FREESCALE MRF1518NT1_06

Freescale Semiconductor
Technical Data
Document Number: MRF1518N
Rev. 9, 9/2006
RF Power Field Effect Transistor
N - Channel Enhancement - Mode Lateral MOSFET
MRF1518NT1
Designed for broadband commercial and industrial applications with frequencies to 520 MHz. The high gain and broadband performance of this device
make it ideal for large- signal, common source amplifier applications in 12.5 volt
mobile FM equipment.
• Specified Performance @ 520 MHz, 12.5 Volts
Output Power — 8 Watts
Power Gain — 11 dB
D
Efficiency — 55%
• Capable of Handling 20:1 VSWR, @ 15.5 Vdc,
520 MHz, 2 dB Overdrive
Features
• Excellent Thermal Stability
• Characterized with Series Equivalent Large - Signal
Impedance Parameters
G
• Broadband UHF/VHF Demonstration Amplifier
Information Available Upon Request
• N Suffix Indicates Lead - Free Terminations. RoHS Compliant.
S
• Available in Tape and Reel. T1 Suffix = 1,000 Units per 12 mm,
7 Inch Reel.
520 MHz, 8 W, 12.5 V
LATERAL N - CHANNEL
BROADBAND
RF POWER MOSFET
CASE 466 - 03, STYLE 1
PLD - 1.5
PLASTIC
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain - Source Voltage
VDSS
- 0.5, +40
Vdc
Gate - Source Voltage
VGS
± 20
Vdc
ID
4
Adc
PD
62.5
0.50
W
W/°C
Storage Temperature Range
Tstg
- 65 to +150
°C
Operating Junction Temperature
TJ
150
°C
Symbol
Value (2)
Unit
RθJC
2
°C/W
Drain Current — Continuous
Total Device Dissipation @ TC = 25°C
Derate above 25°C
(1)
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Table 3. Moisture Sensitivity Level
Test Methodology
Per JESD 22 - A113, IPC/JEDEC J - STD - 020
1. Calculated based on the formula PD =
Rating
Package Peak Temperature
Unit
1
260
°C
TJ – TC
RθJC
2. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access
the MTTF calculators by product.
NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
© Freescale Semiconductor, Inc., 2006. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF1518NT1
1
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Current
(VDS = 40 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate - Source Leakage Current
(VGS = 10 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 12.5 Vdc, ID = 100 μA)
VGS(th)
1
1.6
2.1
Vdc
Drain - Source On - Voltage
(VGS = 10 Vdc, ID = 1 Adc)
VDS(on)
—
0.4
—
Vdc
Input Capacitance
(VDS = 12.5 Vdc, VGS = 0, f = 1 MHz)
Ciss
—
66
—
pF
Output Capacitance
(VDS = 12.5 Vdc, VGS = 0, f = 1 MHz)
Coss
—
33
—
pF
Reverse Transfer Capacitance
(VDS = 12.5 Vdc, VGS = 0, f = 1 MHz)
Crss
—
4.5
—
pF
Common - Source Amplifier Power Gain
(VDD = 12.5 Vdc, Pout = 8 Watts, IDQ = 150 mA, f = 520 MHz)
Gps
—
13.5
—
dB
Drain Efficiency
(VDD = 12.5 Vdc, Pout = 8 Watts, IDQ = 150 mA, f = 520 MHz)
η
—
60
—
%
Off Characteristics
On Characteristics
Dynamic Characteristics
Functional Tests (In Freescale Test Fixture)
MRF1518NT1
2
RF Device Data
Freescale Semiconductor
B2
VGG
C8
+
C7
C6
R4
B1
C15
C16
R3
+
C14
VDD
C13
L1
C5
R2
Z6
Z7
Z8
Z9
N2
Z10
RF
OUTPUT
