5 TPM1CH1 SS1 23 19 15 13 10 PTB4 TPM2CH1 MISO1 24 20 16 14 11 PTC3 TPM3CH3 25 21 17 15 12 PTC2 TPM3CH2 26 22 18 16 — PTD7 KBI2P7 27 23 19 17 — PTD6 KBI2P6 28 24 20 18 — PTD5 KBI2P5 29 — — — — PTJ7 30 — — — — PTJ6 31 — — — — PTJ5 32 — — — — PTJ4 33 25 21 19 13 PTC1 TPM3CH1 34 26 22 20 14 PTC0 TPM3CH0 35 27 — — — PTF7 ADP17 36 28 — — — PTF6 ADP16 37 29 — — — PTF5 ADP15 38 30 — — — PTF4 ADP14 39 31 23 21 15 PTB3 KBI1P7 MOSI1 ADP7 40 32 24 22 16 PTB2 KBI1P6 SPSCK1 ADP6 MC9S08QE128 Series Data Sheet, Rev. 7 10 Freescale Semiconductor Pin Assignments Table 2. MC9S08QE128 Series Pin Assignment by Package and Pin Count (continued) Pin Number 80 64 48 44 32 41 33 25 23 17 42 34 26 24 43 — — — 44 — — 45 35 — Lowest ←⎯ Priority ⎯→ Highest Port Pin Alt 1 Alt 2 Alt 3 Alt 4 PTB1 KBI1P5 TxD1 ADP5 18 PTB0 KBI1P4 RxD1 ADP4 — PTJ3 — — PTJ2 — — PTF3 ADP13 46 36 — — — PTF2 47 37 27 25 19 PTA7 TPM2CH2 ADP9 ADP12 TPM1CH2 ADP8 48 38 28 26 20 PTA6 49 39 29 — — PTE4 50 40 30 27 — VDD 51 41 31 28 — VSS 52 42 — — — PTF1 ADP11 53 43 — — — PTF0 ADP10 54 — — — — PTJ1 55 — — — — PTJ0 56 44 32 29 — PTD4 KBI2P4 57 45 33 30 21 PTD3 KBI2P3 58 46 34 31 22 PTD2 KBI2P2 MISO2 59 47 35 32 23 PTA3 KBI1P3 SCL1 ADP3 60 48 36 33 24 PTA2 KBI1P2 SDA1 ADP2 61 49 37 34 25 PTA1 KBI1P1 TPM2CH0 ADP1 ACMP1- TPM1CH0 ADP0 SS2 62 50 38 35 26 PTA0 KBI1P0 63 51 39 36 27 PTC7 TxD2 ACMP2- ACMP1+ 64 52 40 37 28 PTC6 RxD2 ACMP2+ 65 — — — — PTG7 ADP23 66 — — — — PTG6 ADP22 67 — — — — PTG5 ADP21 68 — — — — PTG4 69 53 41 — — PTE3 SS1 ADP20 70 54 42 38 — PTE2 MISO1 71 55 — — — PTG3 ADP19 72 56 — — — PTG2 ADP18 73 57 — — — PTG1 74 58 — — — PTG0 75 59 43 39 — PTE1 MOSI1 76 60 44 40 — PTE0 TPM2CLK SPSCK1 77 61 45 41 29 PTC5 TPM3CH5 78 62 46 42 30 PTC4 TPM3CH4 RSTO 79 63 47 43 31 PTA5 IRQ TPM1CLK RESET 80 64 48 44 32 PTA4 ACMP1O BKGD ACMP2O MS MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 11 Electrical Characteristics 3 Electrical Characteristics 3.1 Introduction This section contains electrical and timing specifications for the MC9S08QE128 series of microcontrollers available at the time of publication. 3.2 Parameter Classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate: Table 3. Parameter Classifications P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. 3.3 Absolute Maximum Ratings Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD) or the programmable pull-up resistor associated with the pin is enabled. Table 4. Absolute Maximum Ratings Rating Symbol Value Unit Supply voltage VDD –0.3 to +3.8 V Maximum current into VDD IDD 120 mA Digital input voltage VIn –0.3 to VDD + 0.3 V Instantaneous maximum current Single pin limit (applies to all port pins)1, 2, 3 ID ± 25 mA Tstg –55 to 150 °C Storage temperature range 1 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two resistance values. 2 All functional non-supply pins are internally clamped to V SS and VDD. MC9S08QE128 Series Data Sheet, Rev. 7 12 Freescale Semiconductor Electrical Characteristics 3 3.4 Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption). Thermal Characteristics This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take PI/O into account in power calculations, determine the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small. Table 5. Thermal Characteristics Rating Symbol Value Unit Operating temperature range (packaged) TA –40 to 85 °C Maximum junction temperature TJM 95 °C Thermal resistance Single-layer board 32-pin LQFP 82 θJA 44-pin LQFP 48-pin QFN 68 °C/W 81 64-pin LQFP θJA 80-pin LQFP 69 60 °C/W Thermal resistance Four-layer board 54 32-pin LQFP θJA 44-pin LQFP 48-pin QFN 46 °C/W 26 64-pin LQFP θJA 80-pin LQFP 50 47 °C/W The average chip-junction temperature (TJ) in °C can be obtained from: TJ = TA + (PD × θJA) Eqn. 1 where: TA = Ambient temperature, °C θJA = Package thermal resistance, junction-to-ambient, °C/W PD = Pint + PI/O Pint = IDD × VDD, Watts — chip internal power PI/O = Power dissipation on input and output pins — user determined MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 13 Electrical Characteristics For most applications, PI/O << Pint and can be neglected. An approximate relationship between PD and TJ (if PI/O is neglected) is: PD = K ÷ (TJ + 273°C) Eqn. 2 Solving Equation 1 and Equation 2 for K gives: K = PD × (TA + 273°C) + θJA × (PD)2 