Freescale Semiconductor Technical Data Document Number: MRF6S19200H Rev. 0, 3/2008 RF Power Field Effect Transistors N - Channel Enhancement - Mode Lateral MOSFETs MRF6S19200HR3 MRF6S19200HSR3 Designed for CDMA base station applications with frequencies from 1930 to 1990 MHz. Suitable for CDMA and multicarrier amplifier applications. To be used in Class AB and Class C for PCN - PCS/cellular radio applications. • Typical Single - Carrier W - CDMA Performance: VDD = 28 Volts, IDQ = 1600 mA, Pout = 56 Watts Avg., Full Frequency Band, 3GPP Test Model 1, 64 DPCH with 50% Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. Power Gain — 17.9 dB Drain Efficiency — 29.5% Device Output Signal PAR — 5.9 dB @ 0.01% Probability on CCDF ACPR @ 5 MHz Offset — - 36 dBc in 3.84 MHz Channel Bandwidth • Capable of Handling 10:1 VSWR, @ 32 Vdc, 1960 MHz, 130 Watts CW Output Power Features • 100% PAR Tested for Guaranteed Output Power Capability • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Integrated ESD Protection • Greater Negative Gate - Source Voltage Range for Improved Class C Operation • Optimized for Doherty Applications • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. 1930 - 1990 MHz, 56 W AVG., 28 V SINGLE W - CDMA LATERAL N - CHANNEL RF POWER MOSFETs CASE 465 - 06, STYLE 1 NI - 780 MRF6S19200HR3 CASE 465A - 06, STYLE 1 NI - 780S MRF6S19200HSR3 Table 1. Maximum Ratings Rating Symbol Value Unit Drain - Source Voltage VDSS - 0.5, +66 Vdc Gate - Source Voltage VGS - 6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg - 65 to +150 °C Case Operating Temperature TC 150 °C Operating Junction Temperature (1,2) TJ 225 °C CW 130 0.49 W W/°C Symbol Value (2,3) CW Operation @ TC = 25°C Derate above 25°C Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 110°C, 89 W CW Case Temperature 100°C, 55 W CW RθJC 0.35 0.36 Unit °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2008. All rights reserved. RF Device Data Freescale Semiconductor MRF6S19200HR3 MRF6S19200HSR3 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1B (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 66 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 10 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 372 μAdc) VGS(th) 1 2 3 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, ID = 1600 mAdc, Measured in Functional Test) VGS(Q) 2 3 4 Vdc Drain - Source On - Voltage (VGS = 10 Vdc, ID = 3.71 Adc) VDS(on) 0.1 0.2 0.3 Vdc Reverse Transfer Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 2.3 — pF Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 185 — pF Input Capacitance (VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 503 — pF Off Characteristics On Characteristics Dynamic Characteristics (1) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1600 mA, Pout = 56 W Avg., f = 1932.5 MHz and f = 1987.5 MHz, Single - Carrier W - CDMA, 3GPP Test Model 1, 64 DPCH, 50% Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Power Gain Gps 15 17.9 19 dB Drain Efficiency ηD 26 29.5 — % PAR 5.5 5.9 — dB ACPR — - 36 - 34 dBc IRL — - 14 -8 dB Output Peak - to - Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Input Return Loss 1. Part internally matched both on input and output. (continued) MRF6S19200HR3 MRF6S19200HSR3 2 RF Device Data Freescale Semiconductor Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1600 mA, 1930 - 1990 MHz Bandwidth IMD Symmetry @ 130 W PEP, Pout where IMD Third Order Intermodulation ` 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB) IMDsym VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) MHz — 20 — VBWres — 50 — MHz Gain Flatness in 60 MHz Bandwidth @ Pout = 56 W Avg. GF — 0.6 — dB Average Deviation from Linear Phase in 60 MHz Bandwidth @ Pout = 130 W CW Φ — 1.94 — ° Delay — 2.44 — ns Part - to - Part Insertion Phase Variation @ Pout = 130 W CW, f = 1960 MHz, Six Sigma Window ΔΦ — 59.4 — ° Gain Variation over Temperature ( - 30°C to +85°C) ΔG — 0.04 — dB/°C Average Group Delay @ Pout = 130 W CW, f = 1960 MHz MRF6S19200HR3 MRF6S19200HSR3 RF Device Data Freescale Semiconductor 3 B1 VBIAS + R1 C5 C2 C1 R2 C7 C9 VSUPPLY + + C11 C14 C4 Z8 Z5 RF INPUT Z1 Z2 Z3 Z4 Z7 Z10 Z11 Z13 Z12 Z15 Z14 Z6 RF OUTPUT C13 Z9 C3 DUT VSUPPLY + C6 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8, Z9 0.859″ 0.470″ 0.362″ 0.145″ 0.040″ 0.418″ 0.103″ 0.198″ x 0.084″ x 0.084″ x 0.244″ x 1.040″ x 0.257″ x 1.040″ x 1.203″ x 0.160″ Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Z10 Z11 Z12 Z13 Z14 Z15 PCB C8 C10 C12 + C15 0.547″ x 1.203″ Microstrip 0.119″ x 0.755″ Microstrip 0.222″ x 0.365″ Microstrip 0.225″ x 0.220″ Microstrip 0.192″ x 0.084″ Microstrip 0.843″ x 0.084″ Microstrip Arlon CuClad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.55 Figure 1. MRF6S19200HR3(HSR3) Test Circuit Schematic Table 5. MRF6S19200HR3(HSR3) Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1 Short Ferrite Bead 2743019447 Fair Rite C1 10 μF, 50 V Electrolytic Capacitor EMVY500ADA100MF55G Nippon Chemi - Con C2, C9, C10 0.1 μF, 100 V Capacitors CDR33BX104AKYS Kemet C3, C13 33 pF Chip Capacitors ATC100B330JT500XT ATC C4, C5, C6 10 pF Chip Capacitors ATC100B100CT500XT ATC C7, C8 10 μF, 50 V Capacitors GRMSSDRG1H106KA88B Murata C11, C12 22 μF, 35 V Tantalum Capacitors T491X226K035AT Kemet C14, C15 22 μF, 50 V Electrolytic Capacitors EMVY500ADA220MF55G Nippon Chemi - Con R1 1000 Ω, 1/4 W Chip Resistor CRCW12061001FKEA Vishay R2 10 Ω, 1/4 W Chip Resistor CRCW120610R1FKEA Vishay MRF6S19200HR3 MRF6S19200HSR3 4 RF Device Data Freescale Semiconductor B1 C7 C11 R1 C2 R2 C5 C4 C9 C1 C3 CUT OUT AREA C14 C13 C10 C15 C6 C12 C8 MRF6S19200H/HS Rev. 2 Figure 2. MRF6S19200HR3(HSR3) Test Circuit Component Layout MRF6S19200HR3 MRF6S19200HSR3 RF Device Data Freescale Semiconductor 5 20 30 19 29 Gps 18 17 16 28 VDD = 28 Vdc, Pout = 56 W (Avg.) IDQ = 1600 mA, Single−Carrier W−CDMA 3.84 MHz Channel Bandwidth, Input Signal PAR = 7.5 dB @ 0.01% Probability (CCDF) IRL 15 −0.5 0 −1 −5 −1.5 PARC 14 −2 13 1880 1900 1920 1940 1960 2000 1980 −10 −15 −2.5 2040 2020 −20 IRL, INPUT RETURN LOSS (dB) 31 ηD PARC (dB) Gps, POWER GAIN (dB) 21 ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS f, FREQUENCY (MHz) Gps, POWER GAIN (dB) 19 18 VDD = 28 Vdc, Pout = 87 W (Avg.) IDQ = 1600 mA, Single−Carrier W−CDMA 37 36 Gps 17 35 IRL 16 3.84 MHz Channel Bandwidth Input Signal PAR = 7.5 dB @ 0.01% Probability (CCDF) 15 14 −2 −5 −2.5 −10 −3 PARC 13 12 1880 −3.5 1900 1920 1940 1960 1980 2000 −4 2040 2020 −15 −20 −25 IRL, INPUT RETURN LOSS (dB) 38 ηD PARC (dB) 20 ηD, DRAIN EFFICIENCY (%) Figure 3. Output Peak - to - Average Ratio Compression (PARC) Broadband Performance @ Pout = 56 Watts Avg. f, FREQUENCY (MHz) Figure 4. Output Peak - to - Average Ratio Compression (PARC) Broadband Performance @ Pout = 87 Watts Avg. 20 IDQ = 2400 mA Gps, POWER GAIN (dB) 19 2000 mA 18 1600 mA 17 1200 mA 16 800 mA 15 VDD = 28 Vdc, f1 = 1955 MHz, f2 = 1965 MHz Two−Tone Measurements, 10 MHz Tone Spacing 14 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) 0 VDD = 28 Vdc, f1 = 1955 MHz, f2 = 1965 MHz Two−Tone Measurements, 10 MHz Tone Spacing −10 −20 1200 mA −30 IDQ = 800 mA 2400 mA −40 2000 mA −50 1600 mA −60 1 10 100 Pout, OUTPUT POWER (WATTS) PEP Figure 5. Two - Tone Power Gain versus Output Power 200 1 10 100 200 Pout, OUTPUT POWER (WATTS) PEP Figure 6. Third Order Intermodulation Distortion versus Output Power MRF6S19200HR3 MRF6S19200HSR3 6 RF Device Data Freescale Semiconductor −10 IMD, INTERMODULATION DISTORTION (dBc) VDD = 28 Vdc, IDQ = 1600 mA f1 = 1955 MHz, f2 = 1965 MHz Two−Tone Measurements, 10 MHz Tone Spacing −20 −30 −40 3rd Order −50 5th Order −60 7th Order −70 1 10 100 −10 VDD = 28 Vdc, Pout = 130 W (PEP), IDQ = 1600 mA Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 1960 MHz −20 −30 IM3−L IM3−U −40 IM5−U −50 IM5−L −60 IM7−L IM7−U −70 1 200 10 100 Pout, OUTPUT POWER (WATTS) PEP TWO−TONE SPACING (MHz) Figure 7. Intermodulation Distortion Products versus Output Power Figure 8. Intermodulation Distortion Products versus Tone Spacing OUTPUT COMPRESSION AT THE 0.01% PROBABILITY ON CCDF (dB) 1 0 45 Ideal 40 −1 Actual −2 −3 −4 −5 30 35 −1 dB = 43.38 W 30 −2 dB = 62.72 W ηD 25 −3 dB = 87.05 W VDD = 28 Vdc, IDQ = 1600 mA, f = 1960 MHz Single−Carrier W−CDMA, 3.84 MHz Channel Bandwidth Input Signal PAR = 7.5 dB @ 0.01% Probability (CCDF) 40 50 60 70 ηD, DRAIN EFFICIENCY (%) IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS 20 15 80 90 Pout, OUTPUT POWER (WATTS) Figure 9. Output Peak - to - Average Ratio Compression (PARC) versus Output Power 20 18.5 40 −30_C 85_C 25_C 30 20 85_C 17 10 VDD = 28 Vdc IDQ = 1600 mA f = 1960 MHz ηD 16 1 10 100 0 200 Gps, POWER GAIN (dB) 19 18 IDQ = 1600 mA f = 1960 MHz 25_C TC = −30_C ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) Gps 18 28 V 32 V 17.5 VDD = 24 V 17 16.5 0 20 40 60 80 100 120 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 10. Power Gain and Drain Efficiency versus CW Output Power Figure 11. Power Gain versus Output Power 140 MRF6S19200HR3 MRF6S19200HSR3 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS MTTF (HOURS) 108 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 56 W Avg., and ηD = 29.5%. MTTF calculator available at http:/www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 12. MTTF versus Junction Temperature W - CDMA TEST SIGNAL 100 −10 3.84 MHz Channel BW −20 10 1 −40 Input Signal −50 0.1 (dB) PROBABILITY (%) −30 −60 0.01 −70 W−CDMA. ACPR Measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF 0.001 0.0001 0 2 4 6 −80 −ACPR in 3.84 MHz Integrated BW −90 8 10 −ACPR in 3.84 MHz Integrated BW −100 PEAK−TO−AVERAGE (dB) Figure 13. CCDF W - CDMA 3GPP, Test Model 1, 64 DPCH, 50% Clipping, Single - Carrier Test Signal −110 −9 −7.2 −5.4 −3.6 −1.8 0 1.8 3.6 5.4 7.2 9 f, FREQUENCY (MHz) Figure 14. Single - Carrier W - CDMA Spectrum MRF6S19200HR3 MRF6S19200HSR3 8 RF Device Data Freescale Semiconductor Zo = 5 Ω f = 2040 MHz Zload f = 1880 MHz Zsource f = 2040 MHz f = 1880 MHz VDD = 28 Vdc, IDQ = 1600 mA, Pout = 56 W Avg. f MHz Zsource W Zload W 1880 2.11 - j4.27 1.99 - j0.79 1900 2.05 - j4.11 1.96 - j0.64 1920 1.98 - j3.95 1.92 - j0.49 1940 1.92 - j3.80 1.86 - j0.34 1960 1.82 - j3.63 1.78 - j0.20 1980 1.72 - j3.40 1.74 + j0.01 2000 1.74 - j3.17 1.77 + j0.15 2020 1.71 - j3.02 1.78 + j0.29 2040 1.66 - j2.85 1.75 + j0.42 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 15. Series Equivalent Source and Load Impedance MRF6S19200HR3 MRF6S19200HSR3 RF Device Data Freescale Semiconductor 9 PACKAGE DIMENSIONS B G 2X 1 Q bbb M T A M B M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M−1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. 3 B K 2 (FLANGE) D bbb M T A B M M M bbb N M T A B M M ccc M T A (LID) B M S (LID) ccc H R (INSULATOR) M T A B M aaa M M T A M DIM A B C D E F G H K M N Q R S aaa bbb ccc M (INSULATOR) B M C F E A T A SEATING PLANE INCHES MIN MAX 1.335 1.345 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 1.100 BSC 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 .118 .138 0.365 0.375 0.365 0.375 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 33.91 34.16 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 27.94 BSC 1.45 1.70 4.32 5.33 19.66 19.96 19.60 20.00 3.00 3.51 9.27 9.53 9.27 9.52 0.127 REF 0.254 REF 0.381 REF STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE (FLANGE) CASE 465 - 06 ISSUE G NI - 780 MRF6S19200HR3 4X U (FLANGE) 4X Z (LID) B 1 K 2X 2 B (FLANGE) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M−1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. D bbb M T A M B M N ccc M R (LID) M T A M B M ccc M T A M M B M aaa M T A M S (INSULATOR) bbb M T A (LID) B M (INSULATOR) B M H C 3 E A A F T SEATING PLANE (FLANGE) CASE 465A - 06 ISSUE H NI - 780S MRF6S19200HSR3 DIM A B C D E F H K M N R S U Z aaa bbb ccc INCHES MIN MAX 0.805 0.815 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 0.365 0.375 0.365 0.375 −−− 0.040 −−− 0.030 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 20.45 20.70 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 1.45 1.70 4.32 5.33 19.61 20.02 19.61 20.02 9.27 9.53 9.27 9.52 −−− 1.02 −−− 0.76 0.127 REF 0.254 REF 0.381 REF STYLE 1: PIN 1. DRAIN 2. GATE 5. SOURCE MRF6S19200HR3 MRF6S19200HSR3 10 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Mar. 2008 Description • Initial Release of Data Sheet MRF6S19200HR3 MRF6S19200HSR3 RF Device Data Freescale Semiconductor 11 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or 303 - 675 - 2140 Fax: 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved. MRF6S19200HR3 MRF6S19200HSR3 Document Number: MRF6S19200H Rev. 0, 3/2008 12 RF Device Data Freescale Semiconductor