Freescale Semiconductor Technical Data Document Number: MHVIC910HNR2 Rev. 9, 5/2006 921 MHz - 960 MHz SiFET RF Integrated Power Amplifier MHVIC910HNR2 The MHVIC910HNR2 integrated circuit is designed for GSM base stations, uses Freescale’s newest High Voltage (26 Volts) LDMOS IC technology, and contains a three - stage amplifier. Target applications include macrocell (driver function) and microcell base stations (final stage). The device is in a PFP - 16 Power Flat Pack package which gives excellent thermal performances through a solderable backside contact. • Typical GSM Performance: VDD = 26 Volts, IDQ = 150 mA, Pout = 10 Watts, Full Frequency Band (921 - 960 MHz) Power Gain — 39 dB (Typ) Power Added Efficiency — 48% (Typ) • Capable of Handling 10:1 VSWR, @ 26 Vdc, 945 MHz, 10 Watts CW Output Power • Stable into a 10:1 VSWR. All Spurs Below - 60 dBc @ 0 to 40 dBm CW Pout. Features • On - Chip Matching (50 Ohm Input, DC Blocked, >5 Ohm Output) • Integrated ESD Protection • Usable Frequency Range — 921 to 960 MHz • RoHS Compliant • In Tape and Reel. R2 Suffix = 1,500 Units per 16 mm, 13 inch Reel. 960 MHz, 10 W, 26 V GSM CELLULAR RF LDMOS INTEGRATED CIRCUIT 16 1 CASE 978 - 03 PFP - 16 Table 1. Maximum Ratings Symbol Value Unit Drain Supply Voltage Rating VDD 28 Vdc Gate Supply Voltage VGS 6 Vdc RF Input Power Pin 5 dBm Case Operating Temperature TC - 30 to + 85 °C Storage Temperature Range Tstg - 65 to + 150 °C Operating Channel Temperature Tch 150 °C Symbol Value Unit RθJC 2.9 °C/W Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case VD1 VD2 VD3 RFin RFout N.C. 1 VD2 2 16 VD1 3 N.C. 15 VD3/RFout 14 VD3/RFout GND 4 13 VD3/RFout RFin VGATE1 5 12 VD3/RFout VGATE2 VGATE3 6 11 VD3/RFout 7 8 10 N.C. 9 N.C. (Top View) VGATE1 VGATE2 VGATE3 Figure 1. Functional Block Diagram © Freescale Semiconductor, Inc., 2006. All rights reserved. RF Device Data Freescale Semiconductor Note: Exposed backside flag is source terminal for transistors. Figure 2. Pin Connections MHVIC910HNR2 1 Table 3. ESD Protection Characteristics Test Conditions Class Human Body Model 0 (Minimum) Machine Model M2 (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Rating Package Peak Temperature Unit 3 260 °C Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Table 5. Recommended Operating Ranges Parameter Symbol Value Unit Drain Supply Voltage VDD 26 Vdc 3rd Stage Quiescent Current IDQ3 150 mA 2nd Stage Quiescent Current IDQ2 50 mA 1st Stage Quiescent Current IDQ1 25 mA Table 6. Electrical Characteristics (TA = 25°C matched to a 50 Ω system, unless otherwise noted) VDD = 26 V, VGS set for IDQ3 = 150 mA, frequency range 921 - 960 MHz Characteristic Frequency Range Output Power @ 1 dB Compression Point Power Gain @ P1dB Symbol Min Typ Max Unit fRF 921 — 960 MHz P @ 1dB 39 40 — dBm G @ 1dB 38 39 — dB Power Added Efficiency @ 1 dB Compression Point PAE @ 1dB 43 