Eqn. 3 where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively for any value of TA. 3.5 ESD Protection and Latch-Up Immunity Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage. All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM). A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table 6. ESD and Latch-up Test Conditions Model Description Human Body Machine Latch-up Symbol Value Unit Series resistance R1 1500 Ω Storage capacitance C 100 pF Number of pulses per pin — 3 Series resistance R1 0 Ω Storage capacitance C 200 pF Number of pulses per pin — 3 Minimum input voltage limit – 2.5 V Maximum input voltage limit 7.5 V Table 7. ESD and Latch-Up Protection Characteristics No. 1 Rating1 Symbol Min Max Unit 1 Human body model (HBM) VHBM ± 2000 — V 2 Machine model (MM) VMM ± 200 — V 3 Charge device model (CDM) VCDM ± 500 — V 4 Latch-up current at TA = 85°C ILAT ± 100 — mA Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. MC9S08QE128 Series Data Sheet, Rev. 7 14 Freescale Semiconductor Electrical Characteristics 3.6 DC Characteristics This section includes information about power supply requirements and I/O pin characteristics. Table 8. DC Characteristics Num C 1 Symbol Output high voltage All I/O pins, low-drive strength P All I/O pins, high-drive strength 1.8 V, ILoad = –2 mA VOH C 4 D Output high current C Output low voltage Max total IOH for all ports Typ1 P All I/O pins, high-drive strength VOL C Output low current Max total IOL for all ports 5 D 6 P Input high voltage C all digital inputs P Input low voltage all digital inputs C 8 C Input hysteresis 9 P Input leakage current 10 P 11 P 12 DC injection 3, 4, 5 D current 13 C Input Capacitance, all pins 14 C RAM retention voltage VIL Unit 3.6 V — — 2.7 V, ILoad = –10 mA VDD – 0.5 — — 2.3 V, ILoad = –6 mA VDD – 0.5 — — 1.8V, ILoad = –3 mA VDD – 0.5 — — — — 100 1.8 V, ILoad = 2 mA — — 0.5 2.7 V, ILoad = 10 mA — — 0.5 2.3 V, ILoad = 6 mA — — 0.5 1.8 V, ILoad = 3 mA — — 0.5 — — 100 VDD > 2.7 V 0.70 x VDD — — VDD > 1.8 V 0.85 x VDD — — VDD > 2.7 V — — 0.35 x VDD VDD >1.8 V — — 0.30 x VDD 0.06 x VDD — — mV IOLT VIH Max VDD – 0.5 IOHT All I/O pins, low-drive strength T 7 Min 1.82 T 3 Condition Operating Voltage C 2 Characteristic V mA V mA V all digital inputs Vhys all input only pins (Per pin) |IIn| VIn = VDD or VSS — — 1 μA Hi-Z (off-state) leakage current all input/output (per pin) |IOZ| VIn = VDD or VSS — — 1 μA Pull-up resistors all digital inputs, when enabled RPU 17.5 — 52.5 kΩ –0.2 — 0.2 mA –5 — 5 mA CIn — — 8 pF VRAM — 0.6 1.0 V VPOR 0.9 1.4 1.79 V tPOR 10 — — μs 2.11 2.16 2.16 2.21 2.22 2.27 V Single pin limit Total MCU limit, includes sum of all stressed pins voltage6 15 C POR re-arm 16 D POR re-arm time 17 P Low-voltage detection threshold — high range7 IIC VLVDH8 VIN < VSS, VIN > VDD VDD falling VDD rising MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 15 Electrical Characteristics Table 8. DC Characteristics (continued) Num C 1 2 3 4 5 6 Characteristic Symbol Condition Min Typ1 Max Unit 18 P Low-voltage detection threshold — low range7 VLVDL VDD falling VDD rising 1.80 1.86 1.82 1.90 1.91 1.99 V 19 P Low-voltage warning threshold — high range7 VLVWH VDD falling VDD rising 2.36 2.36 2.46 2.46 2.56 2.56 V 20 P Low-voltage warning threshold — low range7 VLVWL VDD falling VDD rising 2.11 2.16 2.16 2.21 2.22 2.27 V 21 C Low-voltage inhibit reset/recover hysteresis7 Vhys — 50 — mV 22 P Bandgap Voltage Reference9 VBG 1.15 1.17 1.18 V Typical values are measured at 25°C. Characterized, not tested As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above VLVDL. All functional non-supply pins are internally clamped to VSS and VDD. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption). Maximum is highest voltage that POR is guaranteed. Low voltage detection and warning limits measured at 1 MHz bus frequency. 