FREESCALE MRF5S9080NR1

Document Number: MRF5S9080N
Rev. 1, 5/2006
Freescale Semiconductor
Technical Data
RF Power Field Effect Transistors
N - Channel Enhancement - Mode Lateral MOSFETs
MRF5S9080NR1
MRF5S9080NBR1
Designed for GSM and GSM EDGE base station applications with
frequencies from 869 to 960 MHz. Suitable for TDMA, CDMA, and multicarrier
amplifier applications.
GSM Application
• Typical GSM Performance: VDD = 26 Volts, IDQ = 600 mA, Pout = 80 Watts
CW, Full Frequency Band (869 - 894 MHz or 921 - 960 MHz).
Power Gain — 18.5 dB
Drain Efficiency — 60%
GSM EDGE Application
• Typical GSM EDGE Performance: VDD = 26 Volts, IDQ = 550 mA,
Pout = 36 Watts Avg., Full Frequency Band (869 - 894 MHz or
921 - 960 MHz).
Power Gain — 19 dB
Drain Efficiency — 42%
Spectral Regrowth @ 400 kHz Offset = - 63 dBc
Spectral Regrowth @ 600 kHz Offset = - 78 dBc
EVM — 2.5% rms
• Capable of Handling 10:1 VSWR, @ 26 Vdc, 960 MHz, 80 Watts CW
Output Power
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
• Internally Matched for Ease of Use
• Qualified Up to a Maximum of 32 VDD Operation
• Integrated ESD Protection
• 200_C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
869 - 960 MHz, 80 W, 26 V
GSM/GSM EDGE
LATERAL N - CHANNEL
RF POWER MOSFETs
CASE 1486 - 03, STYLE 1
TO - 270 WB - 4
PLASTIC
MRF5S9080NR1
CASE 1484 - 04, STYLE 1
TO - 272 WB - 4
PLASTIC
MRF5S9080NBR1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain- Source Voltage
VDSS
- 0.5, +65
Vdc
Gate- Source Voltage
VGS
- 0.5, +15
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
Operating Junction Temperature
TJ
200
°C
Symbol
Value (1,2)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 79°C, 80 W CW
Case Temperature 80°C, 36 W CW
RθJC
0.50
0.54
°C/W
1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access
the MTTF calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
© Freescale Semiconductor, Inc., 2006. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF5S9080NR1 MRF5S9080NBR1
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
1B (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 26 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate- Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
500
nAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 400 μAdc)
VGS(th)
2
2.8
3.5
Vdc
Gate Quiescent Voltage
(VDS = 26 Vdc, ID = 600 mAdc, Measured in Functional Test)
VGS(Q)
3.5
3.9
4.5
Vdc
Drain- Source On - Voltage
(VGS = 10 Vdc, ID = 2 Adc)
VDS(on)
—
0.27
0.3
Vdc
Reverse Transfer Capacitance
(VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
1.8
—
pF
Output Capacitance
(VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
600
—
pF
Off Characteristics
On Characteristics
Dynamic Characteristics (1)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ = 600 mA, Pout = 80 W CW, f = 960 MHz
Gps
17
Drain Efficiency
ηD
Input Return Loss
IRL
P1dB
Power Gain
Pout @ 1 dB Compression Point
18.5
20
dB
55
60
—
%
—
- 15
-9
dB
80
90
—
W
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ = 550 mA, Pout = 36 W Avg.,
