FREESCALE MRFE6S9135HR3

Freescale Semiconductor
Technical Data
Document Number: MRFE6S9135H
Rev. 1, 11/2007
RF Power Field Effect Transistors
N - Channel Enhancement - Mode Lateral MOSFETs
MRFE6S9135HR3
MRFE6S9135HSR3
Designed for broadband commercial and industrial applications with
frequencies up to 1000 MHz. The high gain and broadband performance of
these devices make them ideal for large - signal, common - source amplifier
applications in 28 volt base station equipment.
• Typical Single- Carrier W - CDMA Performance: VDD = 28 Volts, IDQ =
1000 mA, Pout = 39 Watts Avg., Full Frequency Band, 3GPP Test Model 1,
64 DPCH with 50% Clipping, Channel Bandwidth = 3.84 MHz, Input Signal
PAR = 7.5 dB @ 0.01% Probability on CCDF.
Power Gain — 21 dB
Drain Efficiency — 32.3%
Device Output Signal PAR — 6.4 dB @ 0.01% Probability on CCDF
ACPR @ 5 MHz Offset — - 39.5 dBc in 3.84 MHz Channel Bandwidth
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 940 MHz, Pout = 180 W CW
(3 dB Input Overdrive from Rated Pout), Designed for Enhanced Ruggedness
Features
• 100% PAR Tested for Guaranteed Output Power Capability
• Characterized with Series Equivalent Large - Signal Impedance Parameters
• Internally Matched for Ease of Use
• Qualified Up to a Maximum of 32 VDD Operation
• Integrated ESD Protection
• Optimized for Doherty Applications
• RoHS Compliant
• In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.
940 MHz, 39 W AVG., 28 V
SINGLE W - CDMA
LATERAL N - CHANNEL
RF POWER MOSFETs
CASE 465B - 03, STYLE 1
NI - 880
MRFE6S9135HR3
CASE 465C - 02, STYLE 1
NI - 880S
MRFE6S9135HSR3
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain- Source Voltage
VDSS
- 0.5, +66
Vdc
Gate- Source Voltage
VGS
- 0.5, +12
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
Case Operating Temperature
TC
150
°C
Operating Junction Temperature (1,2)
TJ
225
°C
Symbol
Value (2,3)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 136 W CW
Case Temperature 80°C, 39 W CW
RθJC
0.39
0.48
°C/W
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
© Freescale Semiconductor, Inc., 2007. All rights reserved.
RF Device Data
Freescale Semiconductor
MRFE6S9135HR3 MRFE6S9135HSR3
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
II (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 66 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate- Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
10
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 400 μAdc)
VGS(th)
1.4
2.1
2.9
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 1000 mAdc, Measured in Functional Test)
VGS(Q)
2.2
2.9
3.7
Vdc
Drain- Source On - Voltage
(VGS = 10 Vdc, ID = 2.8 Adc)
VDS(on)
0.15
0.2
0.35
Vdc
Reverse Transfer Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
1.3
—
pF
Output Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
410
—
pF
Input Capacitance
(VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
343
—
pF
Characteristic
Off Characteristics
On Characteristics
Dynamic Characteristics (1)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1000 mA, Pout = 39 W Avg. W - CDMA, f = 940 MHz,
Single- Carrier W - CDMA, 3.84 MHz Channel Bandwidth Carrier. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.
PAR = 7.5 dB @ 0.01% Probability on CCDF.
Power Gain
Gps
20
21
23
dB
Drain Efficiency
ηD
30.5
32.3
—
%
PAR
6.1
6.4
—
dB
ACPR
—
- 39.5
- 38
dBc
IRL
—
- 15
-9
dB
Output Peak - to - Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Input Return Loss
1. Part internally matched both on input and output.
(continued)
MRFE6S9135HR3 MRFE6S9135HSR3
2
RF Device Data
Freescale Semiconductor
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1000 mA, 920 - 960 MHz Bandwidth
Video Bandwidth @ 160 W PEP Pout where IM3 = - 30 dBc
(Tone Spacing from 100 kHz to VBW)
ΔIMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both
sidebands)
VBW
MHz
—
10
—
Gain Flatness in 40 MHz Bandwidth @ Pout = 39 W Avg.
