Freescale Semiconductor Technical Data Document Number: MHV5IC1810N Rev. 0, 5/2006 RF LDMOS Wideband Integrated Power Amplifier The MHV5IC1810N wideband integrated circuit is designed with on - chip matching that makes it usable from 1805 to 1990 MHz. This multi - stage structure is rated for 24 to 32 Volt operation and covers all typical cellular base station modulation formats. Final Application • Typical Two - Tone Performance: VDD = 28 Volts, IDQ1 = 120 mA, IDQ2 = 90 mA, Pout = 5 Watts Avg., Full Frequency Band (1805 - 1880 MHz or 1930 - 1990 MHz) Power Gain — 29 dB Power Added Efficiency — 29% IMD — - 34 dBc Driver Application • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 105 mA, IDQ2 = 95 mA, Pout = 35 dBm, Full Frequency Band (1805 - 1880 MHz or 1930 - 1990 MHz) Power Gain — 29 dB Spectral Regrowth @ 400 kHz Offset = - 67 dBc Spectral Regrowth @ 600 kHz Offset = - 76 dBc EVM — 1.1% rms • Capable of Handling 3:1 VSWR, @ 28 Vdc, 1990 MHz, 10 Watts CW Output Power • Stable into a 3:1 VSWR. All Spurs Below - 60 dBc @ 100 mW to 10 W CW Pout. Features • Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source Scattering Parameters • On - Chip Matching (50 Ohm Input, >5 Ohm Output) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function • On - Chip Current Mirror gm Reference FET for Self Biasing Application (1) • Integrated ESD Protection • RoHS Compliant • In Tape and Reel. R2 Suffix = 1500 Units per 16 mm, 13 inch Reel. MHV5IC1810NR2 1805 - 1990 MHz, 5 W AVG., 28 V GSM/GSM EDGE RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIER 16 1 CASE 978 - 03 PFP - 16 PLASTIC VRD1 NC 1 16 NC VRG1 VRD1 2 15 VDS2/RFout VRG1 3 14 VDS2/RFout VDS1 4 13 VDS2/RFout GND 5 12 VDS2/RFout RFin 6 11 VDS2/RFout VGS1 VGS2 7 8 10 9 VDS2/RFout NC VDS1 2 Stage IC RFin VDS2/RFout VGS1 Quiescent Current Temperature Compensation VGS2 (Top View) Note: Exposed backside flag is source terminal for transistors. Figure 1. Functional Block Diagram Figure 2. Pin Connections 1. Refer to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1987. © Freescale Semiconductor, Inc., 2006. All rights reserved. RF Device Data Freescale Semiconductor MHV5IC1810NR2 1 Table 1. Maximum Ratings Symbol Value Unit Drain - Source Voltage Rating VDSS - 0.5, +65 Vdc Gate - Source Voltage VGS - 0.5, +12 Vdc Storage Temperature Range Tstg - 65 to +150 °C Operating Junction Temperature TJ 150 °C Input Power Pin 12 dBm Symbol Value (1) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case RθJC °C/W Final Application (Pout = 10 W CW) Stage 1, 28 Vdc, IDQ1 = 120 mA Stage 2, 28 Vdc, IDQ2 = 90 mA 9.2 3.3 Driver Application (Pout = 2.25 W CW) Stage 1, 28 Vdc, IDQ1 = 120 mA Stage 2, 28 Vdc, IDQ2 = 90 mA 10 3.5 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 0 (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) III (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Functional Tests (In Freescale Wideband 1930 - 1990 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 120 mA, IDQ2 = 90 mA, Pout = 5 W Avg., f1 = 1990 MHz, f2 = 1990.1 MHz, Two - Tone Test Power Gain Gps 26.5 29 — dB Power Added Efficiency PAE 25 29 — % Intermodulation Distortion IMD — - 34 - 27 dBc Input Return Loss IRL — - 10 dB Typical Two - Tone Performances (In Freescale Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ1 = 120 mA, IDQ2 = 90 mA, Pout = 5 W Avg., 1805 - 1880 MHz Power Gain Gps — 29 — dB Power Added Efficiency PAE — 29 — % Intermodulation Distortion IMD — - 34 — dBc Input Return Loss IRL — - 15 — dB Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ1 = 105 mA, IDQ2 = 95 mA, Pout = 3.2 W Avg., 1805 - 1880 MHz or 1930 - 1990 MHz EDGE Modulation Power Gain Gps — 29 — dB Error Vector Magnitude EVM Spectral Regrowth at 400 kHz Offset SR1 — 1.1 — % rms — - 67 — dBc Spectral Regrowth at 600 kHz Offset SR2 — - 76 — dBc 1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. MHV5IC1810NR2 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics — continued (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical CW Performances (In Freescale CW Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ1 = 120 mA, IDQ2 = 90 mA, Pout = 2.25 W Avg., 1805 - 1990 MHz Power Gain Gps — 29 — dB Power Added Efficiency PAE — 19 — % Input Return Loss IRL — - 13 — dB MHV5IC1810NR2 RF Device Data Freescale Semiconductor 3 1 NC NC 16 Z9 VRD1 2 Z8 Z7 VDS2 15 C5 VRG1 3 14 4 13 5 12 C9 C11 Z10 VDS1 C10 RF INPUT Z1 C13 Z3 Z4 C14 Z5 Z6 RF OUTPUT C6 Z2 6 11 C12 C15 C2 VGS1 7 R1 C7 10 Quiescent Current Temperature Compensation C3 VGS2 8 R2 Z1 Z2 Z3 Z4 Z5 Z6 C8 0.120″ 0.257″ 0.103″ 0.195″ 0.388″ 0.273″ NC 9 C4 Z7 Z8 Z9 Z10 PCB x 0.044″ Microstrip x 0.044″ Microstrip x 0.170″ Microstrip x 0.122″ Microstrip x 0.084″ Microstrip x 0.044″ Microstrip 0.917″ x 0.050″ Microstrip 0.304″ x 0.050″ Microstrip 0.710″ x 0.050″ Microstrip 1.296″ x 0.400″ Microstrip Rogers 4350, 0.020″, εr = 3.50 Figure 3. MHV5IC1810NR2 Test Circuit Schematic — 1930 - 1990 MHz Table 6. MHV5IC1810NR2 Test Circuit Component Designations and Values — 1930 - 1990 MHz Part Description Part Number Manufacturer C2 22 pF 100A Chip Capacitor 100A220GWT ATC C3, C4, C5, C6 8.2 pF 100A Chip Capacitors 100A8R2CW ATC C7, C8, C9 10 nF Chip Capacitors (0805) 08055C103KAT AVX C10, C11 6.8 μF Chip Capacitors (1812) C4532X5R1H685MT TDK C12, C13 3.3 pF 100A Chip Capacitors 100A3R3BW ATC C14, C15 0.5 pF 100A Chip Capacitors 100A0R5BW ATC R1, R2 1 kΩ, 1/8 W Chip Resistors (0805) MHV5IC1810NR2 4 RF Device Data Freescale Semiconductor VD1 VD2 C11 C10 C5 C13 C2 C6 C12 C3 C9 C14 C15 C4 C7 MHV5IC1810N Rev. 0 C8 R2 R1 VGS1 VGS2 Figure 4. MHV5IC1810NR2 Test Circuit Component Layout — 