869- 894 MHz, 920 - 960 MHz GSM EDGE Modulation
Power Gain
Gps
—
19
—
dB
Drain Efficiency
ηD
—
42
—
%
Error Vector Magnitude
EVM
—
2.5
—
% rms
Spectral Regrowth at 400 kHz Offset
SR1
—
- 63
—
dBc
Spectral Regrowth at 600 kHz Offset
SR2
—
- 77
—
dBc
1. Part is internally matched on input.
MRF5S9080NR1 MRF5S9080NBR1
2
RF Device Data
Freescale Semiconductor
R1
VSUPPLY
VBIAS
+
R2
C1
C4
C7
C16
R3
Z1
Z2
Z3
Z4
Z8
Z9
C5
C2
Z10
C21
C10
Z11
RF
OUTPUT
C11
Z5
C15
C12
C8
C18
Z7
RF
INPUT
Z12
Z6
C17
C19
C20
DUT
C13
C14
Z13
C9
Z1
Z2
Z3
Z4
Z5
Z6
Z7
1.220″ x 0.087″ Microstrip
1.110″ x 0.087″ Microstrip
0.536″ x 0.087″ Microstrip
0.310″ x 0.087″ Microstrip
0.430″ x 0.591″ Microstrip
1.567″ x 0.059″ Microstrip
0.734″ x 0.788″ Microstrip
Z8
Z9
Z10
Z11
Z12, Z13
PCB
C6
C3
0.138″ x 0.087″ Microstrip
0.411″ x 0.087″ Microstrip
0.403″ x 0.087″ Microstrip
0.560″ x 0.087″ Microstrip
1.693″ x 0.087″ Microstrip
Taconic TLX8 - 0300, 0.030″, εr = 2.55
Figure 1. MRF5S9080NR1(NBR1) Test Circuit Schematic — 900 MHz
Table 6. MRF5S9080NR1(NBR1) Test Circuit Component Designations and Values — 900 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3
4.7 μF Chip Capacitors (1812)
C4532X5R1H475MT
TDK
C4, C5, C6
10 nF 200B Chip Capacitors
200B103MW
ATC
C7, C8, C9
33 pF 600B Chip Capacitors
600B330JW
ATC
C10, C11
22 pF 600B Chip Capacitors
600B220FW
ATC
C12
1.8 pF 600B Chip Capacitor
600B1R8BW
ATC
C13
9.1 pF 600B Chip Capacitor
600B9R1BW
ATC
C14, C17, C18
8.2 pF 600B Chip Capacitors
600B8R2BW
ATC
C15, C16
10 pF 600B Chip Capacitors
600B100FW
ATC
C19
4.7 pF 600B Chip Capacitor
600B4R7BW
ATC
C20
3.6 pF 600B Chip Capacitor
600B3R6BW
ATC
C21
220 μF, 63 V Electrolytic Capacitor, Axial
13668221
Philips
R1, R2
10 kΩ, 1/4 W Chip Resistors (1206)
R3
10 Ω, 1/4 W Chip Resistor (1206)
MRF5S9080NR1 MRF5S9080NBR1
RF Device Data
Freescale Semiconductor
3
C21
VGG
C1
C8
C4 C7
R1
VDD
C5
R2
C2
C16
C10
C13
C14
CUT OUT AREA
R3
C18
C19
C15
C11
C20
C17
C3
C12
C9
C6
MRF5S9080N/NB
Rev. 1
Figure 2. MRF5S9080NR1(NBR1) Test Circuit Component Layout — 900 MHz
MRF5S9080NR1 MRF5S9080NBR1
4
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS - 900 MHz
Gps, POWER GAIN (dB)
19
80
60
ηD
40
18.5
Gps
18
17.5
17
20
VDD = 26 Vdc
IDQ = 600 mA
0
IRL
16.5
860
ηD, DRAIN EFFICIENCY (%)
IRL, INPUT RETURN LOSS (dB)
19.5
−20
880
900
920
940
960
980
1000
−40
1020
f, FREQUENCY (MHz)
Figure 3. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 80 Watts CW
19
60
40
ηD
20
18.8
18.6
VDD = 26 Vdc
IDQ = 600 mA
Gps
0
IRL
−20
18.4
18.2
860
880
900
920
940
960
980
1000
ηD, DRAIN EFFICIENCY (%)
IRL, INPUT RETURN LOSS (dB)
Gps, POWER GAIN (dB)
19.2
−40
1020
f, FREQUENCY (MHz)
Figure 4. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 36 Watts CW
20
20
IDQ = 900 mA
19
750 mA
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
19
18 600 mA
450 mA
17
300 mA
16
15
VDD = 26 Vdc
f = 940 MHz
18
17
16
32 V
16 V
15
24 V
20 V
28 V
14
IDQ = 600 mA
f = 940 MHz
VDD = 12 V
13
14
1
10
100
1000
0
50
100
150
Pout, OUTPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS) CW
Figure 5. Power Gain versus Output Power
Figure 6. Power Gain versus Output Power
200
MRF5S9080NR1 MRF5S9080NBR1
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS - 900 MHz
21
Gps
40
85_C
17
30
ηD
16
20
VDD = 26 Vdc
IDQ = 600 mA
f = 940 MHz
14
1
10
100
6
VDD = 28 Vdc
IDQ = 550 mA
5
Pout = 53 W Avg.
4
3
2
13 W Avg.
1
3 W Avg.
900
910
920
930
940
950
960
970
Pout, OUTPUT POWER (WATTS) CW
f, FREQUENCY (MHz)
Figure 7. Power Gain and Drain Efficiency
versus CW Output Power
Figure 8. EVM versus Frequency
TC = 85_C
80
60
4
40
ηD
EVM
2
20
25_C
−30_C
0
1
0
100
10
980
−50
SR @ 400 kHz
−55
VDD = 28 Vdc
IDQ = 550 mA
f = 940 MHz
EDGE Modulation
Pout = 53 W Avg.