GF
—
0.3
—
dB
Average Deviation from Linear Phase in 40 MHz Bandwidth
@ Pout = 135 W CW
Φ
—
1
—
°
Delay
—
3.6
—
ns
Part - to - Part Insertion Phase Variation @ Pout = 135 W CW,
f = 940 MHz, Six Sigma Window
ΔΦ
—
19
—
°
Gain Variation over Temperature
( - 30°C to +85°C)
ΔG
—
0.015
—
dB/°C
ΔP1dB
—
0.01
—
dBm/°C
Average Group Delay @ Pout = 135 W CW, f = 940 MHz
Output Power Variation over Temperature
( - 30°C to +85°C)
MRFE6S9135HR3 MRFE6S9135HSR3
RF Device Data
Freescale Semiconductor
3
VBIAS
R3
C20
C4
C5
C8
Z9
Z1
Z2
C22
C23
C24
C6
R1
RF
INPUT
C21
Z7
+
R2
VSUPPLY
+
B1
Z3
Z4
Z5
C11
Z11
Z10
RF
OUTPUT
C12
Z12
Z13
Z14
Z15
Z16
Z17
C25
Z6
C7
C9
C13
C10
C14
C1
C2
C3
DUT
Z8
+
C15
Z1
Z2
Z3
Z4
Z5
Z6
Z7, Z8
Z9
Z10
0.263″ x 0.065″ Microstrip
0.310″ x 0.065″ Microstrip
0.910″ x 0.120″ Microstrip
0.248″ x 1.020″ x 0.120″ Taper
0.363″ x 1.020″ Microstrip
0.057″ x 1.120″ Microstrip
0.823″ x 0.120″ Microstrip
0.060″ x 0.980″ Microstrip
0.149″ x 0.980″ Microstrip
Z11
Z12
Z13
Z14
Z15
Z16
Z17
PCB
C16
C17
C18
VSUPPLY
C19
0.202″ x 0.980″ x 0.444″ Taper
0.114″ x 0.444″ Microstrip
0.145″ x 0.444″ x 0.110″ Taper
0.180″ x 0.110″ Microstrip
0.585″ x 0.110″ Microstrip
0.443″ x 0.065″ Microstrip
0.274″ x 0.065″ Microstrip
Taconic RF - 35, 0.030″, εr = 3.5
Figure 1. MRFE6S9135HR3(HSR3) Test Circuit Schematic
Table 5. MRFE6S9135HR3(HSR3) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1
Short RF Bead
2743019447
Fair- Rite
C1, C6, C15, C20, C25
39 pF Chip Capacitors
ATC100B390JT500XT
ATC
C2, C14
0.8- 8.0 pF Variable Capacitors, Gigatrim
27291SL
Johanson
C3
2.0 pF Chip Capacitor
ATC100B2R0JT500XT
ATC
C4
33 μF, 25 V Electrolytic Capacitor
EMVY250ADA330MF55G
Nippon Chemi - Con
C5, C16, C17, C18, C21,
C22, C23
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88B
Murata
C7, C8
6.8 pF Chip Capacitors
ATC100B6R8JT500XT
ATC
C9, C10, C11, C12, C13
4.7 pF Chip Capacitors
ATC100B4R7JT500XT
ATC
C19, C24
470 μF, 63 V Electrolytic Capacitors
EKME630ELL471MK25S
United Chemi - Con
R1, R3
3.3 Ω, 1/3 W Chip Resistors
CRCW12103R30FKEA
Vishay
R2
2.2 KΩ, 1/4 W Chip Resistor
CRCW12062201FKEA
Vishay
MRFE6S9135HR3 MRFE6S9135HSR3
4
RF Device Data
Freescale Semiconductor
C24
R3
B1
R2
C5
C6
C21 C22
C20
C4
C23
C3
R1
C8
C14
C11 C12
C2
CUT OUT AREA
C1
C25
C9 C10
C13
C7
C18
C15
C16 C17
MRFE6S9135H
Rev. 1
C19
Figure 2. MRFE6S9135HHR3(HSR3) Test Circuit Component Layout
MRFE6S9135HR3 MRFE6S9135HSR3
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS
Gps, POWER GAIN (dB)
20
19
31
VDD = 28 Vdc, Pout = 39 W (Avg.)