8 Run at 1 MHz bus frequency Factory trimmed at VDD = 3.0 V, Temp = 25°C 9 PULL-UP RESISTOR TYPICALS 85°C 25°C –40°C PULL-UP RESISTOR (kΩ) 40 35 30 25 20 1.8 2 2.2 2.4 2.6 2.8 VDD (V) 3 3.2 3.4 3.6 PULL-DOWN RESISTANCE (kΩ) 7 40 35 PULL-DOWN RESISTOR TYPICALS 85°C 25°C –40°C 30 25 20 1.8 2.3 2.8 VDD (V) 3.3 3.6 Figure 7. Pull-up and Pull-down Typical Resistor Values MC9S08QE128 Series Data Sheet, Rev. 7 16 Freescale Semiconductor Electrical Characteristics TYPICAL VOL VS IOL AT VDD = 3.0 V 1.2 85°C 25°C –40°C 1 0.15 VOL (V) 0.8 VOL (V) TYPICAL VOL VS VDD 0.2 0.6 0.4 0.2 0.1 85°C, IOL = 2 mA 25°C, IOL = 2 mA –40°C, IOL = 2 mA 0.05 0 0 0 5 10 IOL (mA) 15 1 20 2 3 VDD (V) 4 Figure 8. Typical Low-Side Driver (Sink) Characteristics — Low Drive (PTxDSn = 0) 0.4 85°C 25°C –40°C 0.8 0.4 0.2 0.2 0.1 0 0 0 85°C 25°C –40°C 0.3 0.6 VOL (V) VOL (V) TYPICAL VOL VS VDD TYPICAL VOL VS IOL AT VDD = 3.0 V 1 10 20 30 IOL = 10 mA IOL = 6 mA IOL = 3 mA 1 2 3 4 VDD (V) IOL (mA) Figure 9. Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1) TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V 0.25 85°C 25°C –40°C 1 VDD – VOH (V) VDD – VOH (V) 1.2 0.8 0.6 0.4 TYPICAL VDD – VOH VS VDD AT SPEC IOH 85°C, IOH = 2 mA 25°C, IOH = 2 mA –40°C, IOH = 2 mA 0.2 0.15 0.1 0.05 0.2 0 0 0 –5 –10 IOH (mA)) –15 –20 1 2 VDD (V) 3 4 Figure 10. Typical High-Side (Source) Characteristics — Low Drive (PTxDSn = 0) MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 17 Electrical Characteristics TYPICAL VDD – VOH VS VDD AT SPEC IOH TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V 0.8 85°C 25°C –40°C 0.6 0.4 0.2 0 0 –5 –10 –15 –20 IOH (mA) –25 85°C 25°C –40°C 0.3 VDD – VOH (V) VDD – VOH (V) 0.4 0.2 IOH = –10 mA IOH = –6 mA 0.1 IOH = –3 mA 0 –30 1 2 3 4 VDD (V) Figure 11. Typical High-Side (Source) Characteristics — High Drive (PTxDSn = 1) 3.7 Supply Current Characteristics This section includes information about power supply current in various operating modes. Table 9. Supply Current Characteristics Num C P P 1 Symbol Run supply current FEI mode, all modules on RIDD VDD (V) 20 MHz 3 Max 16 18 –40 to 25 16 20 85 14.4 — 6.5 — T 1 MHz 1.4 — 25.165 MHz 11.5 12.3 9.5 — 4.6 — 1 MHz 1.0 — 16 kHz FBILP 152 — 115 — T RIDD T T 3 Run supply current LPS=0, all modules off RIDD T T 4 T C T T T Run supply current LPS=1, all modules off, running from Flash Run supply current LPS=1, all modules off, running from RAM 20 MHz 8 MHz 16 kHz FBELP 3 3 Unit mA 8 MHz Run supply current FEI mode, all modules off –40 to 85 mA –40 to 85 μA –40 to 85 — 21.9 RIDD 16 kHz FBELP 3 25.165 MHz WIDD 20 MHz 8 MHz 3 1 MHz 0 to 70 — — 7.3 Wait mode supply current FEI mode, all modules off Temp (°C) Typ1 T T 5 Bus Freq 25.165 MHz T C 2 Parameter –40 to 85 μA — 5.74 6 4.57 — 2 — 0.73 — 0 to 70 –40 to 85 mA –-40 to 85 MC9S08QE128 Series Data Sheet, Rev. 7 18 Freescale Semiconductor Electrical Characteristics Table 9. Supply Current Characteristics (continued) Num C P Parameter Symbol Bus Freq VDD (V) Stop2 mode supply current C 3 P 6 S2IDD C n/a C 2 C P C Stop3 mode supply current No clocks active 3 P 7 S3IDD C n/a C 2 C 1 Temp (°C) Typ1 Max 0.35 0.6 -40 to 25 0.98 2.0 70 2.5 7.5 0.25 0.5 1.4 1.9 70 1.91 6.5 85 0.45 1.0 -40 to 25 1.99 4.2 70 5.0 15.0 0.35 0.7 2.9 3.9 70 3.77 13.2 85 Unit μA μA 85 -40 to 25 85 -40 to 25 Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value. Table 10. Stop Mode Adders Temperature (°C) Num Parameter 1 T LPO 2 T ERREFSTEN 3 T IREFSTEN1 4 T RTC T LVD1 5 1 C 1 Condition Units -40 25 70 85 50 75 100 150 nA 1000 1000 1100 1500 nA 63 70 77 81 uA does not include clock source current 50 75 100 150 nA LVDSE = 1 90 100 110 115 uA RANGE = HGO = 0 6 T ACMP not using the bandgap (BGBE = 0) 18 20 22 23 uA 7 T ADC1 ADLPC = ADLSMP = 1 not using the bandgap (BGBE = 0) 95 106 114 120 uA Not available in stop2 mode. MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 19 Electrical Characteristics 18.00 16.00 14.00 IDD (mA) 12.00 FEI: 24 MHz FBELP: 24 MHz 10.00 FEI: 8 MHz FBELP: 8 MHz FEI: 1 MHz FBELP: 1 MHz 8.00 6.00 4.00 2.00 0.00 1.8 2 2.2 2.4 2.6 2.8 3 VDD (V) Figure 12. Typical Run IDD for FBE and FEI, IDD vs. VDD (ADC off, All Other Modules Enabled) MC9S08QE128 Series Data Sheet, Rev. 7 20 Freescale Semiconductor Electrical Characteristics 3.8 External Oscillator (XOSC) Characteristics Reference Figure 13 and Figure 14 for crystal or resonator circuits. Table 11. XOSC and ICS Specifications (Temperature Range = –40 to 85°C Ambient) Num C Characteristic 1 Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) C High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0) 2 D 3 Feedback resistor Low range, low power (RANGE=0, HGO=0)2 D Low range, High Gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X) 