48 — % Input Return Loss @ P1dB IRL @ 1dB — - 15 - 10 dB GF GV — — .5 5 — — dB dB Gain Flatness @ 40 dBm Variation (TC = - 30 to +85°C @ 40 dBm) MHVIC910HNR2 2 RF Device Data Freescale Semiconductor 1 16 2 15 3 14 4 13 5 12 VD2 C2 VD1 VD3 C3 C7 RF INPUT RF OUTPUT C6 R3 6 11 7 10 8 9 C8 C9 C4 VGS R1 R2 C1, C2, C3, C4, C5, C8 C6 C7 C9 C5 C1 1 μF Surface Mount Chip Capacitors 4.7 pF AVX Chip Capacitor, ACCU−P (08051J4R7BBT) 47 pF AVX Chip Capacitor, ACCU−P (08055K470JBTTR) 33 pF AVX Chip Capacitor, ACCU−P (08053J330JBT) J1, J2 J3, J4 R1, R2, R3 PCB Header (Break−away), HDR2X10STIMCSAFU SMA Connector 2052−1618−02 (Threaded) 100 Ω Chip Resistors (0402) Rogers 04350, 20 mils Figure 3. 921 - 960 MHz Demo Board Schematic MHVIC910HNR2 RF Device Data Freescale Semiconductor 3 C8 VD1 VD2 VD3 C2 C3 C7 RF Input C6 C4 R3 C5 R1 VG1 C9 RF Output C1 MHVIC910HR2 900 MHz R2 VG2 VG3 Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product. Figure 4. 921 - 960 MHz Demo Board Component Layout MHVIC910HNR2 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 50 43 G ps, POWER GAIN (dB) 42 41 PAE, POWER ADDED EFFICIENCY (%) TC = −30°C, IDQ3 = 150 mA TC = +25°C, IDQ3 = 150 mA 40 TC = +25°C, IDQ3 = 120 mA 39 TC = +25°C, IDQ3 = 110 mA 38 TC = +85°C, IDQ3 = 150 mA 37 36 TC = −30°C 45 40 35 30 25 20 IDQ3 = 150 mA f = 960 MHz 15 10 35 2 0 4 6 8 10 0 12 2 4 Pout, OUTPUT POWER (WATTS) 8 10 12 Figure 6. Power Added Efficiency versus Output Power 43 100 TC = −30°C, IDQ3 = 150 mA 42 Gps , POWER GAIN (dB) Pout , OUTPUT POWER (WATTS) 6 Pout, OUTPUT POWER (WATTS) Figure 5. Power Gain versus Output Power +25°C 10 TC = −30°C +85°C 1 −15 41 40 TC = +25°C, IDQ3 = 150 mA 39 TC = +25°C, IDQ3 = 120 mA 38 TC = +85°C, IDQ3 = 150 mA 37 IDQ3 = 150 mA f = 960 MHz 36 −13 −11 −9 −7 −5 −3 −1 1 3 910 5 920 930 940 950 960 970 f, FREQUENCY (MHz) Pin, INPUT POWER (dBm) Figure 8. Power Gain versus Frequency Pout = 10 W Figure 7. Output Power versus Input Power 48 PAE, POWER ADDED EFFICIENCY (%) 43 TC = −30°C, IDQ3 = 150 mA 42 Gps , POWER GAIN (dB) +25°C +85°C 41 TC = +25°C, IDQ3 = 150 mA 40 39 TC = +25°C, IDQ3 = 120 mA 38 TC = +25°C, IDQ3 = 110 mA 37 TC = +85°C, IDQ3 = 150 mA 47.5 47 TC = +25°C, IDQ3 = 120 mA 46.5 46 45.5 45 TC = +25°C, IDQ3 = 150 mA 44.5 44 43.5 f = 960 MHz 43 36 910 920 930 940 950 960 f, FREQUENCY (MHz) Figure 9. Power Gain versus Frequency Pout = P1dB 970 910 920 930 940 950 960 970 f, FREQUENCY (MHz) Figure 10. Power Added Efficiency versus Frequency Pout = 10 W MHVIC910HNR2 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS −12 IRL, INPUT RETURN LOSS (dB) IRL, INPUT RETURN LOSS (dB) −12 −14 −16 TC = +85°C +25°C −18 −20 −30°C −14 −16 TC = +85°C +25°C −18 −20 −30°C VDD = 26 Vdc VDD = 26 Vdc −22 −22 910 920 930 940 950 960 970 910 920 930 f, FREQUENCY(MHz) Figure 11. Input Return Loss versus Frequency Pout = 10 W Pout = 2.0 W (RMS) 3.5 3 2.5 2 1.5 0.5 