−60
−65
−70
13 W Avg.
3 W Avg.
−75
SR @ 600 kHz
−80
53 W Avg.
13 W Avg.
−85
3 W Avg.
−90
900
910
920
930
940
950
960
970
Pout, OUTPUT POWER (WATTS) AVG.
f, FREQUENCY (MHz)
Figure 9. EVM and Drain Efficiency versus
Output Power
Figure 10. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
980
−55
TC = 85_C
VDD = 26 Vdc
IDQ = 600 mA
f = 940 MHz
EDGE Modulation
−50
−55
SPECTRAL REGROWTH @ 600 kHz (dBc)
−45
SPECTRAL REGROWTH @ 400 kHz (dBc)
6
0
0
1000
VDD = 26 Vdc
IDQ = 600 mA
f = 940 MHz
EDGE Modulation
8
10
SPECTRAL REGROWTH @ 400 kHz and 600 kHz (dBc)
18
50
25_C
ηD, DRAIN EFFICIENCY (%)
85_C
19
15
EVM, ERROR VECTOR MAGNITUDE (% rms)
60
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
25_C
TC = −30_C
20
EVM, ERROR VECTOR MAGNITUDE (% rms)
70
−30_C
−30_C
25_C
−60
−65
−70
−75
VDD = 26 Vdc
IDQ = 600 mA
f = 940 MHz
EDGE Modulation
−60
TC = 85_C
25_C
−65
−30_C
−70
−75
−80
−85
−80
0
20
40
60
80
100
0
20
40
60
80
Pout, OUTPUT POWER (WATTS) AVG.
Pout, OUTPUT POWER (WATTS) AVG.
Figure 11. Spectral Regrowth @ 400 kHz
versus Output Power
Figure 12. Spectral Regrowth @ 600 kHz
versus Output Power
100
MRF5S9080NR1 MRF5S9080NBR1
6
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
MTTF FACTOR (HOURS X AMPS2)
1.E+09
1.E+08
1.E+07
90
100 110 120 130 140 150 160 170 180 190 200 210
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours x ampere2
drain current. Life tests at elevated temperatures have correlated to
better than ±10% of the theoretical prediction for metal failure. Divide
MTTF factor by ID2 for MTTF in a particular application.
Figure 13. MTTF Factor versus Junction Temperature
GSM TEST SIGNAL
−10
−20
Reference Power
VBW = 30 kHz
Sweep Time = 70 ms
RBW = 30 kHz
−30
−40
(dB)
−50
−60
−70
−80
−90
400 kHz
400 kHz
600 kHz
600 kHz
−100
−110
Center 1.96 GHz
200 kHz
Span 2 MHz
Figure 14. EDGE Spectrum
MRF5S9080NR1 MRF5S9080NBR1
RF Device Data
Freescale Semiconductor
7
f = 990 MHz
f = 845 MHz
Zload
f = 990 MHz
Zsource
f = 845 MHz
Zo = 10 Ω
VDD = 26 Vdc, IDQ = 600 mA, Pout = 80 W CW
f
MHz
Zsource
Ω
Zload
Ω
845
5.31 - j5.59
1.18 - j0.34
865
6.07 - j4.16
1.09 - j0.29
890
5.05 - j1.99
1.22 - j0.29
920
3.47 - j0.81
1.10 - j0.21
960
2.64 - j0.88
1.05 - j0.15
990
1.89 - j1.14
0.91 - j0.18
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under Test
Input
Matching
Network
Z
source
Z
load
Figure 15. Series Equivalent Source and Load Impedance — 900 MHz
MRF5S9080NR1 MRF5S9080NBR1
8
RF Device Data
Freescale Semiconductor
R1
VSUPPLY
VBIAS
+
R2
C1
C4
C7
C16
R3
Z1
Z2
Z3
Z4
Z8
Z9
C5
C21
C2
Z10
C10
Z11
RF
OUTPUT
C11
Z5
C15
C12
C8
C18
Z7
RF
INPUT
Z12
Z6
C17
C19
C20
DUT
C13
C14
Z13
+
C9
Z1
Z2
Z3
Z4
Z5
Z6
Z7
1.220″ x 0.087″ Microstrip
1.110″ x 0.087″ Microstrip
0.536″ x 0.087″ Microstrip