4 Series resistor — Low range, low power (RANGE = 0, HGO = 0)2 Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) D High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings 5 Crystal start-up time 4 Low range, low power Low range, high power C High range, low power High range, high power 6 D Symbol Min Typ1 Max Unit flo fhi fhi 32 1 1 — — — 38.4 16 8 kHz MHz MHz RF RS t CSTL t CSTH Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode FBELP mode See Note2 See Note3 C1,C2 fextal — — — — 10 1 — — — — — — — 0 100 — — — — — — 0 0 0 0 10 20 — — — — 200 400 5 15 — — — — ms 0.03125 0 — — 40.0 50.33 MHz MHz MΩ kΩ 1 Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value. Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE=HGO=0. 3 See crystal or resonator manufacturer’s recommendation. 4 Proper PC board layout procedures must be followed to achieve specifications. 2 MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 21 Electrical Characteristics XOSC EXTAL XTAL RF RS Crystal or Resonator C1 C2 Figure 13. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain XOSC EXTAL XTAL Crystal or Resonator Figure 14. Typical Crystal or Resonator Circuit: Low Range/Low Gain 3.9 Internal Clock Source (ICS) Characteristics Table 12. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient) Symbol Min Typ1 Max Unit Average internal reference frequency — factory trimmed at VDD = 3.6 V and temperature = 25°C fint_ft — 32.768 — kHz P Internal reference frequency — user trimmed fint_ut 31.25 — 39.06 kHz T Internal reference start-up time tIRST — 60 100 μs 16 — 20 32 — 40 High range (DRS=10) 48 — 60 Low range (DRS=00) — 19.92 — — 39.85 — — 59.77 — Num C 1 P 2 3 Characteristic P 4 P Low range (DRS=00) DCO output frequency range — trimmed 2 P P 5 P P DCO output frequency 2 Reference = 32768 Hz and DMX32 = 1 Mid range (DRS=01) Mid range (DRS=01) fdco_u fdco_DMX32 High range (DRS=10) MHz MHz 6 C Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM) Δfdco_res_t — ± 0.1 ± 0.2 %fdco 7 C Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM) Δfdco_res_t — ± 0.2 ± 0.4 %fdco MC9S08QE128 Series Data Sheet, Rev. 7 22 Freescale Semiconductor Electrical Characteristics Table 12. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient) (continued) Symbol Min Typ1 Max Unit Total deviation of trimmed DCO output frequency over voltage and temperature Δfdco_t — + 0.5 -1.0 ±2 %fdco Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0°C to 70 °C Δfdco_t — ± 0.5 ±1 %fdco tAcquire — — 1 ms CJitter — 0.02 0.2 %fdco Num C Characteristic 8 C 9 C 10 C FLL acquisition time 3 11 C Long term jitter of DCO output clock (averaged over 2-ms interval) 4 1 Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value. The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device. 3 This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 4 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f Bus. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval. 2 0.60% 0.40% 0.20% 0.00% % deviation -40 -20 0 20 40 60 80 100 120 -0.20% -0.40% -0.60% -0.80% -1.00% VDD Figure 15. Deviation of DCO Output Across Temperature at VDD = 3.0 V MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 23 Electrical Characteristics 0.50% 0.40% 0.30% 0.20% % deviation 0.10% 0.00% 2.1V 2.4V 2.7V 3.0V 3.3V 3.6V -0.10% -0.20% -0.30% -0.40% -0.50% VDD Figure 16. Deviation of DCO Output Across VDD at 25°C 3.10 AC Characteristics This section describes timing characteristics for each peripheral system. 3.10.1 Control Timing Table 13. Control Timing Num C Rating 1 D Bus frequency (tcyc = 1/fBus) VDD ≥ 1.8V VDD > 2.1V VDD > 2.4V 2 D Internal low power oscillator period width2 Typ1 Max — — — 10 20 25.165 700 — 1300 μs textrst 100 — — ns Symbol Min fBus dc tLPO Unit MHz 3 D External reset pulse 4 D Reset low drive trstdrv 34 x tcyc — — ns 5 D BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes tMSSU 500 — — ns 6 D BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes 3 tMSH 100 — — μs MC9S08QE128 Series Data Sheet, Rev. 7 24 Freescale Semiconductor Electrical Characteristics Table 13. Control Timing (continued) Num C 7 D 8 D 9 10 C Symbol Min Typ1 Max Unit IRQ pulse width Asynchronous path2 Synchronous path4 tILIH, tIHIL 100 1.5 x tcyc — — — — ns Keyboard interrupt