W (RMS) 1 VDD = 26 Vdc f = 880 MHz 0.5 0.1 W (RMS) 0 150 140 160 170 960 970 180 190 −50 −55 Pout = 2.0 W (RMS) −60 −65 0.5 W (RMS) −70 0.1 W (RMS) 2.0 W (RMS) −75 0.5 W (RMS) −80 0.1 W (RMS) −85 = 400 kHz = 600 kHz VDD = 26 Vdc f = 880 MHz −90 200 140 150 160 170 180 190 200 IDQ, DRAIN QUIESCENT CURRENT (mA) IDQ, DRAIN QUIESCENT CURRENT (mA) Figure 13. Error Vector Magnitude versus IDQ Total Figure 14. Adjacent Channel Power Ratio versus IDQ Total 8 8 7 Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 950 Figure 12. Input Return Loss versus Frequency Pout = P1dB ACPR, ADJACENT CHANNEL POWER RATIO (dBc) EVM, ERROR VECTOR MAGNITUDE (%) 4.5 4 940 f, FREQUENCY(MHz) Pin = 1.0 mW 6 0.8 mW 5 0.6 mW 4 0.4 mW 3 2 IDQ total = 180 mA f = 880 MHz 1 7 Pin = 1.0 mW 6 0.8 mW 5 0.6 mW 4 0.4 mW 3 2 IDQ total = 170 mA f = 880 MHz 1 0 0 16 17 18 19 20 21 22 23 24 25 VDD, SUPPLY VOLTAGE (VOLTS) Figure 15. Output Power versus Supply Voltage 26 16 17 18 19 20 21 22 23 24 25 26 VDD, SUPPLY VOLTAGE (VOLTS) Figure 16. Output Power versus Supply Voltage MHVIC910HNR2 6 RF Device Data Freescale Semiconductor 35 η −10 30 IRL −15 IMD −25 15 −30 840 860 880 900 920 940 −35 960 Gps −5 35 η −10 30 −15 IRL 25 20 IMD −30 10 820 840 860 880 920 940 −35 960 Figure 17. Two - Tone Broadband Performance Figure 18. Two - Tone Broadband Performance 40 VDD = 26 Vdc Gps −5 Pout = 10 W (PEP), IDQ total = 200 mA η 35 −10 Two−Tone Measurement 100 kHz Tone Spacing 30 −15 IRL 25 −20 IMD 20 −25 15 15 50 Gps 12 40 η Pout 9 30 6 20 VDD = 26 Vdc IDQ total = 180 mA f = 880 MHz 3 −30 10 820 840 860 880 900 920 940 0 0.5 0 1 Gps 40 Pout 30 6 20 VDD = 26 Vdc IDQ total = 170 mA f = 880 MHz 10 0 0 0.5 1 1.5 2 2.5 3 3.5 2.5 3 Pin, INPUT POWER (mW) Figure 21. CW Performance @ 880 MHz 3.5 15 50 Gps 12 Pout , OUTPUT POWER (WATTS) 50 3 2 Figure 20. CW Performance @ 880 MHz η, DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB) 15 η 1.5 Pin, INPUT POWER (mW) Figure 19. Two - Tone Broadband Performance 9 10 0 −35 960 f, FREQUENCY (MHz) Pout , OUTPUT POWER (WATTS) 900 f, FREQUENCY (MHz) 0 0 −25 f, FREQUENCY (MHz) 45 12 −20 VDD = 26 Vdc Pout = 10 W (PEP) IDQ total = 200 mA Two−Tone Measurement, 100 kHz Tone Spacing 15 Pout , OUTPUT POWER (WATTS) 10 820 IRL, INPUT RETURN LOSS (dB) IMD, INTERMODULATION DISTORTION (dBc) 20 −20 VDD = 26 Vdc Pout = 10 W (PEP) IDQ total = 200 mA Two−Tone Measurement, 100 kHz Tone Spacing 40 40 η Pout 9 30 6 20 VDD = 26 Vdc IDQ total = 160 mA f = 880 MHz 3 10 0 0 0 0.5 1 1.5 2 2.5 3 η, DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB) 25 0 IRL, INPUT RETURN LOSS (dB) IMD, INTERMODULATION DISTORTION (dBc) −5 45 η , DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB) Gps 40 η, DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB) 0 IRL, INPUT RETURN LOSS (dB) IMD, INTERMODULATION DISTORTION (dBc) 45 η , DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB) η, DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB) TYPICAL CHARACTERISTICS 3.5 Pin, INPUT POWER (mW) Figure 22. CW Performance @ 880 MHz MHVIC910HNR2 RF Device Data Freescale Semiconductor 7 IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS −25 VDD = 26 Vdc f1 = 880.0 MHz, f2 = 880.1 MHz Two−Tone Measurement 100 kHz Tone Spacing −30 −35 IDQ total = 140 mA 160 mA 170 mA −40 180 mA −45 −50 −55 −60 0.01 0.1 1 10 Pout, OUTPUT POWER (WATTS) PEP Figure 23. Intermodulation Distortion versus Output Power MHVIC910HNR2 8 RF Device Data Freescale Semiconductor VDD = 26 V, IDQ = 225 mA, Pout = 40 dBm f MHz Zload Ω 900 7.81 + j4.61 920 7.27 + j4.90 940 6.77 + j5.23 960 6.31 + j5.59 980 5.90 + j5.96 1000 5.53 + j6.36 Zo = 10 Ω f = 1000 MHz Zload Zload = Test circuit impedance as measured from drain to ground. f = 900 MHz Output Matching Network Device Under Test Z load Figure 24. Series Equivalent Load Impedance MHVIC910HNR2 RF Device Data Freescale Semiconductor 9 NOTES MHVIC910HNR2 10 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS h X 45 _ A E2 1 14 x e 16 D e/2 D1 8 9 E1 8X bbb M B BOTTOM VIEW E C B S ÉÉ ÇÇÇ ÇÇÇ ÉÉ b1 Y c A A2 c1 b DATUM PLANE SEATING PLANE H M ccc C q W GAUGE PLANE W L C A SECT W - W L1 C aaa A1 1.000 0.039 S NOTES: 1. CONTROLLING DIMENSION: MILLIMETER. 2. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DATUM PLANE −H− IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 PER SIDE. DIMENSIONS D AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE −H−. 5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION IS 0.127 TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. DATUMS −A− AND −B− TO BE DETERMINED AT DATUM PLANE −H−. DIM A A1 A2 D D1 E E1 E2 L L1 b b1 c c1 e h q aaa bbb ccc MILLIMETERS MIN MAX 2.000 2.300 0.025 0.100 1.950 2.100 6.950 7.100 4.372 5.180 8.850 9.150 6.950 7.100 4.372 5.180 0.466 0.720 0.250 BSC 0.300 0.432 0.300 0.375 0.180 0.279 0.180 0.230 0.800 BSC −−− 0.600 0_ 7_ 0.200 0.200 0.100 DETAIL Y CASE 978 - 03 ISSUE C PFP - 16 MHVIC910HNR2 RF Device Data Freescale Semiconductor 11 How to Reach Us: Home Page: www.freescale.com E - mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1 - 800- 521- 6274 or +1 - 480- 768- 2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or 303 - 675- 2140 Fax: 303 - 675- 2150 [email protected] RoHS-compliant and/or Pb- free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale.s Environmental Products program, go to http://www.freescale.com/epp. Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved. RoHS- compliant and/or Pb - free versions of Freescale products have the functionality and electrical characteristics of their non - RoHS- compliant and/or non - Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. MHVIC910HNR2 Document Number: MHVIC910HNR2 Rev. 9, 5/2006 12 RF Device Data Freescale Semiconductor