IDQ = 1000 mA, Single−Carrier W−CDMA
3.84 MHz Channel Bandwidth, Input Signal
PAR = 7.5 dB @ 0.01% Probability (CCDF)
Gps
18
30
17
16
−0.3
0
−0.6
−5
−0.9
PARC
15
−1.2
IRL
14
860
880
900
920
940
960
980
1000
−1.5
1020
−10
−15
−20
IRL, INPUT RETURN LOSS (dB)
32
ηD
PARC (dBc)
21
33
ηD, DRAIN
EFFICIENCY (%)
22
f, FREQUENCY (MHz)
Figure 3. Single - Carrier W - CDMA Broadband Performance
@ Pout = 39 Watts Avg.
21
45
Gps
18
44
VDD = 28 Vdc, Pout = 80 W (Avg.)
IDQ = 1000 mA, Single−Carrier W−CDMA
3.84 MHz Channel Bandwidth, Input Signal
PAR = 7.5 dB @ 0.01% Probability (CCDF)
ηD
17
43
16
15
14
0
−2.6
−5
−2.8
PARC
−3
IRL
13
860
−2.4
PARC (dBc)
Gps, POWER GAIN (dB)
19
880
900
920
940
960
980
1000
−3.2
1020
−10
−15
−20
IRL, INPUT RETURN LOSS (dB)
20
ηD, DRAIN
EFFICIENCY (%)
46
f, FREQUENCY (MHz)
Figure 4. Single - Carrier W - CDMA Broadband Performance
@ Pout = 80 Watts Avg.
−10
22
Gps, POWER GAIN (dB)
21
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
IDQ = 1500 mA
1250 mA
1000 mA
20
750 mA
19
500 mA
18
VDD = 28 Vdc, f1 = 935 MHz, f2 = 945 MHz
Two−Tone Measurements
17
VDD = 28 Vdc, f1 = 935 MHz, f2 = 945 MHz
Two−Tone Measurements
−20
IDQ = 500 mA
−30
750 mA
−40
1000 mA
−50
1250 mA
1500 mA
−60
1
10
100
400
1
10
100
400
Pout, OUTPUT POWER (WATTS) PEP
Pout, OUTPUT POWER (WATTS) PEP
Figure 5. Two - Tone Power Gain versus
Output Power
Figure 6. Third Order Intermodulation Distortion
versus Output Power
MRFE6S9135HR3 MRFE6S9135HSR3
6
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
IMD, INTERMODULATION DISTORTION (dBc)
VDD = 28 Vdc, IDQ = 1000 mA, f1 = 935 MHz
f2 = 945 MHz, Two−Tone Measurements
−20
−30
−40
3rd Order
5th Order
−50
7th Order
−60
−70
0
VDD = 28 Vdc, Pout = 160 W (PEP)
IDQ = 1000 mA, Two−Tone Measurements
(f1 + f2)/2 = Center Frequency of 940 MHz
−10
−20
IM3−U
−30
IM3−L
IM5−U
−40
IM5−L
IM7−U
−50
IM7−L
−60
1
10
1
400
100
100
10
Pout, OUTPUT POWER (WATTS) PEP
TWO−TONE SPACING (MHz)
Figure 7. Intermodulation Distortion Products
versus Output Power
Figure 8. Intermodulation Distortion Products
versus Tone Spacing
OUTPUT COMPRESSION AT THE 0.01%
PROBABILITY ON CCDF (dB)
1
55
Single−Carrier W−CDMA, 3.84 MHz Channel Bandwidth
Ideal
0
−1
−2
50
45
−1 dB = 38.71 W
40
−2 dB = 54.21 W
−3
35
−3 dB = 85.92 W
Actual
−4
−5
20
VDD = 28 Vdc, IDQ = 1000 mA, f = 940 MHz
Input Signal PAR = 7.5 dB @ 0.01% Probability (CCDF)
30
40
60
50
70
30
25
100
90
80
ηD, DRAIN EFFICIENCY (%)
IMD, INTERMODULATION DISTORTION (dBc)
−10
Pout, OUTPUT POWER (WATTS)
Figure 9. Output Peak - to - Average Ratio
Compression (PARC) versus Output Power
23
25_C
85_C 50
85_C
40
19
30
18
20
VDD = 28 Vdc
IDQ = 1000 mA
f = 940 MHz
ηD
17
16
10
1
IDQ = 1000 mA
f = 940 MHz
25_C 60
21
20
22
70
100
10
21
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
22
−30_C
TC = −30_C
ηD, DRAIN EFFICIENCY (%)
Gps
20
19
18
VDD = 24 V
0
300
28 V
17
0
20
40
60
32 V
80 100 120 140 160 180 200 220 240
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 10. Power Gain and Drain Efficiency
versus CW Output Power
Figure 11. Power Gain versus Output Power
MRFE6S9135HR3 MRFE6S9135HSR3
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS
MTTF (HOURS)
108
107
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 28 Vdc, Pout = 39 W Avg., and ηD = 32.3%.
MTTF calculator available at http:/www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 12. MTTF versus Junction Temperature
W - CDMA TEST SIGNAL
100
−10
3.84 MHz
Channel BW
−20
10
1
−40
Input Signal
Compressed Output
Signal @ 39 W Pout
0.1
−50
(dB)
PROBABILITY (%)
−30
0.01
−70
W−CDMA. ACPR Measured in 3.84 MHz
Channel Bandwidth @ ±5 MHz Offset.
Input Signal PAR = 7.5 dB @ 0.01%
Probability on CCDF
0.001
−80
2
4
6
−ACPR in 3.84 MHz
Integrated BW
−90
0.0001
0
−60
8
10
PEAK−TO−AVERAGE (dB)
Figure 13. CCDF W - CDMA 3GPP, Test Model 1,
64 DPCH, 50% Clipping, Single - Carrier Test Signal
−ACPR in 3.84 MHz
Integrated BW
−100
−110
−9
−7.2 −5.4 −3.6 −1.8
0
1.8
3.6
5.4
7.2
9
f, FREQUENCY (MHz)
Figure 14. Single - Carrier W - CDMA Spectrum
MRFE6S9135HR3 MRFE6S9135HSR3
8
RF Device Data
Freescale Semiconductor
f = 980 MHz
Zo = 10 Ω
f = 820 MHz
Zload
Zsource
f = 820 MHz
f = 980 MHz
VDD = 28 Vdc, IDQ = 1000 mA, Pout = 39 W Avg.
f
MHz
Zsource
W
Zload
W
820
3.39 - j6.99
2.18 - j0.80
840
3.32 - j6.86
2.20 - j0.71
860
3.05 - j6.74
2.21 - j0.66
880
2.72 - j6.47
2.20 - j0.64
900
2.46 - j6.16
2.20 - j0.64
920
2.41 - j5.80
2.18 - j0.62
940
2.41 - j5.58
2.13 - j0.63
960
2.38 - j5.45
2.03 - j0.66
980
2.13 - j5.38
1.87 - j0.70
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 15. Series Equivalent Source and Load Impedance
MRFE6S9135HR3 MRFE6S9135HSR3
RF Device Data
Freescale Semiconductor
9
PACKAGE DIMENSIONS
B
G
2X
1
Q
bbb
M
T A
B
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M−1994.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION H IS MEASURED 0.030 (0.762) AWAY
FROM PACKAGE BODY.
4. DELETED
M
B
(FLANGE)
3
K
2
bbb
bbb
M
ccc
M
M
D
T A
B
M
M
(INSULATOR)
M
T A
M
B
M
T A
M
B
M
N
R
ccc
M
T A
M
B
S
(LID)
aaa
M
T A
M
B
(LID)
M
(INSULATOR)
M
H
C
E
T
A
(FLANGE)
SEATING
PLANE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M−1994.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION H IS MEASURED 0.030 (0.762) AWAY
FROM PACKAGE BODY.
1
B
(FLANGE)
2
bbb
M
D
T A
MILLIMETERS
MIN
MAX
33.91
34.16
13.6
13.8
3.73
5.08
12.57
12.83
0.89
1.14
0.08
0.15
27.94 BSC
1.45
1.70
4.32
5.33
22.15
22.55
19.30
22.60
3.00
3.51
13.10
13.30
13.10
13.30
0.178 REF
0.254 REF
0.381 REF
CASE 465B - 03
ISSUE D
NI - 880
MRFE6S9135HR3
B
K
INCHES
MIN
MAX
1.335
1.345
0.535
0.545
0.147
0.200
0.495
0.505
0.035
0.045
0.003
0.006
1.100 BSC
0.057
0.067
0.170
0.210
0.872
0.888
0.871
0.889
.118
.138
0.515
0.525
0.515
0.525
0.007 REF
0.010 REF
0.015 REF
STYLE 1:
PIN 1. DRAIN
2. GATE
3. SOURCE
F
A
DIM
A
B
C
D
E
F
G
H
K
M
N
Q
R
S
aaa
bbb
ccc
M
bbb
M
T A
M
B
ccc
M
T A
M
B
B
M
M
(INSULATOR)
M
N
R
ccc
M
T A
M
aaa
M
T A
M
S
(LID)
M
B
B
(LID)
M
(INSULATOR)
M
H
DIM
A
B
C
D
E
F
H
K
M
N
R
S
aaa
bbb
ccc
INCHES
MIN
MAX
0.905
0.915
0.535
0.545
0.147
0.200
0.495
0.505
0.035
0.045
0.003
0.006
0.057
0.067
0.170
0.210
0.872
0.888
0.871
0.889
0.515
0.525
0.515
0.525
0.007 REF
0.010 REF
0.015 REF
MILLIMETERS
MIN
MAX
22.99
23.24
13.60
13.80
3.73
5.08
12.57
12.83
0.89
1.14
0.08
0.15
1.45
1.70
4.32
5.33
22.15
22.55
19.30
22.60
13.10
13.30
13.10
13.30
0.178 REF
0.254 REF
0.381 REF
STYLE 1:
PIN 1. DRAIN
2. GATE
3. SOURCE
C
F
E
T
A
A
SEATING
PLANE
(FLANGE)
CASE 465C - 02
ISSUE D
NI - 880S
MRFE6S9135HSR3
MRFE6S9135HR3 MRFE6S9135HSR3
10
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Nov. 2007
• Initial Release of Data Sheet
1
Nov. 2007
• Updated Fig. 12, MTTF versus Junction Temperature, to reflect a 32.3% typical efficiency rating, p. 8
MRFE6S9135HR3 MRFE6S9135HSR3
RF Device Data
Freescale Semiconductor
11
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1 - 800- 521- 6274 or +1 - 480- 768- 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800- 441- 2447 or 303 - 675- 2140
Fax: 303 - 675- 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.
MRFE6S9135HR3 MRFE6S9135HSR3
Document Number: MRFE6S9135H
Rev. 1, 11/2007
12
RF Device Data
Freescale Semiconductor