pulse width Asynchronous path2 Synchronous path4 tILIH, tIHIL 100 1.5 x tcyc — — — — ns Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF)5 Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1) tRise, tFall — — 8 31 — — Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1) tRise, tFall — — 7 24 — — — 4 — Rating Voltage regulator recovery time tVRR ns ns μs 1 Typical values are based on characterization data at VDD = 3.0V, 25°C unless otherwise stated. This is the shortest pulse that is guaranteed to be recognized as a reset or interrupt pin request. Shorter pulses are not guaranteed to override reset requests from internal sources. 3 To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t MSH after VDD rises above VLVD. 4 This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case. 5 Timing is shown with respect to 20% V DD and 80% VDD levels. Temperature range –40°C to 85°C. 2 textrst RESET PIN Figure 17. Reset Timing tIHIL KBIPx IRQ/KBIPx tILIH Figure 18. IRQ/KBIPx Timing MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 25 Electrical Characteristics 3.10.2 TPM Module Timing Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock. Table 14. TPM Input Timing No. C Function Symbol Min Max Unit 1 D External clock frequency fTCLK 0 fBus/4 Hz 2 D External clock period tTCLK 4 — tcyc 3 D External clock high time tclkh 1.5 — tcyc 4 D External clock low time tclkl 1.5 — tcyc 5 D Input capture pulse width tICPW 1.5 — tcyc tTCLK tclkh TCLK tclkl Figure 19. Timer External Clock tICPW TPMCHn TPMCHn tICPW Figure 20. Timer Input Capture Pulse MC9S08QE128 Series Data Sheet, Rev. 7 26 Freescale Semiconductor Electrical Characteristics 3.10.3 SPI Timing Table 15 and Figure 21 through Figure 24 describe the timing requirements for the SPI system. Table 15. SPI Timing No. C Function Symbol Min Max Unit — D Operating frequency Master Slave fBus/2048 0 fBus/2 fBus/4 Hz Hz 1 D SPSCK period Master Slave 2 4 2048 — tcyc tcyc 2 D Enable lead time Master Slave tLead 1/2 1 — — tSPSCK tcyc 3 D Enable lag time Master Slave tLag 1/2 1 — — tSPSCK tcyc 4 D Clock (SPSCK) high or low time Master Slave tcyc – 30 tcyc – 30 1024 tcyc — ns ns 5 D Data setup time (inputs) Master Slave tSU 15 15 — — ns ns 6 D Data hold time (inputs) Master Slave tHI 0 25 — — ns ns 7 D Slave access time ta — 1 tcyc 8 D Slave MISO disable time tdis — 1 tcyc 9 D Data valid (after SPSCK edge) Master Slave — — 25 25 ns ns 10 D Data hold time (outputs) Master Slave 0 0 — — ns ns 11 D Rise time Input Output tRI tRO — — tcyc – 25 25 ns ns 12 D Fall time Input Output tFI tFO — — tcyc – 25 25 ns ns fop tSPSCK tWSPSCK tv tHO MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 27 Electrical Characteristics SS1 (OUTPUT) 2 1 SPSCK (CPOL = 0) (OUTPUT) 11 3 4 4 12 SPSCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 6 MSB IN2 BIT 6 . . . 1 10 9 9 MOSI (OUTPUT) LSB IN BIT 6 . . . 1 MSB OUT2 LSB OUT NOTES: 1. SS output mode (DDS7 = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 21. SPI Master Timing (CPHA = 0) SS(1) (OUTPUT) 1 2 12 11 11 12 3 SPSCK (CPOL = 0) (OUTPUT) 4 SPSCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 4 6 MSB IN(2) 9 MOSI (OUTPUT) PORT DATA BIT 6 . . . 1 LSB IN 10 MASTER MSB OUT(2) BIT 6 . . . 1 MASTER LSB OUT PORT DATA NOTES: 1. SS output mode (DDS7 = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 22. SPI Master Timing (CPHA =1) MC9S08QE128 Series Data Sheet, Rev. 7 28 Freescale Semiconductor Electrical Characteristics SS (INPUT) 1 12 11 11 12 3 SPSCK (CPOL = 0) (INPUT) 2 4 4 SPSCK (CPOL = 1) (INPUT) 8 7 MISO (OUTPUT) 9 MSB OUT SLAVE BIT 6 . . . 1 SLAVE LSB OUT SEE NOTE 6 5 MOSI (INPUT) 10 10 BIT 6 . . . 1 MSB IN LSB IN NOTE: 1. Not defined but normally MSB of character just received Figure 23. SPI Slave Timing (CPHA = 0) SS (INPUT) 1 3 2 SPSCK (CPOL = 0) (INPUT) 4 SPSCK (CPOL = 1) (INPUT) 4 9 MISO (OUTPUT) SEE NOTE 7 MOSI (INPUT) SLAVE 12 11 11 12 8 10 MSB OUT 5 BIT 6 . . . 1 SLAVE LSB OUT 6 MSB IN BIT 6 . . . 