1930 - 1990 MHz MHV5IC1810NR2 RF Device Data Freescale Semiconductor 5 PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) 35 −10 IRL 34 −15 33 −20 VDD = 28 Vdc, Pout = 5 W (Avg.) IDQ1 = 120 mA, IDQ2 = 90 mA 100 kHz Tone Spacing 32 31 PAE −25 Gps 30 −30 −35 IMD 29 −40 28 −45 27 1900 1920 1940 1960 −50 2000 1980 IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) TYPICAL CHARACTERISTICS — 1930 - 1990 MHz f, FREQUENCY (MHz) PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) 35 0 Gps 30 −10 IRL 25 −20 VDD = 28 Vdc, Pout = 20 dBm (Avg.) IDQ1 = 120 mA, IDQ2 = 90 mA 100 kHz Tone Spacing 20 −30 −40 15 −50 10 IMD 5 −60 PAE 0 1900 1920 1940 1960 1980 −70 2000 IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) Figure 5. Two - Tone Wideband Performance @ Pout = 5 Watts (Avg.) f, FREQUENCY (MHz) 32 IDQ1 = 120 mA IDQ2 = 140 mA Gps, POWER GAIN (dB) 31 30 IDQ1 = 120 mA IDQ2 = 115 mA 29 IDQ1 = 120 mA IDQ2 = 90 mA 28 IDQ1 = 60 mA IDQ2 = 90 mA IDQ1 = 120 mA IDQ2 = 45 mA 27 IDQ1 = 120 mA IDQ2 = 65 mA VDD = 28 Vdc 26 Center Frequency = 1960 MHz 100 kHz Tone Spacing 25 1 10 100 IMD, INTERMODULATION DISTORTION (dBc) Figure 6. Two - Tone Wideband Performance @ Pout = 20 dBm (Avg.) −10 VDD = 28 Vdc IDQ1 = 120 mA, IDQ2 = 90 mA f = 1960 MHz, 100 kHz Tone Spacing −20 3rd Order −30 5th Order −40 7th Order −50 −60 −70 −80 0.1 1 10 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 7. Two - Tone Power Gain versus Output Power Figure 8. Intermodulation Distortion Products versus Output Power 100 MHV5IC1810NR2 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1930 - 1990 MHz 47 Ideal P3dB = 42.5 dBm (17.78 W) Pout, OUTPUT POWER (dBc) 45 P1dB = 42 dBm (15.85 W) 43 Actual 41 39 VDD = 28 Vdc IDQ1 = 120 mA, IDQ2 = 90 mA Pulsed CW, 12 μsec(on), 1% Duty Cycle f = 1960 MHz 37 35 −2 0 2 4 6 8 10 Pin, INPUT POWER (dBm) Figure 9. Pulse CW Output Power versus Input Power 32 −30_C 50 25_C Gps TC = −30_C 85_C 40 25_C 30 30 85_C 28 20 26 24 0.1 10 PAE 1 0 100 10 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 34 60 VDD = 28 Vdc, IDQ1 = 120 mA IDQ2 = 90 mA, f = 1960 MHz PAE, POWER ADDED EFFICIENCY (%) 36 34 32 30 28 26 24 22 20 18 16 14 12 10 24 V 16 V 0 2 Gps, POWER GAIN (dB) 4 8 6 10 12 14 16 18 20 22 24 Pout, OUTPUT POWER (WATTS) CW Figure 10. Power Gain and Power Added Efficiency versus CW Output Power 32 IDQ1 = 120 mA IDQ2 = 90 mA f = 1960 MHz 20 V VDD = 12 V Pout, OUTPUT POWER (WATTS) CW 33 32 V 28 V Figure 11. Power Gain versus Output Power VDD = 28 Vdc, Pout = 1 W Avg., IDQ1 = 120 mA, IDQ2 = 90 mA Two−Tone Measurements, Center Frequency = 1960 MHz 31 TC = −30_C 30 29 25_C 28 27 26 1800 85_C 1850 1900 1950 2000 f, FREQUENCY (MHz) Figure 12. Power Gain versus Frequency MHV5IC1810NR2 RF Device Data Freescale Semiconductor 7 50 TC = 85_C EVM 25_C 8 40 −30_C 6 30 4 20 VDD = 28 Vdc IDQ1 = 105 mA IDQ2 = 90 mA f = 1960 MHz EDGE Modulation PAE 2 1 10 0 100 0 0.1 SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) 10 PAE, POWER ADDED EFFICIENCY (%) EVM, ERROR VECTOR MAGNITUDE (% ms) TYPICAL CHARACTERISTICS — 1930 - 1990 MHz 10 −45 −30_C TC = 85_C −50 −55 25_C −60 −30_C 25_C SR @ 400 kHz −65 −70 VDD = 28 Vdc IDQ1 = 105 mA IDQ2 = 90 mA f = 1960 MHz EDGE Modulation 85_C −75 SR @ 600 kHz −80 −85 1 0.1 10 100 Pout, OUTPUT POWER (WATTS) AVG. Pout, OUTPUT POWER (WATTS) AVG. Figure 13. EVM and Power Added Efficiency versus Output Power Figure 14. Spectral Regrowth at 400 and 600 kHz versus Output Power GSM TEST SIGNAL 2nd Stage 107 −10 −20 106 Reference Power VBW = 30 kHz Sweep Time = 70 ms VBW = 30 kHz −30 1st Stage −40 105 −50 (dB) MTTF FACTOR (HOURS X AMPS2) 108 104 90 −60 −70 100 110 120 130 140 150 160 170 180 190 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours x ampere2 drain current. Life tests at elevated temperatures have correlated to better than ±10% of the theoretical prediction for metal failure. Divide MTTF factor by ID2 for MTTF in a particular application. Figure 15. MTTF Factor versus Junction Temperature −80 −90 400 kHz 400 kHz 600 kHz 600 kHz −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz Figure 16. EDGE Spectrum MHV5IC1810NR2 8 RF Device Data Freescale Semiconductor 1 NC NC 16 Z9 VRD1 2 Z8 Z7 VDS2 15 C5 VRG1 3 14 4 13 5 12 C9 C11 Z10 VDS1 C10 RF INPUT Z1 C13 Z3 Z4 Z5 Z6 C12 Z2 6 RF OUTPUT C6 11 C1 C2 VGS1 7 R1 C7 10 Quiescent Current Temperature Compensation C3 VGS2 8 R2 C8 Z1 Z2 Z3 Z4 Z5 Z6 NC 9 C4 Z7 Z8 Z9 Z10 PCB 0.120″ x 0.044″ Microstrip 0.257″ x 0.044″ Microstrip 0.274″ x 0.170″ Microstrip 0.112″ x 0.084″ Microstrip 0.289″ x 0.084″ Microstrip 0.273″ x 0.044″ Microstrip 0.917″ x 0.050″ Microstrip 0.304″ x 0.050″ Microstrip 0.710″ x 0.050″ Microstrip 1.296″ x 0.400″ Microstrip Rogers 4350, 0.020″, εr = 3.50 Figure 17. MHV5IC1810NR2 Test Circuit Schematic — 1805 - 1880 MHz Table 7. MHV5IC1810NR2 Test Circuit Component Designations and Values — 1805 - 1880 MHz Part Description Part Number Manufacturer C1 0.8 pF 100A Chip Capacitor 100A0R8BW ATC C2 27 pF 100A Chip Capacitor 100A270GWT ATC C3, C4, C5, C6 8.2 pF 100A Chip Capacitors 100A8R2CW ATC C7, C8, C9 10 nF Chip Capacitors (0805) 08055C103KAT AVX C10, C11 6.8 μF Chip Capacitors (1812) C4532X5R1H685MT TDK C12, C13 3.3 pF 100A Chip Capacitors 100A3R3BW ATC R1, R2 1 kΩ, 1/8 W Chip Resistors (0805) MHV5IC1810NR2 RF Device Data Freescale Semiconductor 9 VD1 VD2 C11 C10 C5 C2 C9 C13 C12 C6 C1 C3 C4 C7 MHV5IC1810N Rev. 0 C8 R2 R1 VGS1 VGS2 Figure 18. MHV5IC1810NR2 Test Circuit Component Layout — 1805 - 1880 MHz MHV5IC1810NR2 10 RF Device Data Freescale Semiconductor TC = 85_C EVM 10 8 25_C 50 40 −30_C 6 30 PAE VDD = 28 Vdc IDQ1 = 105 mA IDQ2 = 90 mA f = 1840 MHz EDGE Modulation 4 2 0 1 10 20 10 0 100 SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) 60 12 PAE, POWER ADDED EFFICIENCY (%) EVM, ERROR VECTOR MAGNITUDE (% ms) TYPICAL CHARACTERISTICS — 1805 - 1880 MHz −45 −50 25_C −55 −60 25_C SR @ 400 kHz −65 TC = 85_C −70 VDD = 28 Vdc IDQ1 = 105 mA IDQ2 = 90 mA f = 1840 MHz EDGE Modulation −30_C −75 85_C SR @ 600 kHz −80 −30_C −85 0.1 1 10 100 Pout, OUTPUT POWER (WATTS) AVG. Pout, OUTPUT POWER (WATTS) AVG. Figure 19. Spectral Regrowth at 400 and 600 kHz versus Output Power Figure 20. Spectral Regrowth at 400 and 600 kHz versus Output Power MHV5IC1810NR2 RF Device Data Freescale Semiconductor 11 Zo = 50 Ω f = 2000 MHz Zload f = 1800 MHz f = 2000 MHz Zin f = 1800 MHz VDD = 28 Vdc, IDQ1 = 120 mA, IDQ2 = 90 mA,Pout = 5 W Avg. f MHz Zin W Zload W 1800 43.82 + j6.83 3.49 + j8.58 1820 43.67 + j7.10 3.43 + j8.96 1840 43.50 + j7.34 3.36 + j9.33 1860 43.31 + j7.55 3.31 + j9.68 1880 43.13 + j7.76 3.24 + j10.04 1900 42.96 + j7.96 3.19 + j10.38 1920 42.76 + j8.15 3.14 + j10.72 1940 42.56 + j8.34 3.07 + j11.03 1960 42.36 + j8.50 3.04 + j11.36 1980 42.16 + j8.65 2.99 + j11.65 2000 41.97 + j8.79 2.94 + j11.94 Zin = Zload = Test circuit impedance as measured from gate to ground. Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Z in Z load Figure 21. Series Equivalent Input and Load Impedance MHV5IC1810NR2 12 RF Device Data Freescale Semiconductor NOTES MHV5IC1810NR2 RF Device Data Freescale Semiconductor 13 NOTES MHV5IC1810NR2 14 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS h X 45 _ A E2 1 14 x e 16 D e/2 D1 8 9 E1 8X bbb M B BOTTOM VIEW E C B S ÉÉ ÇÇÇ ÇÇÇ ÉÉ b1 Y c A A2 c1 b DATUM PLANE SEATING PLANE H M ccc C q W GAUGE PLANE W L C A SECT W - W L1 C aaa A1 S NOTES: 1. CONTROLLING DIMENSION: MILLIMETER. 2. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DATUM PLANE −H− IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 PER SIDE. DIMENSIONS D AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE −H−. 5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION IS 0.127 TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. DATUMS −A− AND −B− TO BE DETERMINED AT DATUM PLANE −H−. DIM A A1 A2 D D1 E E1 E2 L L1 b b1 c c1 e h q aaa bbb ccc MILLIMETERS MIN MAX 2.000 2.300 0.025 0.100 1.950 2.100 6.950 7.100 4.372 5.180 8.850 9.150 6.950 7.100 4.372 5.180 0.466 0.720 0.250 BSC 0.300 0.432 0.300 0.375 0.180 0.279 0.180 0.230 0.800 BSC −−− 0.600 0_ 7_ 0.200 0.200 0.100 1.000 0.039 DETAIL Y CASE 978 - 03 ISSUE C PFP- 16 PLASTIC MHV5IC1810NR2 RF Device Data Freescale Semiconductor 15 How to Reach Us: Home Page: www.freescale.com E - mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or 303 - 675 - 2140 Fax: 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved. MHV5IC1810NR2 Document Number: MHV5IC1810N Rev. 0, 5/2006 16 RF Device Data Freescale Semiconductor