R1
N1
RF
INPUT
Z1
Z2
Z3
Z4
Z5
DUT
C12
C10
C9
C11
C1
C2
B1, B2
C3
C4
Short Ferrite Beads, Fair Rite Products
(2743021446)
240 pF, 100 mil Chip Capacitors
0 to 20 pF Trimmer Capacitors
82 pF, 100 mil Chip Capacitor
120 pF, 100 mil Chip Capacitors
10 μF, 50 V Electrolytic Capacitors
1,200 pF, 100 mil Chip Capacitors
0.1 mF, 100 mil Chip Capacitors
30 pF, 100 mil Chip Capacitor
55.5 nH, 5 Turn, Coilcraft
Type N Flange Mounts
15 Ω Chip Resistor (0805)
51 Ω, 1/2 W Resistor
10 Ω Chip Resistor (0805)
C1, C12
C2, C3, C10, C11
C4
C5, C16
C6, C13
C7, C14
C8, C15
C9
L1
N1, N2
R1
R2
R3
R4
Z1
Z2
Z3
Z4
Z5, Z6
Z7
Z8
Z9
Z10
Board
33 kΩ, 1/8 W Resistor
0.451″ x 0.080″ Microstrip
1.005″ x 0.080″ Microstrip
0.020″ x 0.080″ Microstrip
0.155″ x 0.080″ Microstrip
0.260″ x 0.223″ Microstrip
0.065″ x 0.080″ Microstrip
0.266″ x 0.080″ Microstrip
1.113″ x 0.080″ Microstrip
0.433″ x 0.080″ Microstrip
Glass Teflon®, 31 mils, 2 oz. Copper
Figure 1. 450 - 520 MHz Broadband Test Circuit
TYPICAL CHARACTERISTICS, 450 - 520 MHz
12
0
10
470 MHz
IRL, INPUT RETURN LOSS (dB)
Pout , OUTPUT POWER (WATTS)
VDD = 12.5 Vdc
450 MHz
8
500 MHz
6
520 MHz
4
2
−5
470 MHz
−10
450 MHz
500 MHz
−15
520 MHz
VDD = 12.5 Vdc
0
−20
0
0.1
0.3
0.2
0.4
Pin, INPUT POWER (WATTS)
0.5
Figure 2. Output Power versus Input Power
0.6
0
1
2
3
4
5
6
7
8
Pout, OUTPUT POWER (WATTS)
9
10
11
Figure 3. Input Return Loss
versus Output Power
MRF1518NT1
RF Device Data
Freescale Semiconductor
3
TYPICAL CHARACTERISTICS, 450 - 520 MHz
17
80
470 MHz
450 MHz
13
GAIN (dB)
Eff, DRAIN EFFICIENCY (%)
520 MHz
500 MHz
11
9
7
60
50
520 MHz
40
500 MHz
30
20
VDD = 12.5 Vdc
10
VDD = 12.5 Vdc
0
5
0
1
2
3
4
5
6
7
8
Pout, OUTPUT POWER (WATTS)
9
10
11
2
3
4
5
6
7
8
9
Pout, OUTPUT POWER (WATTS)
10
11
12
Figure 5. Drain Efficiency versus Output Power
70
12
470 MHz
65
10 470 MHz
Eff, DRAIN EFFICIENCY (%)
Pout , OUTPUT POWER (WATTS)
1
0
Figure 4. Gain versus Output Power
450 MHz
8
520 MHz
6 500 MHz
4
VDD = 12.5 Vdc
Pin = 26.2 dBm
2
450 MHz
60
500 MHz
55
520 MHz
50
45
40
VDD = 12.5 Vdc
Pin = 26.2 dBm
35
0
30
0
200
400
600
IDQ, BIASING CURRENT (mA)
1000
800
0
200
Figure 6. Output Power versus Biasing Current
400
600
IDQ, BIASING CURRENT (mA)
1000
800
Figure 7. Drain Efficiency versus
Biasing Current
12
80
470 MHz
11
75
450 MHz
Eff, DRAIN EFFICIENCY (%)
Pout , OUTPUT POWER (WATTS)
470 MHz
450 MHz
70
15
10
9
8
7
6
520 MHz
5
500 MHz
4
8
9
10
11
12
13
14
15
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 8. Output Power versus Supply Voltage
470 MHz
65
450 MHz
60
520 MHz
55
500 MHz
50
45
40
IDQ = 150 mA
Pin = 26.2 dBm
3
2
70
IDQ = 150 mA
Pin = 26.2 dBm
35
30
16
8
9
10
11
12
13
14
15
16
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 9. Drain Efficiency versus Supply Voltage
MRF1518NT1
4
RF Device Data
Freescale Semiconductor
B1
B2
VGG
+
C8
C7
C6
C5
C12
C13
+
C15
C14
VDD
L1
R1
N1
Z1
RF
INPUT
Z2
Z3
Z4
DUT
Z5
Z6
Z7
N2
Z8
C1
RF
OUTPUT
C11
L2
C2
B1, B2
C1, C9
C2
C3, C4
C5
C6, C13
C7, C14
C8
C10
C11, C12
C15
L1, L2
C3
C4
C9
Long Ferrite Beads, Fair Rite Products
12 pF, 100 mil Chip Capacitors
6.8 pF, 100 mil Chip Capacitor
20 pF, 100 mil Chip Capacitors
51 pF, 100 mil Chip Capacitor
1000 pF, 100 mil Chip Capacitors
0.039 μF, 100 mil Chip Capacitors
1 μF, 20 V Tantalum Chip Capacitor
3 pF, 100 mil Chip Capacitor
51 pF, 100 mil Chip Capacitors
22 μF, 35 V Tantalum Chip Capacitor
18.5 nH, 5 Turn, Coilcraft
N1, N2
R1
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Board
C10
Type N Flange Mounts
47 Ω Chip Resistor (0805)
1.145″ x 0.080″ Microstrip
0.786″ x 0.080″ Microstrip
0.115″ x 0.223″ Microstrip
0.145″ x 0.223″ Microstrip
0.260″ x 0.223″ Microstrip
0.081″ x 0.080″ Microstrip
0.104″ x 0.080″ Microstrip
1.759″ x 0.080″ Microstrip
Glass Teflon®, 31 mils, 2 oz. Copper
Figure 10. 820 - 850 MHz Broadband Test Circuit
TYPICAL CHARACTERISTICS, 820 - 850 MHz
12
0
840 MHz
8
IRL, INPUT RETURN LOSS (dB)
Pout , OUTPUT POWER (WATTS)
VDD = 12.5 Vdc
10
850 MHz
830 MHz
820 MHz
6
4
2
−10
850 MHz
840 MHz
−20
820 MHz
−30
830 MHz
VDD = 12.5 Vdc
0
−40
0
0.1
0.3
0.2
0.4
Pin, INPUT POWER (WATTS)
0.5
Figure 11. Output Power versus Input Power
0.6
1
2
3
4
5
6
7
8
9
Pout, OUTPUT POWER (WATTS)
10
11
12
Figure 12. Input Return Loss
versus Output Power
MRF1518NT1
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS, 820 - 850 MHz
17
80
850 MHz
840 MHz
GAIN (dB)
13
830 MHz
850 MHz
70
Eff, DRAIN EFFICIENCY (%)
15
820 MHz
11
9
7
840 MHz
60
820 MHz
50
40
830 MHz
30
20
10
VDD = 12.5 Vdc
5
VDD = 12.5 Vdc
0
1
2
3
4
5
6
7
8
9
Pout, OUTPUT POWER (WATTS)
10
11
1
12
Figure 13. Gain versus Output Power
3
4
5
6
7
8
9
Pout, OUTPUT POWER (WATTS)
70
850 MHz
8
820 MHz
6
4
2
50
820 MHz
830 MHz
840 MHz
40
30
20
10
VDD = 12.5 Vdc
VDD = 12.5 Vdc
0
0
0
200
400
600
IDQ, BIASING CURRENT (mA)
800
1000
0
1000
800
Figure 16. Drain Efficiency versus
Biasing Current
12
80
11
75
840 MHz
Eff, DRAIN EFFICIENCY (%)
Pout , OUTPUT POWER (WATTS)
600
400
IDQ, BIASING CURRENT (mA)
200
Figure 15. Output Power versus
Biasing Current
10
9
830 MHz
8
820 MHz
7
6
850 MHz
5
4
840 MHz
70
65
850 MHz
60
55
830 MHz
50
45
820 MHz
40
VDD = 12.5 Vdc
3
2
12
60
Eff, DRAIN EFFICIENCY (%)
10
11
850 MHz
830 MHz
840 MHz
10
Figure 14. Drain Efficiency versus Output
Power
12
Pout , OUTPUT POWER (WATTS)
2
8
9
10
11
12
13
14
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 17. Output Power versus
Supply Voltage
15
35
16
30
VDD = 12.5 Vdc
8
9
10
11
12
13
14
15
16
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 18. Drain Efficiency versus
Supply Voltage
MRF1518NT1
6
RF Device Data
Freescale Semiconductor
B2
VGG
C10
+
C9
C8
B1
R4
C18
R3
C17
+
C16
VDD
C15
L1
C7
R2
Z7
Z8
Z9
Z10
N2
Z11
RF
OUTPUT
R1
N1
Z1
RF
INPUT
Z2
Z3
Z4
Z5
Z6
DUT
C14
C11
C12
C13
C1
C2
B1, B2
C3
C4
C5
C6
Short Ferrite Beads, Fair Rite Products
(2743021446)
240 pF, 100 mil Chip Capacitors
C1, C14
C2, C3, C4, C11,
C12, C13
C5
C6
C7, C18
C8, C15
C9, C16
C10, C17
L1
N1, N2
R1
R2
R3
R4
Z1
Z2
Z3
Z4
Z5
Z6, Z7
Z8
Z9
Z10
Z11
Board
0 to 20 pF Trimmer Capacitors
30 pF, 100 mil Chip Capacitor
47 pF, 100 mil Chip Capacitor
120 pF, 100 mil Chip Capacitors
10 μF, 50 V Electrolytic Capacitors
1,200 pF, 100 mil Chip Capacitors
0.1 μF, 100 mil Chip Capacitors
55.5 nH, 5 Turn, Coilcraft
Type N Flange Mounts
15 Ω Chip Resistor (0805)
51 Ω, 1/2 W Resistor
10 Ω Chip Resistor (0805)
33 kΩ, 1/8 W Resistor
0.476″ x 0.080″ Microstrip
0.724″ x 0.080″ Microstrip
0.348″ x 0.080″ Microstrip
0.048″ x 0.080″ Microstrip
0.175″ x 0.080″ Microstrip
0.260″ x 0.223″ Microstrip
0.239″ x 0.080″ Microstrip
0.286″ x 0.080″ Microstrip
0.806″ x 0.080″ Microstrip
0.553″ x 0.080″ Microstrip
Glass Teflon®, 31 mils, 2 oz. Copper
Figure 19. 400 - 470 MHz Broadband Test Circuit
TYPICAL CHARACTERISTICS, 400 - 470 MHz
12
0
10
IRL, INPUT RETURN LOSS (dB)
Pout , OUTPUT POWER (WATTS)
440 MHz
400 MHz
8
470 MHz
6
4
VDD = 12.5 Vdc
2
VDD = 12.5 Vdc
−5
440 MHz
−10
400 MHz
−15
470 MHz
0
−20
0
0.1
0.2
0.3
0.4
0.5
Pin, INPUT POWER (WATTS)
0.6
Figure 20. Output Power versus Input Power
0.7
0
1
2
3
4
5
6
7
8
9
Pout, OUTPUT POWER (WATTS)
10
11
12
Figure 21. Input Return Loss
versus Output Power
MRF1518NT1
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS, 400 - 470 MHz
17
80
70
Eff, DRAIN EFFICIENCY (%)
15
440 MHz
GAIN (dB)
13
400 MHz
470 MHz
11
9
VDD = 12.5 Vdc
7
400 MHz
50
40
30
20
VDD = 12.5 Vdc
10
5
0
0
1
2
3
4
5
6
7
8
9
Pout, OUTPUT POWER (WATTS)
10
11
0
12
Figure 22. Gain versus Output Power
2
1
10
11
12
70
440 MHz
10
470 MHz
8
6
4
VDD = 12.5 Vdc
Pin = 26.8 dBm
2
470 MHz
65
400 MHz
Eff, DRAIN EFFICIENCY (%)
Pout , OUTPUT POWER (WATTS)
3
5
6
7
8
9
4
Pout, OUTPUT POWER (WATTS)
Figure 23. Drain Efficiency versus Output
Power
12
440 MHz
60
400 MHz
55
50
45
VDD = 12.5 Vdc
Pin = 26.8 dBm
40
35
0
30
0
200
400
600
IDQ, BIASING CURRENT (mA)
800
1000
0
200
Figure 24. Output Power versus
Biasing Current
1000
800
80
440 MHz
11
400
600
IDQ, BIASING CURRENT (mA)
Figure 25. Drain Efficiency versus
Biasing Current
12
75
Eff, DRAIN EFFICIENCY (%)
Pout , OUTPUT POWER (WATTS)
440 MHz
470 MHz
60
10
400 MHz
9
8
7
6
470 MHz
5
4
8
9
10
11
12
13
14
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 26. Output Power versus
Supply Voltage
15
65
470 MHz
60
55
440 MHz
50
400 MHz
45
40
IDQ = 150 mA
Pin = 26.8 dBm
3
2
70
IDQ = 150 mA
Pin = 26.8 dBm
35
30
16
8
9
10
11
12
13
14
15
16
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 27. Drain Efficiency versus
Supply Voltage
MRF1518NT1
8
RF Device Data
Freescale Semiconductor
B2
VGG
C9
+
C8
C7
R4
B1
C16
C17
R3
C15
+
VDD
C14
L4
C6
R2
Z6
RF
INPUT
Z7
Z8
L2
L3
Z9
RF
OUTPUT
Z10 C13
R1
L1
Z1
Z2
Z3
Z4
Z5
DUT
N2
C12
C10
N1
C1
C11
C4
C3
C5
C2
B1, B2
Short Ferrite Beads, Fair Rite Products
(2743021446)
330 pF, 100 mil Chip Capacitors
0 to 20 pF Trimmer Capacitors
12 pF, 100 mil Chip Capacitor
43 pF, 100 mil Chip Capacitor
75 pF, 100 mil Chip Capacitors
10 μF, 50 V Electrolytic Capacitors