1 LSB IN NOTE: 1. Not defined but normally LSB of character just received Figure 24. SPI Slave Timing (CPHA = 1) MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 29 Electrical Characteristics 3.11 Analog Comparator (ACMP) Electricals Table 16. Analog Comparator Electrical Specifications C Characteristic Symbol Min Typical Max Unit VDD 1.80 — 3.6 V IDDAC — 20 35 μA VSS – 0.3 — VDD V 20 40 mV D Supply voltage C Supply current (active) D Analog input voltage VAIN C Analog input offset voltage VAIO C Analog comparator hysteresis VH 3.0 9.0 15.0 mV P Analog input leakage current IALKG — — 1.0 μA C Analog comparator initialization delay tAINIT — — 1.0 μs 3.12 ADC Characteristics Table 17. 12-bit ADC Operating Conditions C D Characteristic Supply voltage Conditions Absolute Delta to VDD (VDD-VDDAD)2 Min Typ1 Max Unit VDDAD 1.8 — 3.6 V ΔVDDAD -100 0 +100 mV ΔVSSAD -100 0 +100 mV D Ground voltage D Ref Voltage High VREFH 1.8 VDDAD VDDAD V D Ref Voltage Low VREFL VSSAD VSSAD VSSAD V D Input Voltage VADIN VREFL — VREFH V C Input Capacitance CADIN — 4.5 5.5 C Input Resistance RADIN — 5 7 — — — — 2 5 10 bit mode fADCK > 4MHz fADCK < 4MHz — — — — 5 10 8 bit mode (all valid fADCK) — — 10 0.4 — 8.0 0.4 — 4.0 Analog Source Resistance C D Delta to VSS (VSS-VSSAD)2 Symb 12 bit mode fADCK > 4MHz fADCK < 4MHz ADC Conversion High Speed (ADLPC=0) Clock Freq. Low Power (ADLPC=1) RAS Comment pF kΩ External to MCU kΩ fADCK MHz 1 Typical values assume VDDAD = 3.0V, Temp = 25°C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 DC potential difference. MC9S08QE128 Series Data Sheet, Rev. 7 30 Freescale Semiconductor Electrical Characteristics SIMPLIFIED INPUT PIN EQUIVALENT ZADIN CIRCUIT SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS RAS RADIN ADC SAR ENGINE + VADIN VAS – CAS + – RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 25. ADC Input Impedance Equivalency Diagram Table 18. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) C Symb Min Typ1 Max Supply Current ADLPC=1 ADLSMP=1 ADCO=1 T IDDAD — 120 — Supply Current ADLPC=1 ADLSMP=0 ADCO=1 T Supply Current ADLPC=0 ADLSMP=1 ADCO=1 T Supply Current ADLPC=0 ADLSMP=0 ADCO=1 D Characteristic Conditions Unit Comment μA IDDAD — 202 — μA IDDAD — 288 — μA IDDAD — 0.532 1 mA Supply Current Stop, Reset, Module Off P IDDAD — 0.007 0.8 ADC Asynchronous Clock Source High Speed (ADLPC=0) P fADACK 2 3.3 5 Low Power (ADLPC=1) P 1.25 2 3.3 μA MHz tADACK = 1/fADACK MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 31 Electrical Characteristics Table 18. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued) C Symb Min Typ1 Max Unit Comment P tADC — 20 — — 40 — ADCK cycles — 3.5 — — 23.5 — See the ADC chapter in the MC9S08QE128 Reference Manual for conversion time variances — ±3.0 — P — ±1 ±2.5 8 bit mode T — ±0.5 ±1.0 12 bit mode T — ±1.75 — 10 bit mode3 P — ±0.5 ±1.0 8 bit mode3 T — ±0.3 ±0.5 12 bit mode T — ±1.5 — 10 bit mode T — ±0.5 ±1.0 8 bit mode T — ±0.3 ±0.5 — ±1.5 — Characteristic Conditions Conversion Time Short Sample (ADLSMP=0) (Including Long Sample (ADLSMP=1) sample time) Sample Time Short Sample (ADLSMP=0) P Long Sample (ADLSMP=1) C Total Unadjusted 12 bit mode Error 10 bit mode Differential Non-Linearity Integral Non-Linearity C T tADS ETUE DNL INL Zero-Scale Error 12 bit mode T 10 bit mode P — ±0.5 ±1.5 8 bit mode T — ±0.5 ±0.5 12 bit mode T — ±1.0 — 10 bit mode P — ±0.5 ±1 8 bit mode T — ±0.5 ±0.5 12 bit mode D — -1 to 0 — 10 bit mode — — ±0.5 8 bit mode — — ±0.5 — ±2 — 10 bit mode — ±0.2 ±4 8 bit mode — ±0.1 ±1.2 — 1.646 — — 1.769 — — 701.2 — Full-Scale Error Quantization Error Input Leakage Error 12 bit mode Temp Sensor Slope -40°C to 25°C Temp Sensor Voltage 25°C D D EZS EFS EQ EIL m 25°C to 85°C D VTEMP25 ADCK cycles LSB2 Includes Quantization LSB2 LSB2 LSB2 VADIN = VSSAD LSB2 VADIN = VDDAD LSB2 LSB2 Pad leakage4 * RAS mV/°C mV 1 Typical values assume VDDAD = 3.0V, Temp = 25°C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 1 LSB = (V N REFH - VREFL)/2 3 Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes 4 Based on input pad leakage current. Refer to pad electricals. MC9S08QE128 Series Data Sheet, Rev. 7 32 Freescale Semiconductor Electrical Characteristics 3.13 Flash Specifications This section provides details about program/erase times and program-erase endurance for the flash memory. Program and erase operations do not require any special power sources other than the normal VDD supply. For more detailed information about program/erase operations, see the Memory section of the MC9S08QE128 Reference Manual. Table 19. Flash Characteristics C Characteristic