0.310″ x 0.087″ Microstrip
0.430″ x 0.591″ Microstrip
1.567″ x 0.059″ Microstrip
0.734″ x 0.788″ Microstrip
Z8
Z9
Z10
Z11
Z12, Z13
PCB
C6
C3
C22
0.138″ x 0.087″ Microstrip
0.411″ x 0.087″ Microstrip
0.403″ x 0.087″ Microstrip
0.560″ x 0.087″ Microstrip
1.693″ x 0.087″ Microstrip
Taconic TLX8 - 0300, 0.030″, εr = 2.55
Figure 16. MRF5S9080NR1(NBR1) Test Circuit Schematic — 800 MHz
Table 7. MRF5S9080NR1(NBR1) Test Circuit Component Designations and Values — 800 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3
4.7 μF Chip Capacitors (1812)
C4532X5R1H475MT
TDK
C4, C5, C6
10 nF 200B Chip Capacitors
200B103MW
ATC
C7, C8, C9
33 pF 600B Chip Capacitors
600B330JW
ATC
C10, C11
22 pF 600B Chip Capacitors
600B220FW
ATC
C12
1.8 pF 600B Chip Capacitor
600B1R8BW
ATC
C13
9.1 pF 600B Chip Capacitor
600B9R1BW
ATC
C14, C17, C18
8.2 pF 600B Chip Capacitors
600B8R2BW
ATC
C15, C16
10 pF 600B Chip Capacitors
600B100FW
ATC
C19
4.7 pF 600B Chip Capacitor
600B4R7BW
ATC
C20
3.6 pF 600B Chip Capacitor
600B3R6BW
ATC
C21, C22
220 μF, 50 V Electrolytic Capacitors, Radial
678D227M050DM3D
Vishay
R1, R2
10 kΩ, 1/4 W Chip Resistors (1206)
R3
10 Ω, 1/4 W Chip Resistor (1206)
MRF5S9080NR1 MRF5S9080NBR1
RF Device Data
Freescale Semiconductor
9
C1
C8
C4 C7
VGG
R1
VDD
C5
R2
C21
C16
C10
C13
C12
C14
CUT OUT AREA
R3
C18
C19
C15
C2
C11
C20
C17
C22
C3
C9
C6
MRF5S9080N/NB
Rev. 1
Figure 17. MRF5S9080NR1(NBR1) Test Circuit Component Layout — 800 MHz
MRF5S9080NR1 MRF5S9080NBR1
10
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS - 800 MHz
80
ηD
Gps, POWER GAIN (dB)
19
60
40
18
Gps
17
20
16
0
IRL
15
−20
VDD = 26 Vdc
IDQ = 600 mA
14
820
840
ηD, DRAIN EFFICIENCY (%)
IRL, INPUT RETURN LOSS (dB)
20
−40
860
880
900
940
920
f, FREQUENCY (MHz)
Figure 18. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 80 Watts
ηD
60
40
20
Gps
20
18
16
IRL
0
−20
14
ηD, DRAIN EFFICIENCY (%)
IRL, INPUT RETURN LOSS (dB)
Gps, POWER GAIN (dB)
22
VDD = 26 Vdc
IDQ = 600 mA
12
820
−40
840
860
880
900
920
940
f, FREQUENCY (MHz)
Pout = 50 W Avg.
4
3
20 W Avg.
2
5 W Avg.
1
VDD = 28 Vdc
IDQ = 550 mA
0
850
860
7
70
VDD = 28 Vdc
IDQ = 550 mA
f = 880 MHz
EDGE Modulation
6
5
60
50
40
4
ηD
30
3
EVM
20
2
TC = 25_C
1
0
870
880
890
900
910
1
10
f, FREQUENCY (MHz)
Pout, OUTPUT POWER (WATTS) AVG.
Figure 20. EVM versus Frequency
Figure 21. EVM and Drain Efficiency versus
Output Power
ηD, DRAIN EFFICIENCY (%)
5
EVM, ERROR VECTOR MAGNITUDE (% rms)
EVM, ERROR VECTOR MAGNITUDE (% rms)
Figure 19. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 36 Watts
10
0
100
MRF5S9080NR1 MRF5S9080NBR1
RF Device Data
Freescale Semiconductor
11
−45
−50
SPECTRAL REGROWTH @ 400 kHz (dBc)
SPECTRAL REGROWTH @ 400 kHz and 600 kHz (dB
TYPICAL CHARACTERISTICS - 800 MHz
Pout = 50 W Avg.
−55
SR @ 400 kHz
−60
−65
20 W Avg.
5 W Avg.
VDD = 28 Vdc
IDQ = 550 mA
f = 880 MHz
EDGE Modulation
−70
−75
−80
SR @ 600 kHz
50 W Avg.
20 W Avg.
5 W Avg.
VDD = 28 Vdc
IDQ = 550 mA
f = 880 MHz
EDGE Modulation
−50
TC = 25_C
−55
−60
−65
−70
−75
−85
840
850
860
870
880
890
900
910
1
920
100
10
f, FREQUENCY (MHz)
Pout, OUTPUT POWER (WATTS) AVG.
Figure 22. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
Figure 23. Spectral Regrowth @ 400 kHz
versus Output Power
SPECTRAL REGROWTH @ 600 kHz (dBc)
−65
VDD = 28 Vdc
IDQ = 550 mA
f = 880 MHz
EDGE Modulation
−70
−75
TC = 25_C
−80
−85
1
10
100
Pout, OUTPUT POWER (WATTS) AVG.
Figure 24. Spectral Regrowth @ 600 kHz
versus Output Power
MRF5S9080NR1 MRF5S9080NBR1
12
RF Device Data
Freescale Semiconductor
NOTES
MRF5S9080NR1 MRF5S9080NBR1
RF Device Data
Freescale Semiconductor
13
NOTES
MRF5S9080NR1 MRF5S9080NBR1
14
RF Device Data
Freescale Semiconductor
NOTES
MRF5S9080NR1 MRF5S9080NBR1
RF Device Data
Freescale Semiconductor
15
PACKAGE DIMENSIONS
E1
B
A
2X
E3
GATE LEAD
DRAIN LEAD
D
D1
4X
e
4X
aaa
b1
C A
M
2X
2X
D2
c1
E
H
F
ZONE J
DATUM
PLANE
A
A1
2X
A2
E2
NOTE 7
E5
E4
4
D3
3
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
E5
BOTTOM VIEW
C
SEATING
PLANE
PIN 5
NOTE 8
1
2
CASE 1486 - 03
ISSUE C
TO - 270 WB - 4
PLASTIC
MRF5S9080NR1
NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M−1994.
3. DATUM PLANE −H− IS LOCATED AT THE TOP OF
LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE TOP OF THE PARTING LINE.
4. DIMENSIONS “D" AND “E1" DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE PROTRUSION
IS .006 PER SIDE. DIMENSIONS “D" AND “E1" DO
INCLUDE MOLD MISMATCH AND ARE DETER−
MINED AT DATUM PLANE −H−.
5. DIMENSION “b1" DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE .005 TOTAL IN EXCESS
OF THE “b1" DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. DATUMS −A− AND −B− TO BE DETERMINED AT
DATUM PLANE −H−.
7. DIMENSION A2 APPLIES WITHIN ZONE “J" ONLY.
8. HATCHING REPRESENTS THE EXPOSED AREA
OF THE HEAT SLUG.
DIM
A
A1
A2
D
D1
D2
D3
E
E1
E2
E3
E4
E5
F
b1
c1
e
aaa
INCHES
MIN
MAX
.100
.104
.039
.043
.040
.042
.712
.720
.688
.692
.011
.019
.600
−−−
.551
.559
.353
.357
.132
.140
.124
.132
.270
−−−
.346
.350
.025 BSC
.164
.170
.007
.011
.106 BSC
.004
STYLE 1:
PIN 1.
2.
3.
4.
5.
MILLIMETERS
MIN
MAX
2.54
2.64
0.99
1.09
1.02
1.07
18.08
18.29
17.48
17.58
0.28
0.48
15.24
−−−
14
14.2
8.97
9.07
3.35
3.56
3.15
3.35
6.86
−−−
8.79
8.89
0.64 BSC
4.17
4.32
0.18
0.28
2.69 BSC
0.10
DRAIN
DRAIN
GATE
GATE
SOURCE
MRF5S9080NR1 MRF5S9080NBR1
16
RF Device Data
Freescale Semiconductor
MRF5S9080NR1 MRF5S9080NBR1
RF Device Data
Freescale Semiconductor
17
MRF5S9080NR1 MRF5S9080NBR1
18
RF Device Data
Freescale Semiconductor
MRF5S9080NR1 MRF5S9080NBR1
RF Device Data
Freescale Semiconductor
19
How to Reach Us:
Home Page:
www.freescale.com
E - mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1 - 800- 521- 6274 or +1 - 480- 768- 2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800- 441- 2447 or 303 - 675- 2140
Fax: 303 - 675- 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2006. All rights reserved.
MRF5S9080NR1 MRF5S9080NBR1
Document Number: MRF5S9080N
Rev. 1, 5/2006
20
RF Device Data
Freescale Semiconductor