1,200 pF, 100 mil Chip Capacitors
0.1 μF, 100 mil Chip Capacitors
75 pF, 100 mil Chip Capacitor
13 pF, 100 mil Chip Capacitor
26 nH, 4 Turn, Coilcraft
5 nH, 2 Turn, Coilcraft
33 nH, 5 Turn, Coilcraft
C1, C13
C2, C4, C11
C3
C5
C6, C17
C7, C14
C8, C15
C9, C16
C10
C12
L1
L2
L3
L4
N1, N2
R1
R2
R3
R4
Z1
Z2
Z3
Z4
Z5, Z6
Z7
Z8
Z9
Z10
Board
55.5 nH, 5 Turn, Coilcraft
Type N Flange Mounts
15 W Chip Resistor (0805)
56 W, 1/4 W Carbon Resistor
100 W Chip Resistor (0805)
33 kW, 1/8 W Carbon Resistor
0.115″ x 0.080″ Microstrip
0.255″ x 0.080″ Microstrip
1.037″ x 0.080″ Microstrip
0.192″ x 0.080″ Microstrip
0.260″ x 0.223″ Microstrip
0.125″ x 0.080″ Microstrip
0.962″ x 0.080″ Microstrip
0.305″ x 0.080″ Microstrip
0.155″ x 0.080″ Microstrip
Glass Teflon®, 31 mils, 2 oz. Copper
Figure 28. 135 - 175 MHz Broadband Test Circuit
TYPICAL CHARACTERISTICS, 135 - 175 MHz
0
VDD = 12.5 Vdc
10
IRL, INPUT RETURN LOSS (dB)
Pout , OUTPUT POWER (WATTS)
12
8
155 MHz
6
175 MHz
4
135 MHz
2
−5
155 MHz
−10
135 MHz
175 MHz
−15
VDD = 12.5 Vdc
0
−20
0
0.1
0.2
0.3
Pin, INPUT POWER (WATTS)
Figure 29. Output Power versus Input Power
0.4
0
1
2
3
4
5
6
7
8
9
Pout, OUTPUT POWER (WATTS)
10
11 12
Figure 30. Input Return Loss
versus Output Power
MRF1518NT1
RF Device Data
Freescale Semiconductor
9
TYPICAL CHARACTERISTICS, 135 - 175 MHz
19
80
135 MHz
70
Eff, DRAIN EFFICIENCY (%)
17
175 MHz
GAIN (dB)
15
155 MHz
13
11
9
155 MHz
60
135 MHz
50
175 MHz
40
30
20
VDD = 12.5 Vdc
10
VDD = 12.5 Vdc
0
7
0
1
2
3
4
5
6
7
8
9
Pout, OUTPUT POWER (WATTS)
10
11
0
12
Figure 31. Gain versus Output Power
1
2
11
12
70
175 MHz
155 MHz
135 MHz
65
10
135 MHz
155 MHz
Eff, DRAIN EFFICIENCY (%)
Pout , OUTPUT POWER (WATTS)
10
Figure 32. Drain Efficiency versus Output
Power
12
8
6
4
VDD = 12.5 Vdc
Pin = 24.5 dBm
2
60
175 MHz
55
50
45
40
VDD = 12.5 Vdc
Pin = 24.5 dBm
35
0
30
200
0
800
400
600
IDQ, BIASING CURRENT (mA)
1000
200
0
Figure 33. Output Power versus
Biasing Current
800
400
600
IDQ, BIASING CURRENT (mA)
1000
Figure 34. Drain Efficiency versus
Biasing Current
12
80
135 MHz
11
75
155 MHz
10
Eff, DRAIN EFFICIENCY (%)
Pout , OUTPUT POWER (WATTS)
3
4
5
6
7
8
9
Pout, OUTPUT POWER (WATTS)
175 MHz
9
8
7
6
5
IDQ = 150 mA
Pin = 24.5 dBm
4
70
155 MHz
65
135 MHz
60
175 MHz
55
50
45
IDQ = 150 mA
Pin = 24.5 dBm
40
3
2
35
30
8
9
10
11
12
13
14
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 35. Output Power versus
Supply Voltage
15
16
8
9
10
11
12
13
14
15
16
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 36. Drain Efficiency versus
Supply Voltage
MRF1518NT1
10
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
MTTF FACTOR (HOURS X AMPS2)
109
108
107
106
90 100 110 120 130 140 150 160 170 180 190 200 210
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours x ampere2
drain current. Life tests at elevated temperatures have correlated to
better than ±10% of the theoretical prediction for metal failure. Divide
MTTF factor by ID2 for MTTF in a particular application.
Figure 37. MTTF Factor versus Junction Temperature
MRF1518NT1
RF Device Data
Freescale Semiconductor
11
Zo = 10 Ω
Zo = 10 Ω
Zin
520
520
f = 450 MHz
Zin
f = 850 MHz
f = 450 MHz
ZOL*
f = 850 MHz
ZOL*
f = 820 MHz
Zin
f = 820 MHz
VDD = 12.5 V, IDQ = 150 mA, Pout = 8 W
VDD = 12.5 V, IDQ = 150 mA, Pout = 8 W
f
MHz
Zin
Ω
ZOL*
Ω
f
MHz
Zin
Ω
ZOL*
Ω
450
4.9 +j2.85
6.42 +j3.23
820
1.42 - j0.32
2.34 +j0.23
470
4.85 +j3.71
4.59 +j3.61
830
1.39 - j0.21
2.36 +j0.47
500
4.63 +j3.84
4.72 +j3.12
840
1.32 - j0.16
2.40 +j0.69
520
3.52 +j3.92
3.81 +j3.27
850
1.23 - j0.13
2.37 +j0.79
= Complex conjugate of source
impedance with parallel 15 Ω
resistor and 82 pF capacitor in
series with gate. (See Figure 1).
Zin
= Complex conjugate of source
impedance.
ZOL* = Complex conjugate of the load
impedance at given output power,
voltage, frequency, and ηD > 50 %.
ZOL* = Complex conjugate of the load
impedance at given output power,
voltage, frequency, and ηD > 50 %.
Note: ZOL* was chosen based on tradeoffs between gain, drain efficiency, and device stability.
Input
Matching
Network
Output
Matching
Network
Device
Under Test
Z
in
Z
*
OL
Figure 38. Series Equivalent Input and Output Impedance
MRF1518NT1
12
RF Device Data
Freescale Semiconductor
f = 470 MHz
Zin
ZOL*
f = 470 MHz
400
175
135
400
Zo = 10 Ω
Zin
ZOL*
f = 175 MHz
f = 135 MHz
Zin
VDD = 12.5 V, IDQ = 150 mA, Pout = 8 W
VDD = 12.5 V, IDQ = 150 mA, Pout = 8 W
f
MHz
Zin
Ω
ZOL*
Ω
f
MHz
Zin
Ω
ZOL*
Ω
400
4.28 +j2.36
4.41 +j0.67
135
18.31 - j0.76
8.97 +j2.62
440
6.45 +j5.13
4.14 +j2.53
155
17.72 +j1.85
9.69 +j2.81
470
5.91 +j3.34
3.92 +j4.02
175
18.06 +j5.23
7.94 +j1.14
= Complex conjugate of source
impedance with parallel 15 Ω
resistor and 47 pF capacitor in
series with gate. (See Figure 19).
ZOL* = Complex conjugate of the load
impedance at given output power,
voltage, frequency, and ηD > 50 %.
Zin
= Complex conjugate of source
impedance with parallel 15 Ω
resistor and 43 pF capacitor in
series with gate. (See Figure 28).
ZOL* = Complex conjugate of the load
impedance at given output power,
voltage, frequency, and ηD > 50 %.
Note: ZOL* was chosen based on tradeoffs between gain, drain efficiency, and device stability.
Input
Matching
Network
Output
Matching
Network
Device
Under Test
Z
in
Z
*
OL
Figure 38. Series Equivalent Input and Output Impedance (continued)
MRF1518NT1
RF Device Data
Freescale Semiconductor
13
Table 5. Common Source Scattering Parameters (VDD = 12.5 Vdc)
IDQ = 150 mA
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
50
0.88
- 148
18.91
99
0.033
11
0.67
- 144
100
0.85
- 163
9.40
86
0.033
-6
0.66
- 158
200
0.85
- 170
4.47
73
0.026
- 17
0.69
- 162
300
0.87
- 171
2.72
64
0.025
- 28
0.74
- 163
400
0.88
- 172
1.85
56
0.021
- 21
0.79
- 164
500
0.90
- 173
1.35
52
0.019
- 30
0.83
- 165
600
0.92
- 173
1.04
47
0.014
- 26
0.85
- 167
700
0.93
- 174
0.83
44
0.015
- 39
0.88
- 168
800
0.94
- 175
0.68
39
0.014
- 31
0.90
- 169
900
0.94
- 175
0.55
36
0.010
- 41
0.91
- 170
1000
0.96
- 176
0.46
30
0.011
- 38
0.95
- 170
IDQ = 800 mA
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
50
0.90
- 159
20.80
97
0.020
14
0.73
- 162
100
0.88
- 169
10.35
88
0.018
1
0.74
- 169
200
0.88
- 174
5.09
79
0.017
-9
0.75
- 171
300
0.89
- 175
3.23
73
0.015
- 18
0.77
- 171
400
0.89
- 175
2.30
67
0.015
- 17
0.80
- 171
500
0.90
- 176
1.74
63
0.014
- 22
0.82
- 170
600
0.91
- 176
1.39
59
0.014
- 19
0.83
- 171
700
0.92
- 176
1.16
55
0.009
- 23
0.85
- 171
800
0.93
- 176
0.96
50
0.011
- 14
0.87
- 172
900
0.94
- 177
0.80
46
0.007
4
0.88
- 173
1000
0.94
- 177
0.67
41
0.010
- 15
0.89
- 173
IDQ = 1.5 A
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
50
0.91
- 159
20.18
97
0.015
11
0.73
- 165
100
0.89
- 169
10.05
89
0.016
-5
0.74
- 171
200
0.88
- 174
4.93
80
0.015
-3
0.75
- 172
300
0.89
- 175
3.14
73
0.014
- 14
0.78
- 172
400
0.89
- 176
2.24
67
0.014
- 20
0.80
- 171
500
0.90
- 176
1.70
64
0.014
- 22
0.82
- 170
600
0.92
- 176
1.36
59
0.010
- 16
0.84
- 171
700
0.92
- 176
1.13
55
0.013
- 10
0.85
- 171
800
0.93
- 177
0.94
50
0.008
- 13
0.87
- 172
900
0.94
- 177
0.78
46
0.013
- 26
0.87
- 173
1000
0.94
- 178
0.65
41
0.007
8
0.87
- 172
MRF1518NT1
14
RF Device Data
Freescale Semiconductor
APPLICATIONS INFORMATION
DESIGN CONSIDERATIONS
This device is a common - source, RF power, N - Channel
enhancement mode, Lateral Metal - Oxide Semiconductor
Field - Effect Transistor (MOSFET). Freescale Application
Note AN211A, “FETs in Theory and Practice”, is suggested
reading for those not familiar with the construction and characteristics of FETs.
This surface mount packaged device was designed primarily for VHF and UHF portable power amplifier applications. Manufacturability is improved by utilizing the tape and
reel capability for fully automated pick and placement of
parts. However, care should be taken in the design process
to insure proper heat sinking of the device.
The major advantages of Lateral RF power MOSFETs include high gain, simple bias systems, relative immunity from
thermal runaway, and the ability to withstand severely mismatched loads without suffering damage.
MOSFET CAPACITANCES
The physical structure of a MOSFET results in capacitors
between all three terminals. The metal oxide gate structure
determines the capacitors from gate - to - drain (Cgd), and
gate - to - source (Cgs). The PN junction formed during fabrication of the RF MOSFET results in a junction capacitance
from drain - to - source (Cds). These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer
(Crss) capacitances on data sheets. The relationships between the inter - terminal capacitances and those given on
data sheets are shown below. The Ciss can be specified in
two ways:
1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero
volts at the gate.
In the latter case, the numbers are lower. However, neither
method represents the actual operating conditions in RF applications.
Drain
Cgd
Gate
Cds
Ciss = Cgd + Cgs
Coss = Cgd + Cds
Crss = Cgd
Cgs
Source
DRAIN CHARACTERISTICS
One critical figure of merit for a FET is its static resistance
in the full - on condition. This on - resistance, RDS(on), occurs
in the linear region of the output characteristic and is specified at a specific gate - source voltage and drain current. The
drain - source voltage under these conditions is termed
VDS(on). For MOSFETs, VDS(on) has a positive temperature
coefficient at high temperatures because it contributes to the
power dissipation within the device.
BVDSS values for this device are higher than normally required for typical applications. Measurement of BVDSS is not
recommended and may result in possible damage to the device.
GATE CHARACTERISTICS
The gate of the RF MOSFET is a polysilicon material, and
is electrically isolated from the source by a layer of oxide.
The DC input resistance is very high - on the order of 109 Ω
— resulting in a leakage current of a few nanoamperes.
Gate control is achieved by applying a positive voltage to
the gate greater than the gate - to - source threshold voltage,
VGS(th).
Gate Voltage Rating — Never exceed the gate voltage
rating. Exceeding the rated VGS can result in permanent
damage to the oxide layer in the gate region.
Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open - circuited or floating should be avoided. These conditions can
result in turn - on of the devices due to voltage build - up on
the input capacitor due to leakage currents or pickup.
Gate Protection — These devices do not have an internal
monolithic zener diode from gate - to - source. If gate protection is required, an external zener diode is recommended.
Using a resistor to keep the gate - to - source impedance low
also helps dampen transients and serves another important
function. Voltage transients on the drain can be coupled to
the gate through the parasitic gate - drain capacitance. If the
gate - to - source impedance and the rate of voltage change
on the drain are both high, then the signal coupled to the gate
may be large enough to exceed the gate - threshold voltage
and turn the device on.
DC BIAS
Since this device is an enhancement mode FET, drain current flows only when the gate is at a higher potential than the
source. RF power FETs operate optimally with a quiescent
drain current (IDQ), whose value is application dependent.
This device was characterized at IDQ = 150 mA, which is the
suggested value of bias current for typical applications. For
special applications such as linear amplification, IDQ may
have to be selected to optimize the critical parameters.
The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may
require a more elaborate bias system.
GAIN CONTROL
Power output of this device may be controlled to some degree with a low power dc control signal applied to the gate,
thus facilitating applications such as manual gain control,
ALC/AGC and modulation systems. This characteristic is
very dependent on frequency and load line.
MRF1518NT1
RF Device Data
Freescale Semiconductor
15
MOUNTING
The specified maximum thermal resistance of 2°C/W assumes a majority of the 0.065″ x 0.180″ source contact on
the back side of the package is in good contact with an appropriate heat sink. As with all RF power devices, the goal of
the thermal design should be to minimize the temperature at
the back side of the package. Refer to Freescale Application
Note AN4005/D, “Thermal Management and Mounting Method for the PLD - 1.5 RF Power Surface Mount Package,” and
Engineering Bulletin EB209/D, “Mounting Method for RF
Power Leadless Surface Mount Transistor” for additional information.
AMPLIFIER DESIGN
Impedance matching networks similar to those used with
bipolar transistors are suitable for this device. For examples
see Freescale Application Note AN721, “Impedance
Matching Networks Applied to RF Power Transistors.”
Large - signal impedances are provided, and will yield a good
first pass approximation.
Since RF power MOSFETs are triode devices, they are not
unilateral. This coupled with the very high gain of this device
yields a device capable of self oscillation. Stability may be
achieved by techniques such as drain loading, input shunt
resistive loading, or output to input feedback. The RF test fixture implements a parallel resistor and capacitor in series
with the gate, and has a load line selected for a higher efficiency, lower gain, and more stable operating region.
Two - port stability analysis with this device’s
S - parameters provides a useful tool for selection of loading
or feedback circuitry to assure stable operation. See Freescale Application Note AN215A, “RF Small - Signal Design
Using Two - Port Parameters” for a discussion of two port
network theory and stability.
MRF1518NT1
16
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
0.146
3.71
A
F
0.095
2.41
3
B
D
1
2
R
0.115
2.92
0.115
2.92
L
0.020
0.51
4
0.35 (0.89) X 45_" 5 _
N
K
Q
ÉÉÉ
ÉÉÉÉ
ÉÉÉ
ÉÉ
ÉÉ
ÉÉÉ
ÉÉ
ÉÉ
ÉÉÉ
ÉÉÉÉ
ÉÉÉ
ÉÉÉÉ
C
4
ZONE W
1
2
3
S
G
Y
Y
E
NOTES:
1. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1984.
2. CONTROLLING DIMENSION: INCH
3. RESIN BLEED/FLASH ALLOWABLE IN ZONE V, W,
AND X.
STYLE 1:
PIN 1.
2.
3.
4.
DRAIN
GATE
SOURCE
SOURCE
ZONE X
VIEW Y - Y
mm
SOLDER FOOTPRINT
P
U
H
ZONE V
inches
10_DRAFT
CASE 466 - 03
ISSUE D
PLD- 1.5
PLASTIC
DIM
A
B
C
D
E
F
G
H
J
K
L
N
P
Q
R
S
U
ZONE V
ZONE W
ZONE X
INCHES
MIN
MAX
0.255
0.265
0.225
0.235
0.065
0.072
0.130
0.150
0.021
0.026
0.026
0.044
0.050
0.070
0.045
0.063
0.160
0.180
0.273
0.285
0.245
0.255
0.230
0.240
0.000
0.008
0.055
0.063
0.200
0.210
0.006
0.012
0.006
0.012
0.000
0.021
0.000
0.010
0.000
0.010
MILLIMETERS
MIN
MAX
6.48
6.73
5.72
5.97
1.65
1.83
3.30
3.81
0.53
0.66
0.66
1.12
1.27
1.78
1.14
1.60
4.06
4.57
6.93
7.24
6.22
6.48
5.84
6.10
0.00
0.20
1.40
1.60
5.08
5.33
0.15
0.31
0.15
0.31
0.00
0.53
0.00
0.25
0.00
0.25
MRF1518NT1
RF Device Data
Freescale Semiconductor
17
How to Reach Us:
Home Page:
www.freescale.com
E - mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or 303 - 675 - 2140
Fax: 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2006. All rights reserved.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical
characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further
information, see http://www.freescale.com or contact your Freescale sales representative.
For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.
MRF1518NT1
Document Number: MRF1518N
Rev. 9, 9/2006
18
RF Device Data
Freescale Semiconductor