Symbol Min Typical Max Unit D Supply voltage for program/erase -40°C to 85°C Vprog/erase 1.8 3.6 V D Supply voltage for read operation VRead 1.8 3.6 V fFCLK 150 200 kHz 5 6.67 μs frequency1 D Internal FCLK D Internal FCLK period (1/FCLK) tFcyc P Byte program time (random location)(2) tprog 9 tFcyc P P P Byte program time (burst mode)(2) tBurst 4 tFcyc Page erase time2 tPage 4000 tFcyc Mass erase time(2) tMass 20,000 tFcyc Byte program current3 Page erase current 3 RIDDBP — 4 — mA RIDDPE — 6 — mA 10,000 — — 100,000 — — cycles 15 100 — years endurance4 C Program/erase TL to TH = –40°C to + 85°C T = 25°C C Data retention5 tD_ret 1 The frequency of this clock is controlled by a software setting. These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase. 3 The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures with VDD = 3.0 V, bus frequency = 4.0 MHz. 4 Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory. 5 Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory. 2 MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 33 Ordering Information 4 Ordering Information This section contains ordering information for MC9S08QE128, MC9S08QE96, and MC9S08QE64 devices. Table 20. Ordering Information Freescale Part Number1 Memory Flash RAM MC9S08QE128CLK -40 to +85 80 LQFP -40 to +85 64 LQFP 128K 8K MC9S08QE128CLD -40 to +85 48 QFN -40 to +85 44 LQFP MC9S08QE96CLK -40 to +85 80 LQFP MC9S08QE96CLH -40 to +85 64 LQFP -40 to +85 48 QFN -40 to +85 44 QFP MC9S08QE64CLH -40 to +85 64 LQFP MC9S08QE64CFT -40 to +85 48 QFN 96K MC9S08QE96CFT 6K MC9S08QE96CLD 64K MC9S08QE64CLD 4K MC9S08QE64CLC 1 Package2 MC9S08QE128CLH MC9S08QE128CFT 2 Temperature range (°C) -40 to +85 44 QFP -40 to +85 32 LQFP See the reference manual, MC9S08QE128RM, for a complete description of modules included on each device. See Table 21 for package information. 4.1 Device Numbering System Example of the device numbering system: MC 9 S08 QE 128 C XX Status (MC = Fully Qualified) Package designator (see Table 21) Temperature range (C = –40°C to 85°C) Memory (9 = Flash-based) Core Approximate flash size in Kbytes Family 5 Package Information The below table details the various packages available. Table 21. Package Descriptions Pin Count Package Type Abbreviation Designator Case No. Document No. 80 Low Quad Flat Package LQFP LK 917A 98ASS23237W 64 Low Quad Flat Package LQFP LH 840F 98ASS23234W 48 Quad Flat No-Leads QFN FT 1314 98ARH99048A 44 Low Quad Flat Package LQFP LD 824D 98ASS23225W 32 Low Quad Flat Package LQFP LC 873A 98ASH70029A MC9S08QE128 Series Data Sheet, Rev. 7 34 Freescale Semiconductor Package Information 5.1 Mechanical Drawings The following pages are mechanical drawings for the packages described in Table 21. For the latest available drawings please visit our web site (http://www.freescale.com) and enter the package’s document number into the keyword search box. MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 35 Package Information 4X –X– 4X 20 TIPS 0.20 (0.008) H L–M N X= L, M, N 0.20 (0.008) T L–M N 80 61 1 P CL 60 AB AB G –M– VIEW Y B –L– 3X VIEW Y B1 V PLATING J V1 41 20 21 0.13 (0.005) A1 U T L–M S N S ROTATED 90 CLOCKWISE A S C 8X 2 0.10 (0.004) T –H– –T– SEATING PLANE VIEW AA (W) C2 S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS –L–, –M– AND –N– TO BE DETERMINED AT DATUM PLANE –H–. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE –T–. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE –H–. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.460 (0.018). MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07 (0.003). 1 2X R R1 0.25 (0.010) GAGE PLANE (K) C1 E (Z) VIEW AA DATE 09/21/95 M BASE METAL SECTION AB–AB S1 0.05 (0.002) ÇÇÇ ÍÍÍÍ ÍÍÍÍ ÇÇÇ D 40 –N– F CASE 917A-02 ISSUE C DIM A A1 B B1 C C1 C2 D E F G J K P R1 S S1 U V V1 W Z 0 01 02 MILLIMETERS MIN MAX 14.00 BSC 7.00 BSC 14.00 BSC 7.00 BSC ––– 1.60 0.04 0.24 1.30 1.50 0.22 0.38 0.40 0.75 0.17 0.33 0.65 BSC 0.09 0.27 0.50 REF 0.325 BSC 0.10 0.20 16.00 BSC 8.00 BSC 0.09 0.16 16.00 BSC 8.00 BSC 0.20 REF 1.00 REF 0 10 0 ––– 9 14 INCHES MIN MAX 0.551 BSC 0.276 BSC 0.551 BSC 0.276 BSC ––– 0.063 0.002 0.009 0.051 0.059 0.009 0.015 0.016 0.030 0.007 0.013 0.026 BSC 0.004 0.011 0.020 REF 0.013 REF 0.004 0.008 0.630 BSC 0.315 BSC 0.004 0.006 0.630 BSC 0.315 BSC 0.008 REF 0.039 REF 0 10 0 ––– 9 14 Figure 26. 80-pin LQFP Package Drawing (Case 917A, Doc #98ASS23237W) MC9S08QE128 Series Data Sheet, Rev. 7 36 Freescale Semiconductor Package Information Figure 27. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 1 of 3 MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 37 Package Information Figure 28. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 2 of 3 MC9S08QE128 Series Data Sheet, Rev. 7 38 Freescale Semiconductor Package Information Figure 29. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 3 of 3 MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 39 Package Information Figure 30. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 1 of 3 MC9S08QE128 Series Data Sheet, Rev. 7 40 Freescale Semiconductor Package Information Figure 31. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 2 of 3 MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 41 Package Information Figure 32. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 3 of 3 MC9S08QE128 Series Data Sheet, Rev. 7 42 Freescale Semiconductor Package Information Figure 33. 44-pin LQFP Package Drawing (Case 824D, Doc #98ASS23225W), Sheet 1 of 3 MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 43 Package Information Figure 34. 44-pin LQFP Package Drawing (Case 824D, Doc #98ASS23225W), Sheet 2 of 3 MC9S08QE128 Series Data Sheet, Rev. 7 44 Freescale Semiconductor Package Information Figure 35. 44-pin LQFP Package Drawing (Case 824D, Doc #98ASS23225W), Sheet 3 of 3 MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 45 Package Information Figure 36. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 1 of 3 MC9S08QE128 Series Data Sheet, Rev. 7 46 Freescale Semiconductor Package Information Figure 37. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 2 of 3 MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 47 Package Information Figure 38. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 3 of 3 MC9S08QE128 Series Data Sheet, Rev. 7 48 Freescale Semiconductor Product Documentation 6 Product Documentation Find the most current versions of all documents at: http://www.freescale.com Reference Manual (MC9S08QE128RM) Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information. 7 Revision History To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://www.freescale.com The following revision history table summarizes changes contained in this document. Table 22. Revision History Revision Date 4 9 Nov 2007 Description of Changes Replaced 44 QFP package with 44 LQFP package. Changed ACMP electricals, VAIO specification’s test category from P to C. 28 May 2008 Updated the tables Thermal Characteristics, DC Characteristics, Supply Current Characteristics, XOSC and ICS Specifications (Temperature Range = –40 to 85°C Ambient), ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient), Control Timing, and Analog Comparator Electrical Specifications, 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) Updated the figures Typical Run IDD for FBE and FEI, IDD vs. VDD (ACMP and ADC off, All Other Modules Enabled), Deviation of DCO Output from Trimmed Frequency (50.33 MHz, 3.0 V), and Deviation of DCO Output from Trimmed Frequency (50.33 MHz, 25°C) 6 24 Jun 2008 Updated the table Thermal Characteristics Updated the row corresponding to Num 18 in the table DC Characteristics Updated the tables MC9S08QE128 Series Features by MCU and Package, DC Characteristics, Supply Current Characteristics, Thermal Characteristics, Control Timing, and Ordering Information Updated the figures Typical Run IDD for FBE and FEI, IDD vs. VDD (ADC off, All Other Modules Enabled), Deviation of DCO Output Across Temperature at VDD = 3.0 V, and Deviation of DCO Output Across VDD at 25×C 7 2 Oct 2008 Updated the Stop2 and Stop3 mode supply current in the Supply Current Characteristics table. Replaced the stop mode adders section from the Supply Current Characteristics with its own Stop Mode Adders table with new specifications. 5 MC9S08QE128 Series Data Sheet, Rev. 7 Freescale Semiconductor 49 How to Reach Us: Home Page: www.freescale.com E-mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 [email protected] Document Number: MC9S08QE128 Rev. 7 10/2008 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved.