TI BQ29330DBT

bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
2-, 3-, AND 4-CELL LITHIUM-ION OR
LITHIUM-POLYMER BATTERY PROTECTION AFE
FEATURES
•
•
•
•
•
•
•
•
•
2- 3- or 4-Cell Series Protection Control
Can Directly Interface with the bq803x-Based
Gas Gauge Family
Watchdog and POR for the Host
Provides Individual Cell Voltages and Battery
Voltage to Battery Management Host
Capable of Operation With 5-mΩ Sense
Resistor Integrated Cell Balancing Drive
I2C Compatible User Interface Allows Access
to Battery Information
Programmable Threshold and Delay for
Overload Short Circuit in Discharge and Short
Circuit in Charge
•
•
•
•
NMOS FET Drive for Charge and Discharge
FETs
Host Control can Initiate Sleep and Ship
Power Modes
Integrated 2.5-V, 16-mA LDO
Integrated 3.3-V, 25-mA LDO
Supply Voltage Range from 4.5 V to 28 V
Low Supply Current of 100 µA Typical
APPLICATIONS
•
•
•
Notebook Computers
Medical and Test Equipment
Instrumentation and Measurement Systems
DESCRIPTION
The bq29330 is a 2-, 3-, or 4-cell lithium-ion battery pack full-protection analog front end (AFE) IC that
incorporates a 2.5-V, 16-mA and 3.3-V, 25-mA low dropout regulator (LDO). The bq29330 also integrates an
I2C-compatible interface to extract battery parameters such as battery voltage, individual cell voltages, and
control output status. Other parameters such as current protection thresholds and delays can also be
programmed into the bq29330 to increase the flexibility of the battery management system.
SYSTEM DIAGRAM
Discharge / Charge /
Precharge FETs
Fuse
Pack +
Oscillator and PLL
System Interface
2K Bytes of
Data Flash
6K x 22
Mask ROM
Nch FET Drive
(Charge Pumps)
32.768 kHz
Watchdog &
Protection Timing
I2 C
System Interface
RAM Configuration, Status
and Control Registers
2K Bytes
of RAM
24K x 22 Program
Flash
LDO +
Reset
T1
TOUT and LEDOUT
Power Support
Standard Delta-Sigma A-to-D Converter
Analog Output Drive
Integrating Delta-Sigma A-to-D Converter
2-Tier Overcurrent
Protection
Precharge
Control
Cell, Bat and Pack
Voltage Translation
Host Interface UART
& Data Management
Internal
Only
SMBus
HDQ
UART
2.5 V
Reset
Cell Balancing Drive
16 Dig GPIO & Peripherals
8 Dig GPIO or Analog GPI
Pack –
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2005, Texas Instruments Incorporated
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
DESCRIPTION (CONTINUED)
The bq29330 provides safety protection for overload, short circuit in charge, and short circuit in discharge
conditions and can also provide cell overvoltage, battery overvoltage and battery undervoltage protection with the
battery management host. In overload, short circuit in charge and short circuit in discharge conditions, the
bq29330 turns off the FET drive autonomously, depending on the internal configuration setting. The
communications interface allows the host to observe and control the status of the bq29330, enable cell
balancing, enter different power modes, set current protection levels, and set the blanking delay times.
Cell balancing of each cell can be performed via a cell bypass path integrated into the bq29330, which can be
enabled via the internal control register accessible via the I2C-compatible interface. The maximum bypass current
is set via an external series resistor and internal FET on resistance (typ. 400 Ω).
ORDERING INFORMATION (1)
PACKAGE
TA
–40°C to 110°C
(1)
(2)
(3)
TSSOP(DBT) (2)
QFN(RHB) (3)
bq29330DBT
bq29330RHB
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
Web site at www.ti.com.
The bq29330 can be ordered in tape and reel by adding the suffix R to the orderable part number, i.e., bq29330DBTR, bq29330RHBR.
PRELIMINARY PACKAGE OPTION: The QFN package is also made available in mini reel; add suffix T to the orderable number, i.e.,
bq29330RHBT
PACKAGE OPTION PIN DIAGRAMS
2
28
SCLK
VSS
4
27
NC
XRST
5
26
25
WDI
TOUT
LEDOUT
SCLK
3
XALERT
SDATA
SDATA
XALERT
29
CELL+
30
2
CELL-
1
NC
CELLCELL+
REG
REG
QFN PACKAGE
(TOP VIEW)
VSS
TSSOP PACKAGE
(TOP VIEW)
32 31 30 29 28 27 26 25
XRST
1
24
NC
SRN
2
23
WDI
SRP
3
22
TOUT
21
LEDOUT
SRP
VC5
7
24
8
23
VSS
VC5
4
VC4
9
22
PMS
VC4
5
20
VSS
VC3
10
21
GPOD
VC3
6
19
PMS
VC2
11
20
ZVCHG
VC2
7
18
GPON
VC1
12
19
VCC
VC1
8
17
ZVCHG
BAT
13
18
NC
CHG
14
17
PACK
NC
15
16
DSG
NC
16
VCC
DSG
PACK
NC
10 11 12 13 14 15
CHG
9
BAT
6
NC
SRN
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
TERMINAL FUNCTIONS
TERMINAL
NAME
DESCRIPTION
DBT NO.
RHB NO.
CELL–
1
28
Output of scaled value of the measured cell voltage.
CELL+
2
29
Output of scaled value of the measured cell voltage.
REG
3
30
Integrated 2.5-V regulator output
VSS
4, 23
4,32
XRST
5
1
Active-low output
SRN
6
2
Current sense terminal
SRP
7
3
Current sense positive terminal when charging relative to SRN; current sense negative
terminal when discharging relative to SRN
VC5
8
4
Sense voltage input terminal for most negative cell; balance current input for least positive
cell.
VC4
9
5
Sense voltage input terminal for least positive cell, balance current input for least positive cell,
and return balance current for third most positive cell.
VC3
10
6
Sense voltage input terminal for third most positive cell, balance current input for third most
positive cell, and return balance current for second most positive cell.
VC2
11
7
Sense voltage input terminal for second most positive cell, balance current input for second
most positive cell, and return balance current for most positive cell.
VC1
12
8
Sense voltage input terminal for most positive cell, balance current input for most positive cell,
and battery stack measurement input
BAT
13
10
Charge pump, charge N-CH FET gate drive
CHG
14
11
Charge pump, charge N-CH FET gate drive
DSG
16
13
Charge pump output, discharge N-CH FET gate drive
PACK
17
14
PACK positive terminal and alternative power source
VCC
19
16
Power supply voltage
ZVCHG
20
17
Connect the precharge P-CH FET drive here
GPOD
21
18
NCH FET open-drain output
PMS
22
19
Determines CHG output state on POR
LEDOUT
24
21
3.3-V output for LED display power supply
TOUT
25
22
Provides thermistor bias current
WDI
26
23
Digital input that provides the timing clock for the OC and SC delays and also acts as the
watchdog clock.
SCLK
28
25
Open-drain serial interface clock with internal 10-kΩ pullup to VREG
SDATA
29
26
Open-drain bidirectional serial interface data with internal 10-kΩ pullup to VREG
XALERT
30
27
Open-drain output used to indicate status register changes. With internal 100-kΩ
pullup to VREG
15,18,27
9,12,15, 24,31
NC
Power supply ground
Not electrically connected to the IC
3
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
FUNCTIONAL BLOCK DIAGRAM
GG VDD
GG RST
PACK–
RZVCHG
PACK+
C
PACK
DSG
CHG
ZVCHG
2nd
Protection
REG
REG
VCC
RST
GG LED
INPUT
LEDOUT
CHG_ON
NCH GATE
DRIVER
PMS
DSG_ON
FET
LOGIC
ZVCHG_ON
3.3-V LDO
GATE DRIVER
C
2.5-V LDO
POR
LED
BAT
VC1
CELL 4
VC2
GG INTERFACE
SDATA
GG INTERFACE
SCLK
WDI
WATCHDOG
TIMER
SHIP_ON
SLEEP_ON
SDATA
SCLK
SERIAL INTERFACE
32 kHz INPUT
FROM GG
CELL 3
VC3
CELL 2
VC4
CELL 1
OUTPUT CTL
CELL+
STATE CTL
FUNCTION CTL
CELL SEL
0.975V
BAT/25
OLV
PACK/25
CELL VOLTAGE
TRANSLATION
SCC
SCD
OVERLOAD
COMPARATOR
OPEN
DRAIN
OUTPUT
DRIVE
CONTROL
C
CELL–
OLD
TOUT
R
GG ANALOG
INPUT
CELL
GG TS
INPUT
THERM
C
THERM
GND
THERMISTOR
OVERCURRENT
SRP
DELAY
SHORT CIRCUIT
COMPARATOR
SHORT_CIRCUIT
4
CELL
SELECTION
SWITCHES
VC5
XALERT
GPOD
CELL1..4
REGISTERS
STATUS
ALERT TO GG
OPEN DRAIN
OUTPUT
POWER
MODE
CIRCUIT
R
SRN
SNS
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
SAFETY STATE DIAGRAM
LEGEND:
UVLO = Undervoltage Lock Out
KEY:
Disabled = OFF and cannot be changed via firmware
Enabled= Can be changed by firmware
No Power Supply
Power Supply to PACK
Power Supply to PACK
UVLO Mode
CHG: OFF
DSG: OFF
ZVCHG: OFF
VREG: OFF
RST: HIGH
I2 C: Disabled
Current Protection: Disabled
VCELL: Disabled
Watchdog: Disabled
Therm, Output: Disabled
Internal
VLED < 2.3 V
Internal VLED> 2.4 V
32 kHz Resumes
FirmwareCommand
32 kHz Input Halted
and tWTO expired
No supply PACK
DSG: OFF
voltage
Mode
DSG: OFF
Firmware
Command
Firmware
Command
Sleep Mode
Firmware
Command
Firmware
Command
WTO Mode
Firmware Command
& No Supply to PACK
Firmware
Command
Normal Mode
CHG: ON
DSG: ON
ZVCHG: OFF
VREG/VLED: 2.5V/3.3V
RST: Driven low after tRST
I2 C: Enabled
Current Protection: Enabled
VCELL: Enabled
Watchdog: Enabled
Therm, Output: Enabled
32 kHz Input Halted
and t WTO expired
CHG: OFF
DSG: OFF
ZVCHG: OFF
VREG/VLED: 2.5 V/3.3 V
RST: Pulsed
I2 C: Enabled
Current Protection: Enabled
VCELL: Enabled
Watchdog: Enabled
Therm, Output: Enabled
Ship Mode
CHG: OFF
DSG: OFF
ZVCHG: OFF
VREG/VLED: OFF/OFF
I2 C: Disabled
Current Protection: Disabled
VCELL: Disabled
Watchdog: Disabled
Therm, Output: Disabled
VSR > VOL or VSCD for a period of tOL or tSCD
Respectively, or VSR > VSCC for a period
of tSCC
Current Protection Mode
CHG: OFF
DSG: OFF
ZVCHG: OFF
VREG/VLED: 2.5 V/3.3 V
I2 C: Enabled
Current Protection: Enabled
VCELL: Enabled
Watchdog: Enabled
Therm, Output: Enabled
CHG: OFF
DSG: OFF
ZVCHG: OFF
VREG/VLED: ON/ON
I2 C: Enabled
Current Protection: Enabled
VCELL: Enabled
Watchdog: Enabled
Therm, Output: Disabled
5
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range (unless otherwise noted) (1) (2)
bq29330
Supply voltage range
Input voltage range
Output voltage range
(VCC, BAT)
–0.3 to 34
(VC1, VC2, VC3, VC4, PACK, PMS)
–0.3 to 34
(VC5)
–0.3 to 1.0
(SRP, SRN)
–1.0 to 1.0
(VC1 to VC2, VC2 to VC3, VC3 to VC4, VC4
to VC5)
–0.3 to 8.5
(WDI, SCLK, SDATA)
– 0.3 to 8.5
(DSG,CHG)
–0.3 to BAT
(ZVCHG)
–0.3 to 34
(GPOD)
–0.3 to 34
(TOUT, SDATA, CELL, XALERT, XRST,
LEDOUT)
–0.3 to 7
(CELL+)
–0.3 to 7
Current for cell balancing
mA
–65 to 150
Lead temperature (soldering, 10 s)
(2)
V
10
Storage temperature range, Tstg
(1)
UNIT
°C
300
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to ground of this device except VCn-VC(n+1), where n=1, 2, 3, 4 cell voltage.
RECOMMENDED OPERATING CONDITIONS
MIN
Supply voltage ( VCC,BAT)
VI(STARTUP)
VI
Start up voltage (VCC,BAT)
Input voltage range
NOM
4.5
25
5.5
0
VDD
VC5
0
0.5
–0.5
0.5
0
5.0
0.8×REG
REG
0
0.2×REG
SRP, SRN
PACK, PMS
VIL
VO
VO
Logic level input voltage
SCLK, SDATA, WDI
Output voltage
GPOD
Output voltage range
V
25
XALERT, SDATA, XRST
REG
CELL+, CELL–
0.975
V
V
V
External 2.5V REG capacitor
CREG
1.0
µF
External LEDOUT capacitor
CLED
2.2
µF
Extend CELL output capacitor
CCELL
IOL
GPOD
Input frequency
WDI high time
6
V
25
µF
0.1
1
RPACK
TA
UNIT
V
VC1, VC2, VC3, VC4
VCn – VC(n+1), (n=1, 2, 3, 4 )
VIH
MAX
WDI
mA
1
kΩ
32.768
kHz
µs
2
Operating temperature
–25
85
°C
Functional temperature
–40
110
°C
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
ELECTRICAL CHARACTERISTICS
SUPPLY CURRENT, TA = 25°C, CREG = 1 µF, CL = 2.2 µF, VCC or BAT = 14 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
MAX
UNIT
140
190
µA
220
µA
ICC1
Supply Current 1
ICC2
Supply Current 2
No load at REG, LEDOUT TOUT,
XALERT, SCLK, SDATA. ZVCHG = off, WDI = 32 kHz,
VMEN = off
TA = –40°C
to 110°C
105
185
µA
I(SLEEP)
Sleep current
CHG, DSG and ZVCHG = off,
REG = on, VMEN = off, WDI no clock, SLEEP = 1
TA = –40°C
to 110°C
30
50
µA
I(SHUTDOWN)
Shutdown mode
CHG, DSG and ZVCHG = off,
REG = off, VMEN = off, WDI no clock,
VPACK = 0 V, VC1 = VC2 = VC3 = VC4 = 3.5 V
TA = –40°C
to 110°C
0.1
1
µA
2.5
2.59
2.5 V LDO, TA = 25°C, CREG = 1 µF, CL = 2.2 µF, VCC or BAT = 14 V, IOUT
33
TA = 25°C
TYP
No load at REG, LEDOUT, TOUT, XALERT, SCLK, SDATA,
ZVCHG= off, WDI = 32 kHz
VMEN = on, VC5 = VC4 = VC3 = VC2 = VC1 = 0 V
select VC5 = VC4 = 0 V
TA = –40°C
to 110°C
= 0 mA (unless otherwise noted)
V(REG)
Regulator output
voltage
4.5 V < VCC or BAT ≤ 25 V, IOUT25≤ 16 mA
∆V(EGTEMP)
Regulator output
change with
temperature
VCC or BAT = 14 V, IOUT25 = 2 mA
∆V(REGLINE)
Line regulation
5.4 V ≤ VCC or BAT ≤ 25 V, IOUT25 = 2 mA
TA = 25°C
3
10
mV
VCC or BAT = 14 V, 0.2 mA ≤ IOUT25 ≤ 2 mA
TA = 25°C
7
15
mV
VCC or BAT = 14 V, 0.2 mA ≤ IOUT25 ≤ 16 mA
TA = 25°C
15
50
mV
VCC or BAT = 14 V, REG = 2 V
TA = 25°C
16
75
VCC or BAT = 14 V, REG = 0 V
TA = 25°C
5
45
∆V(REGLOAD)
I(REGMAX)
Load regulation
Current limit
TA = –40°C
to 110°C
2.41
TA = –40°C
to 110°C
V
±0.2%
mA
3.3 V LED, TA = 25°C, CREG = 1.0 µF , CL = 2.2 µF, VCC or BAT = 14 V, IOUT25 = 0 mA (unless otherwise noted)
4.5 V < VCC or BAT ≤ 25 V, IOUT33 ≤ 10 mA
VO(LED)
Regulator output
voltage
∆V(LEDEMP)
Regulator output
change with
temperature
VCC or BAT = 14 V, IOUT33 = 2 mA
∆V(LEDLINE)
Line regulation
5.4 V ≤ VCC or BAT ≤ 25 V, IOUT33 = 2 mA
∆V(LEDLOAD)
Load regulation
I(LEDMAX)
Current limit
6.5 V < VCC or BAT ≤ 25V, IOUT33 ≤ 25 mA
VCC or BAT = 14 V, 0.2 mA ≤ IOUT33 ≤ 2 mA
VCC or BAT = 14 V, 0.2 mA ≤ IOUT33 ≤ 25 mA
VCC or BAT = 14 V, REG = 3 V
VCC or BAT = 14 V, REG = 0 V
TA = –40°C
to 110°C
3
3.3
3.6
3
3.3
3.6
TA = –40°C
to 110°C
±0.2%
TA = 25°C
TA = 25°C
TA = 25°C
V
3
10
7
15
40
100
mV
mV
25
125
12
50
2.4
2.6
V
100
Ω
1
µA
mA
THERMISTOR DRIVE, TA = 25°C, CREG = 1 µF, CL = 2.2 µF, VCC or BAT = 14 V (unless otherwise noted)
VTOUT
RDS(ON)
ITOUT = 0 mA
TOUT Pass-element
series resistance
ITOUT = –1 mA at TOUT pin,
RDS(ON) = [VREG– VOUT (TOUT)] / 1 mA
TA = –40°C
to 110°C
50
SHUTDOWN WAKE, TA = 25°C, CREG = 1 µF, CL = 2.2 µF, VCC or BAT = 14 V (unless otherwise noted)
VSTARTUP
PACK Exit shutdown
threshold
VCC or BAT = 14 V, PACK = 1.4 V
POR, TA = 25°C, CREG = 1 µF, CL = 2.2 µF, VCC or BAT = 14 V (unless otherwise noted)
VPOR
VREGTHHysteresis
(Vregth+– Vregth–)
–3%
1.8
3%
V
50
150
250
mV
7
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
ELECTRICAL CHARACTERISTICS (Continued)
CELL VOLTAGE MONITOR, TA = 25°C, CREG = 1 µF, CL = 2.2 µF, VCC or BAT = 14 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V(CELLOUT)
REF
MIN
TYP
MAX
VCn– VCn+1 = 0 V, 8 V ≤ VDD ≤ 25 V
0.950
0.975
1
VCn– VCn+1 = 4.5 V, 8 V ≤ VDD ≤ 25 V
0.275
0.3
0.325
8 V ≤ VDD ≤ 25 V
Mode
(1),
UNIT
V
–1%
0.975
1%
V
PACK
Mode
[Register Address = 0x03, b1(PACK) = 1, b0( VMEN) = 1]
–2%
PACK/18
2%
V
BAT
Mode
[Register Address = 0X03, b6(BAT) = 1, b0 ( VMEN) = 1]
–2%
BAT/18
2%
V
CELL output
CMRR
Common mode rejection
CELL max to CELL min
40
dB
V(CELLSLEW)
CELL output rise
Min to Max 10% to 90%
9
ms
K
CELL scale factor
I(VCELLOUT)
VICR
R(BAL)
(1)
K = {CELL output (VC5 = 0 V, VC4 = 4.5 V)
– CELL output (VC5 = VC4 = 0 V)} / 4.5
0.147
0.150
0.153
K = {CELL output (VC2 = 13.5 V, VC1 = 18 V)
– CELL output (VC2 = VC1 = 13.5 V)} / 4.5
0.147
0.150
0.153
12
18
µA
–1
mV
Drive current
VCn– VCn+1 = 0 V , Vcell = 0 V, TA = –40° to 110°
CELL output offset error
CELL output (VC2 = 18 V, VC1 = 18 V)
–CELL output (VC2 = VC1 = 0 V)
Cell balance internal resistance
RDS(ON) for internal FET switch at VDS = 2 V
–50%
400
50%
Ω
TYP
MAX
UNIT
Register Address = 0x04, b2(CAL0) = b3(CAL1) = 1, Register Address = 0x03, b0(VMEN) = 1
CURRENT PROTECTION DETECTION, TA = 25°C, CREG = 1 µF, CL = 2.2 µF, VCC or BAT = 14 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V(OLT)
OL detection threshold voltage range, typical (1)
∆V(OLT)
OL detection threshold voltage program step
V(SCCT)
SCC detection threshold voltage range, typical
(2)
∆V(SCCT)
SCC detection threshold voltage program step
V(SCDT)
SCD detection threshold voltage range,
typical (3)
∆V(SCDT)
SCD detection threshold voltage program step
VOL(acr)
OL detection threshold voltage
accuracy(1)
50
205
RSNS = 1
25
102.5
RSNS = 0
5
RSNS = 1
2.5
100
475
RSNS = 1
50
237.5
RSNS = 0
RSNS is set in
FUNCTION_CTL register
–100
–475
RSNS = 1
–50
–237.5
RSNS = 0
–25
RSNS = 1
–12.5
(1)
(2)
(3)
8
SCD detection threshold voltage accuracy(3)
See OLV register for setting detection threshold
See SCC register for setting detection threshold
See SCD register for setting detection threshold
mV
mV
VOL = 25 mV (min)
15
25
35
VOL = 100 mV (RSNS = 0,1)
90
100
110
185
205
225
–30
–50
70
VSCC = 200 mV (RSNS = 0,1)
–180
–200
–220
VSCC = 475 mV (max)
–428
–475
–523
VSCC = –50 mV (min)
V(SCD_acr)
mV
mV
12.5
RSNS = 0
VSCC = 50 mV (min)
SCC detection threshold voltage accuracy(2)
25
RSNS = 1
mV
mV
RSNS = 0
VOL = 205 mV (max)
V(SCC_acr)
MIN
RSNS = 0
30
50
70
VSCC = –200 mV (RSNS = 0,1)
180
200
220
VSCC = –475 mV (max)
426
475
523
mV
mV
mV
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
ELECTRICAL CHARACTERISTICS (Continued)
FET DRIVE CIRCUIT, TA = 25°C, CREG = 1 µF, CL = 2.2 µF, VCC or BAT = 14 V (unless otherwise noted)
PARAMETER
VO(FETON)
Output voltage, charge,
and discharge FETs on
TEST CONDITIONS
VO(FETOND) = V(DSG)– Vpack
VGS connect 10 MΩ
TA = 25°C
VO(FETONC) = V(CHG)– VBAT
VGS connect 10 MΩ
TA = 25°C
TA = –40°C to 110°C
TA = –40°C to 110°C
MIN
TYP
MAX
7.5
12
15.5
8
12
16
7.5
12
15.5
8
12
16
3.3
3.5
3.7
V(ZCHG)
ZVCHG clamp voltage
BAT = 4.5 V
VO(FETOF
VFETOND = VDSG –Vpack
0.2
F)
Output voltage, charge,
and discharge FETs off
VFETONC = VCHG –VBAT
0.2
tr
Rise time
CL = 4700 pF
tf
Fall time
CL = 4700 pF
V(CHG):
Vpack ≥ Vpack+4 V
400
1000
V(DSG):
VBAT ≥ VBAT+4 V
400
1000
V(CHG):
Vpack+VCHG (FETON) ≥ pack +1 V
40
200
V(DSG):
VC1+ VDSG (FETON) ≥ VC1 +1 V
40
200
60
100
200
6
10
20
1
3
6
UNIT
V
V
V
V
µs
µs
LOGIC, TA = 25°C, CREG = 1 µF, CL = 2.2 µF, VCC or BAT = 14 V (unless otherwise noted)
XALERT
R(PUP)
Internal pullup resistance SDATA, SCLK
TA = –40°C to 110°C
XRST
VOL
VIH
XALERT
0.2
SDATA, IOUT = 200 µA
0.4
Low Logic level output
voltage
GPOD, IOUT = 50 µA
SCLK (hysteresis input)
Hysteresis
0.6
TA = –40°C to 110°C
VCC or BAT = 7 V,
VREG = 1.5 V,
XRST, IOUT = 200 µA
kΩ
V
0.4
450
mV
AC ELECTRICAL CHARACTERISTICS
TA = 25°C, CREG = 1 µF, CL = 2.2 µF, VCC or BAT = 14 V (unless otherwise noted)
PARAMETER
tWDTINT
WDT start up detect time
tWDWT
WDT detect time
tRST
XRST Active high time
TEST CONDITIONS
MIN
TYP
MAX
UNIT
250
500
1000
ms
50
100
150
µs
100
250
560
µs
9
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
AC TIMING REQUIREMENTS (I2C compatible serial interface)
TA = 25°C, CREG = 1 µF, VCC or BAT = 14 V (unless otherwise noted)
MAX
UNIT
tr
SCLK, SDATA rise time
PARAMETER
MIN
1000
ns
tf
SCLK, SDATA fall time
300
ns
tw(H)
SCLK pulse width high
4
µs
tw(L)
SCLK pulse width low
4.7
µs
tsu(STA)
Setup time for start condition
4.7
µs
th(STA)
Start condition hold time after which first clock pulse is generated
4
µs
tsu(DAT)
Data setup time
th(DAT)
Data hold time
tsu(STOP)
Setup time for Stop condition
tsu(BUF)
Time the bus must be free before new transmission can start
tv
Clock low to data out valid
th(CH)
Data out hold time after clock low
fSCL
Clock frequency
250
ns
0
µs
4
µs
900
10
0
tsu(STA)
tw(H)
tf
tw(L)
tr
SCLK
tr
SDATA
Start
Condition
SDA
Input
th(STA)
1
SCLK
tf
Stop
Condition
SDA
Change
th(DAT)
tsu(DAT)
3
7
2
th(ch)
8
9
MSB
SDATA
ACK
Start Condition
tv
tsu(STOP)
SCLK
SDATA
1
MSB
2
3
7
8
9
ACK
Stop Condition
10
µs
4.7
tsu(BUF)
ns
ns
400
kHz
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
FUNCTIONAL DESCRIPTION
LOW DROP OUTPUT REGULATOR (LEDOUT)
The inputs for this regulator can be derived from the VCC or BAT terminals. The output is a fixed voltage of
typically 3.3 V with the minimum output capacitance for stable operation of 2.2 µF and is also internally current
limited. This output is used for LED drive, power supply source for REG (2.5 V) and bq29330 internal circuit.
During normal operation, the regulator limits output current to typically 50 mA. Until the internal regulator circuit is
correctly powered, the DSG and CHG FET drives are low (FETs = OFF).
LOW DROP OUTPUT REGULATOR (REG)
The inputs for this regulator can be derived from the LED (3.3 V). The output is typically 2.5 V with the minimum
output capacitance for stable operation of 1 µF and is also internally current limited. During normal operation, the
regulator limits output current to typically 50 mA.
INITIALIZATION
From a shutdown situation, the bq29330 requires a voltage greater that start-up voltage (VSTARTUP) applied to the
PACK pin to enable its integrated regulator and provide the regulators power source. Once the REG output is
stable, the power source of the regulator is switched to VCC.
After the regulator has started, it then continues to operate through the VCC input. If the VCC input is below the
minimum operating range, then the bq29330 will not operate if the supply to the PACK input is removed.
If the voltage at VLED falls below about 2.3 V, the internal circuit turns off the FETs and disables all controllable
functions including the REG, LEDOUT, and TOUT outputs.
The initial state of the CHG and DSG FET drive is low (OFF) and the ZVCHG FET drive is low (ON).
OVERLOAD DETECTION
The overload detection is used to detect abnormal currents in the discharge direction. This feature is used to
protect the pass FETs, cells, and any other inline components from excessive discharge current conditions. The
detection circuit also incorporates a blanking delay before driving the control for the pass FETs to the OFF state.
The overload sense voltage is set in the OLV register, and delay time is set in the OLD register. The thresholds
can be individually programmed from 50 mV to 205 mV in 5-mV steps with the default being 50 mV.
If the RSNS bit in the FUNCTION_CTL register is set to 1, then the voltage threshold, programmable step size,
and hysteresis is divided by 2.
SHORT CIRCUIT IN CHARGE AND SHORT CIRCUIT IN DISCHARGE DETECTION
The short current circuit in charge and short circuit in discharge detections are used to detect severe abnormal
current in the charge and discharge directions, respectively. This safety feature is used to protect the pass FETs,
cells, and any other inline components from excessive current conditions. The detection circuit also incorporates
a blanking delay before driving the control for the pass FETs to the OFF state. The short circuit in charge
threshold and delay time are set in the SCC register. The short circuit in discharge threshold and delay time are
set in the SCD register. The short-circuit thresholds can be programmed from 100 mV to 475 mV in 25-mV steps.
If the RSNS bit in the FUNCTION_CTL register is set to 1, then the voltage threshold, programmable step size,
and hysteresis is divided by 2.
OVERLOAD, SHORT CIRCUIT IN CHARGE AND SHORT CIRCUIT IN DISCHARGE DELAY
The overload delay (default = 1 ms) allows the system to momentarily accept a high current condition without
disconnecting the supply to the load. The delay time can be increased via the OLD register which can be
programmed for a range of 1 ms to 31 ms with 2-ms steps.
The short circuit in charge and short circuit in discharge delays (default = 0 µs) are programmable in the SCC
and SCD registers, respectively. These registers can be programmed from 0 µs to 915 µs with 61-µs steps.
11
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
FUNCTIONAL DESCRIPTION (continued)
OVERLOAD, SHORT CIRCUIT IN CHARGE AND SHORT CIRCUIT IN DISCHARGE RESPONSE
When an overload, short circuit in charge, or short circuit in discharge fault is detected, the FETs are turned off.
The STATUS (b0…b3) register reports the details of overload, short circuit in charge or short-circuit discharge.
The respective STATUS (b0…b3) bits are set to 1 and the XALERT output is triggered. This condition is latched
until the STATE_CONTROL (b7) is set and then reset. If a FET is turned on after resetting STATE_CONTROL
(b0) and the error condition is still present on the system, then the device again enters the protection response
state.
2-, 3-, or 4-CELL CONFIGURATION
In a 2-cell configuration, VC1 and VC2 are shorted to VC3. In a 3-cell configuration, VC1 is shorted to VC2.
CELL VOLTAGE
The cell voltage is translated to allow a system host to measure individual series elements of the battery. The
series element voltage is translated to a GND-based voltage equal to 0.15 ±0.003 of the series element voltage.
This provides a range from 0 to 4.5 V. The translation output is presented between CELL+ and CELL– pins of
the bq29330 and is inversely proportional to the input using the following equation.
Where, V(CELLOUT) = –K × V(CELLIN) + 0.975 (V)
Programming CELL_SEL (b1, b0) selects the individual series element. The CELL_SEL (b3, b2) selects the
voltage monitor mode, cell monitor, offset, etc.
CALIBRATION OF CELL VOLTAGE MONITOR AMPLIFIER GAIN
The cell voltage monitor amplifier has an offset, and to increase accuracy, this can be calibrated.
The following procedure shows how to measure and calculate the offset as an example.
Step 1
Set CAL1=1, CAL0=1, VMEN=1.
VREF is trimmed to 0.975 V within ±1%; measuring VREF eliminates its error.
Measure internal reference voltage VREF from VCELL directly.
VREF = measured reference voltage
Step 2
Set CAL1=0, CAL0=1, CELL1=0, CELL0=0, VMEN=1.
The output voltage includes the offset and represented by:
VOUT(4-5) = VREF + (1 + K) × VOS (V)
Where K = CELL Scaling Factor
VOS = Offset voltage at input of the internal operational amplifier
Step 3
Set CAL1=1, CAL0=0, CELL1=0, CELL0=0, VMEN=1.
Measure scaled REF voltage through VCELL amplifier.
The output voltage includes the scale factor error and offset and is represented by:
V(OUTR) = VREF + (1 + K) × VOS – K × VREF (V)
Step 4
Calculate (VOUT(4-5)– V(OUTR)) / VREF.
The result is the actual scaling factor, KACT and is represented by:
12
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
FUNCTIONAL DESCRIPTION (continued)
KACT = (VOUT(4-5)– V(OUTR)) / VREF = (VREF + (1 + K) × VOS) – (VREF + (1 + K) × VOS– K ×
VREF)/VREF = K × VREF/VREF = K
Step 5
Calculate the actual offset value where:
VOS(ACT) = (V(OUTR)– VREF) / (1 + KACT)
Step 6
Calibrated cell voltage is calculated by:
VCn – VC(n+1) = { VREF + (1 + KACT ) × VOS(ACT)– V(CELLOUT)}/KACT = {VOUT(4-5)– V(CELLOUT)}/KACT
To seek greater accuracy, it is better to measure VOS(ACT) for each cell voltage.
Set CAL1=0, CAL0=0, CELL1=0, CELL0=1, VMEN=1.
Set CAL1=0, CAL0=0, CELL1=1, CELL0=0, VMEN=1.
Set CAL1=0, CAL0=0, CELL1=1, CELL0=1, VMEN=1.
Measure VOUT(3-4), VOUT(2-3), VOUT(1-2),
VC4 – VC5 = {VOUT(4-5)– V(CELLOUT)}/KACT
VC3 – VC4 = {VOUT(3-4)– V(CELLOUT)}/KACT
VC2 – VC3 = {VOUT(2-3)– V(CELLOUT)}/KACT
VC1 – VC2 = {VOUT(1-2)– V(CELLOUT)}/KACT
BATTERY PACK AND BATTERY STACK MEASUREMENTS
The PACK (battery pack) and VC1 (battery stack) inputs can be translated to the CELL+, CELL– outputs of the
bq29330 through control bits in the FUNCTION_CONTROL register. If PACK is set, then the input at the PACK
is divided by 18 and presented at the CELL+, CELL– outputs. If the BAT bit is set, then the input to VC1 is
divided by 18 and presented at the CELL+, CELL– outputs. If setting both bits at the same time, VC1 is
presented at the CELL+, CELL– outputs.
CELL BALANCE CONTROL
The cell balance control allows a small bypass path to be controlled for any one series element. The purpose of
this bypass path is to reduce the current into any one cell during charging to bring the series elements to the
same voltage. Series resistors placed between the input pins and the positive series element nodes control the
bypass current value. Individual series element selection is made using bits 4 through 7 of CELL_SEL register.
Series input resistors between 500 Ω and 1 kΩ are recommended for effective cell balancing.
XALERT (XALERT)
XALERT is driven Low, when WDF, OL, SCC, or SCD OC are detected. To clear XALERT, toggle (from 0, set to
1, then reset to 0) STATE_CONTROL, LTCLR (bit 7), then read the STATUS register.
THERMISTOR DRIVE CIRCUIT (TOUT)
The TOUT pin can be enabled to drive a thermistor from REG. The typical thermistor resistance is 10 kΩ at
25°C. The default state for this is OFF to conserve power. The maximum output impedance is 100 Ω. TOUT is
enabled in FUNCTION_CONTROL register (bit 3).
GENERAL PURPOSE OPEN DRAIN DRIVE CIRCUIT (GPOD)
The General Purpose Open Drain output has 1-mA current source drive with a maximum output voltage of 25 V.
The OD output is enabled or disabled by OUTPUT_CONTROL register (bit 4) and has a default state of OFF.
13
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
FUNCTIONAL DESCRIPTION (continued)
LATCH CLEAR (LTCLR)
When a protection fault occurs, the state is latched. To clear the fault flag, toggle (from 0, set 1, then reset to 0)
the LTCLR bit in the STATE_CONTROL register (bit 7). The OL, SCC, SCD, and WDF bits are unlatched by this
function. The FETs can now be controlled by programming the OUTPUT_CONTROL register, and the XALERT
output can be cleared by reading the STATUS register.
Fault Timeout
Expired
STATUS Register
Read
FET Control Access
by Host
Fault Flag Set
LTCLR Bit
XALERT Output
Figure 1. LTCLR and XLAERT Clear Timing
POR and WATCHDOG RESET (XRST)
The XRST pin is activated by activation of the REG output. This holds the host in reset for the duration of the
tRST period, allowing the VREG to stabilize before the host is released from reset. When the regulator power is
down, XRST is active below the regulator’s voltage of 1.8 V. Also, when a watchdog fault is detected, the XRST
is also activated to ensure a valid reset of the battery management host.
VREGTH+
REG Output
VREGTH-
tRST
RST Output
Figure 2. XRST Timing Chart – Power Up and Power Down
WATCHDOG INPUT (WDI)
The WDI input is required as a time base for delay timing when determining fault detection and is used as part of
the system watchdog.
Initially, the watchdog monitors the host oscillator start-up; if there is no response from the host within tWDINT of
tRST expiring, then the bq29330 turns CHG, DSG, and ZVCHG FETs off. It then activates the XRST output in an
attempt to reset the host.
14
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
FUNCTIONAL DESCRIPTION (continued)
Once the watchdog has been started during this wake-up period, it monitors the host for an oscillation stop
condition which is defined as a period of tWDWT where no clock input is received. If an oscillator stop condition is
identified, then the watchdog turns the CHG, DSG, and ZVCHG FETs off. The bq29330 then activates the XRST
output in an attempt to reset the host.
If the host clock oscillation is started after the reset, the bq29330 still has the WDF flag set until it is cleared. See
the LTCLR section for further details on clearing the fault flags.
During Sleep mode, the watchdog function is not disabled.
WDRST = L
REG Output
tWDTINT (500 ms)
RST Output
tWDTINT (500 ms)
tRST
WDI Input
XALERT
CHG, DSG, and
ZVCHG = OFF
FET Control
Access by Host
WDRST = H
REG Output
tWDTINT (500 ms)
RST Output
Twice
tWDTINT (500 ms)
tRST
tRST
tWDTINT (500 ms)
tRST
WDI Input
XALERT
FET Control
Access by Host
CHG, DSG, and
ZVCHG = OFF
Figure 3. Watchdog Timing Chart – WDI Fault at Start-up
15
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
FUNCTIONAL DESCRIPTION (continued)
WDRST = L
REG Output
Normal Operation
RST Output
tWDWT
tRST
tWDTINT (500 ms)
WDI Input
XALERT
CHG, DSG, and
ZVCHG = OFF
FET Control
Access by Host
WDRST = H
REG Output
Normal Operation
RST Output
Twice
tWDTINT (500 ms)
tRST
tWDWT
WDI Input
tRST
tRST
tWDTINT (500 ms)
XALERT
FET Control
Access by Host
CHG, DSG, and
ZVCHG = OFF
Figure 4. Watchdog Timing Chart – WDI Fault After Startup
DSG and CHG NCH FET DRIVER CONTROL
The bq29330 drives either the DSG or CHG FET off if an OL, SCC, or SCD safety threshold is breached
depending on the current direction. The host can force any FET on or off only if the bq29330 integrated
protection control allows.
The default-state of the FET drive is off. A host can control the FET drive by programming OUTPUT_CONTROL
(b2...b0), where b0 is used to control the discharge FET, b1 is used to control the charge FET, and b2 is used to
control the ZVCHG FET. These controls are only valid when not in the initialized state. The CHG drive FET can
be powered by PACK and the DSG FET can be powered by BAT.
When the bq29330 powers down, the NCH FET drivers power down to GND causing the FETs to turn off.
PRECHARGE AND 0 V CHARGING
The bq29330 supports both a charger that has a precharge mode and one that does not. The bq29330 also
supports charging even when the battery falls to 0 V. In order to charge, the charge FET (CHG) must be turned
on to create a current path. When the VBAT is ~0 V, the V(PACK) is as low as the battery voltage. In this case, the
supply voltage for the device is too low to operate.
16
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
FUNCTIONAL DESCRIPTION (continued)
POWER MODES
The bq29330 has three power modes, normal, sleep, and ship. The following table outlines the operational
functions during these power modes.
Table 1. Outlines the Operational Functions
POWER
MODE
Normal
TO ENTER POWER MODE
TO EXIT POWER MODE
MODE DESCRIPTION
STATE_CONTROL, SLEEP( b0) = 0 and
STATE_CONTROL, SHIP ( b1) = 0
The battery is in normal operation with protection,
power management and battery monitoring
functions available and operating.
The supply current of this mode varies as the host
can enable and disable various power
management features.
Sleep
STATE_CONTROL, SLEEP( b0) = 1 and
STATE_CONTROL, SHIP ( b1) = 0
STATE_CONTROL,
SLEEP( b0) = 0
CHG, DSG, and ZVCHG OFF, OL, SCC, and SCD
function is disabled.
Cell AMP, GPOD , CELL BAL, and WDF is not
disabled
Ship
STATE_CONTROL, SHIP ( b1) = 1
and supply at the PACK < VWAKE
Supply voltage to PACK
Supply
The bq29330 is completely shut down as in the
sleep mode. In addition, the REG output is
disabled, I2C interface is powered down, and
memory is not valid.
VOLTAGE BASED EXIT FROM SHUTDOWN
If a voltage greater than VSTARTUP is applied to the PACK pin, then the bq29330 exits shutdown and enters
normal mode.
COMMUNICATIONS
The I2C-compatible serial communications provides read and write access to the bq29330 data area. The data is
clocked via separate data (SDATA) and clock (SCLK) pins. The bq29330 acts as a slave device and does not
generate clock pulses. Communication to the bq29330 can be provided from GPIO pins or an I2C supporting port
of a host system controller. The slave address for the bq29330 is 7 bits, and the value is 0100 000 (0x20).
(MSB)
I2C Address +R/W bit
(MSB)
Write
Read
0
(LSB)
I2C Address (0x20)
1
0
0
(LSB)
0
0
0
0
1
The bq29330 does NOT have the following functions compatible with the I2C specification.
• The bq29330 is always regarded as a slave.
• The bq29330 does not support the General Code of the I2C specification, and therefore will not return an
ACK but may return a NACK.
• The bq29330 does not support the Address Auto Increment, which allows continuous reading and writing.
• The bq29330 will allow data to be written or read from the same location without re-sending the location
address.
17
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
…
…
SCLK
SDATA
A6
A5
…
A4 … A0 R/W
ACK
0
Start
R7
R6
R5
…
… R0
D7
ACK
0
D6
… D0
D5
ACK
0
Slave Address
0
Data
Register Address
Stop
Note: Slave = bq29330
Figure 5. I2C-Bus Write to bq29330
SCLK
…
A6
SDATA
…
A5 … A0 R/W
ACK
0
Start
R7
R6 … R0 ACK
0
…
…
R/W ACK
A0
A6
0
Slave Address
1
Start
Register Address
D6 … D0 NACK
D7
0
Master
Drives
NACK and
Stop
Slave Drives
The Data
Slave Address
Note: Slave = bq29330
Stop
Figure 6. I2C-Bus Read from bq29330: Protocol A
…
SCLK
SDATA
A6
…
A5 … A0 R/W ACK
R7
…
R6 … R0 ACK
A6
A5
…
…
A0
R/W ACK D7 …
D0 NACK
0
Slave
Start
Register Address
Start
Stop
Slave Drives
The Data
Slave Address
Note: Slave = bq29330
Master
Drives
Stop
NACK and
Stop
Figure 7. I2C-Bus Read from bq29330: Protocol B
REGISTER MAP
The bq29330 has nine addressable registers. These registers provide status, control, and configuration
information for the battery protection system.
NAME
ADDR
TYPE
DESCRIPTION
STATUS
0x00
R
OUTPUT_CONTROL
0x01
R/W
Output pin control from system host and external pin status
STATE_CONTROL
0x02
R/W
State control
FUNCTION_CONTROL
0x03
R/W
Function control
CELL _SEL
0x04
R/W
Battery cell select for cell translation and balance bypass and select mode for calibration
OLV
0x05
R/W
Overload voltage threshold
OLD
0x06
R/W
Overload delay time
SCC
0x07
R/W
Short circuit in charge current threshold voltage and delay
SCD
0x08
R/W
Short circuit in discharge current threshold voltage and delay
NAME
Status register
BIT MAP
ADDR
TYPE
B7
B6
B5
B4
B3
B2
B1
B0
STATUS
0x00
R
0
0
0
ZV
WDF
OL
SCC
SCD
OUTPUT_ CONTROL
0x01
R/W
0
0
PMS_CHG
GPOD
XZV
CHG
DSG
LTCLR
18
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
NAME
BIT MAP
ADDR
TYPE
STATE_ CONTROL
0x02
R/W
FUNCTION_ CONTROL
0x03
R/W
0
0
CELL _SEL
0x04
R/W
CB3
CB2
OLV
0x05
R/W
0
0
0
OLV4
OLV3
OLV2
OLV1
OLV0
OLD
0x06
R/W
0
0
0
0
OLD3
OLD2
OLD1
OLD0
SCC
0x07
R/W
SCCD3
SCCD2
SCCD1
SCCD0
SCCV3
SCCV2
SCCV1
SCCV0
SCD
0x08
R/W
SCDD3
SCDD2
SCDD1
SCDD0
SCDV3
SCDV2
SCDV1
SCDV0
B7
B6
B5
B4
B3
B2
B1
B0
0
0
0
RSNS
WDRST
WDDIS
SHIP
SLEEP
0
0
TOUT
BAT
PACK
VMEN
CB1
CB0
CAL1
CAL0
CELL1
CELL0
STATUS: Status register
STATUS REGISTER (0x00)
7
6
5
4
3
2
1
0
0
0
0
ZV
WDF
OL
SCC
SCD
The STATUS register provides information about the current state of the bq29330.
STATUS b0 (SCD): This bit indicates a short circuit in discharge condition.
0=
Voltage below the short circuit in discharge threshold (default).
1=
Voltage greater than or equal to the short circuit in discharge threshold.
STATUS b1 (SCC): This bit indicates a short circuit in charge condition in the charge direction.
0=
Voltage below the short circuit in charge threshold (default).
1=
Voltage greater than or equal to the short circuit in charge threshold.
STATUS b2 (OL): This bit indicates an overload condition.
0=
Voltage less than or equal to the overload threshold (default).
1=
Voltage greater than overload threshold.
STATUS b3 (WDF): This bit indicates a watchdog fault condition has occurred.
0=
32-kHz oscillation is normal (default).
1=
32-kHz oscillation stopped or not started, and the watchdog has timed out.
STATUS b4 (ZV): This bit indicates ZVCHG output is clamped.
0=
ZVCHG pin is not clamped (default).
1=
ZVCHG pin is clamped.
STATUS b5, b6, b7: Reserved
OUTPUT_CONTROL : Output control register
OUTPUT_CONTROL REGISTER (0x01)
7
6
5
4
3
2
1
0
0
0
PMS_CHG
GPOD
XZV
CHG
DSG
LTCLR
The OUTPUT_CONTROL register controls the outputs of the bq29330 and can show the state of the external pin
corresponding to the control.
OUTPUT_ CONTROL b0 (LTCLR): When a fault is latched, this bit releases the fault latch when toggled from 0
to 1 and back to 0 (default =0).
0=
(default)
0->1 ->0 clears the fault latches, allowing STATUS to be cleared on its next read.
19
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
OUTPUT_ CONTROL b1 (DSG): This bit controls the external discharge FET.
0=
Discharge FET is off and is controlled by the system host (default).
1=
Discharge FET is on, and the bq29330 is in normal operating mode.
OUTPUT_ CONTROL b2 (CHG): This bit controls the external charge FET.
0=
Charge FET is off, and is controlled by the system host (default).
1=
Charge FET is on, and the bq29330 is in normal operating mode.
OUTPUT_CONTROL b3(ZV): This bit enables or disables the precharge function.
0=
ZVCHG FET is on, and is controlled by the system host (default).
1=
ZVCHG FET is off, and the bq29330 is in normal operating mode.
OUTPUT_CONTROL b4 (GPOD): This bit enables or disables the GPOD output.
0=
GPOD is high impedance (default).
1=
GPOD output is active (GND).
OUTPUT_CONTROL b5 (PMS_CHG): This bit enables the CHG output for 0-V charge, when PMS terminal is
connected to Pack.
0=
CHG FET is off (When PMS = GND, default).
1=
CHG FET is on by connecting CHG and PACK terminal. (When PMS = PACK, default)
STATE_CONTROL : State control register
STATE_CONTROL REGISTER (0x02)
7
6
5
4
3
2
1
0
0
0
0
RSNS
WDRST
WDDIS
SHIP
SLEEP
The STATE_CTL register controls the outputs of the bq29330 and can be used to clear certain states.
STATE_CONTROL b0 (SLEEP): This bit is used to enter the sleep power mode.
0=
bq29330 exits sleep mode (default).
1=
bq29330 enters the sleep mode.
STATE_CONTROL b1 (SHIP): This bit is used to enter the ship power mode when Pack supply voltage is not
applied.
0=
bq29330 in normal mode (default)
1=
bq29330 enters ship mode when pack voltage is removed.
STATE_CONTROL b2 (WDDIS): This bit is used to enable the watchdog timer.
0=
Watchdog timer enabled (default)
1=
Watchdog timer disabled
STATE_CONTROL b3 (WDRST): This bit is used to enable the reset for GC, when watchdog timer is active.
0=
Reset output is disabled, when watchdog timer is active (default).
1=
2 Times reset output is enabled, when watchdog timer is active.
STATE_CONTROL b4 (RSNS): This bit sets the OL, SCC, and SCD thresholds into a range suitable for a low
sense resistor value by dividing the OLV, SCCV, and SCDV selected voltage thresholds by 2.
0=
Current protection voltage threshold as programmed (default)
1=
Current protection voltage thresholds divided by 2 as programmed
STATE_CONTROL b6..7 (0): These bits are not used and should be set to 0.
20
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
FUNCTION_CONTROL : Function control register
FUNCTION_CTL REGISTER (0x03)
7
6
5
4
3
2
1
0
0
0
0
0
TOUT
BAT
PACK
VMEN
The FUNCTION_CONTROL register enables and disables features of the bq29330.
FUNCTION_CONTROL b0 (VMEN): This bit enables or disables the cell and battery voltage monitoring
function.
0=
Disable voltage monitoring (default). CELL output is pulled down to GND level.
1=
Enable voltage monitoring.
FUNCTION_CONTROL b1 (PACK): This bit is used to translate the PACK input to the CELL+, CELL– pins
when VMEN = 1. The PACK input voltage is divided by 18 and is presented on CELL+, CELL– pins regardless
of the CELL_SEL register settings.
0=
CELL_SEL (b0, b1) settings determine CELL+, CELL– output when VMEN = 1(default).
1=
PACK input translated to CELL output regardless of CELL_SEL (b0, b1) selection when VMEN=1
FUNCTION_CTL b2 (BAT): This bit is used to translate the BAT input to the CELL+, CELL– pins when
VMEN=1. The VC5 input voltage is divided by 18 and is presented on CELL+, CELL– regardless of the
CELL_SEL register settings.
0=
CELL_SEL (b0, b1) settings determine CELL+, CELL– output when VMEN = 1(default).
1=
BAT input translated to CELL+, CELL– output regardless of CELL_SEL (b0, b1) selection when
VMEN = 1
This bit priority is higher than PACK(b1).
FUNCTION_CONTROL b3 (TOUT): This bit controls the power to the thermistor.
0=
Thermistor power is off (default)
1=
Thermistor power is on
CELL_SEL : Cell select register
CELL_SEL REGISTER (0x04)
7
6
5
4
3
2
1
0
CB3
CB2
CB1
CB0
CAL1
CAL0
CELL1
CELL0
This register determines cell selection for voltage measurement and translation, cell balancing, and the
operational mode of the cell voltage monitoring.
CELL_SEL b0-b1 (CELL0–CELL1): These two bits select the series cell for voltage measurement translation.
CELL1
CELL0
0
0
VC4-VC5, Bottom series element (default)
SELECTED CELL
0
1
VC4-VC3, Second lowest series element
1
0
VC3-VC2, Second highest series element
1
1
VC1-VC2, Top series element
CELL_SEL b2-b3 (CAL1, CAL0): These bits determine the mode of the voltage monitor block
21
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
CAL1
CAL0
0
0
Cell translation for selected cell (default)
SELECTED MODE
0
1
Offset measurement for selected cell
1
0
Monitor the VREF value for gain calibration
1
1
Monitor the VREF directly value for gain calibration,
bypassing the translation circuit
CELL_SEL b4-b7 (CB0 – CB3): These 4 bits select the series cell for cell balance bypass path.
CELL_SEL b4 (CB0): This bit enables or disables the bottom series cell balance charge bypass path.
0=
Disable bottom series cell balance charge bypass path (default)
1=
Enable bottom series cell balance charge bypass path
CELL_SEL b5 (CB1): This bit enables or disables the second lowest series cell balance charge bypass path.
0=
Disable series cell balance charge bypass path (default)
1=
Enable series cell balance charge bypass path
CELL_SEL b6 (CB2): This bit enables or disables the second highest cell balance charge bypass path.
0=
Disable series cell balance charge bypass path (default)
1=
Enable series cell balance charge bypass path
CELL_SEL b7 (CB3): This bit enables or disables the highest series cell balance charge bypass path.
0=
Disable series cell balance charge bypass path (default)
1=
Enable series cell balance charge bypass path
OLV: Overload Voltage threshold register
OLV REGISTER (0x05)
7
6
5
4
3
2
1
0
0
0
0
OLV4
OLV3
OLV2
OLV1
OLV0
OLV (b4-b0): These four bits select the value of the overload threshold with a default of 0000.
OLV (b5-b7): These bits are not used and should be set to 0.
OLV (b4-b0) configuration bits with corresponding voltage threshold (1)
(1)
0x00
–0.050 V
0x08
–0.090 V
0x10
– 0.130 V
0x18
–0.170 V
0x01
–0.055 V
0x09
–0.095 V
0x11
–0.135 V
0x19
–0.175 V
0x02
–0.060 V
0x0a
–0.100 V
0x12
–0.140 V
0x1a
–0.180 V
0x03
–0.065 V
0x0b
–0.105 V
0x13
–0.145 V
0x1b
–0.185 V
0x04
–0.070 V
0x0c
–0.110 V
0x14
–0.150 V
0x1c
–0.190 V
0x05
–0.075 V
0x0d
–0.115 V
0x15
–0.155 V
0x1d
–0.195 V
0x06
–0.080 V
0x0e
–0.120 V
0x16
–0.160 V
0x1e
–0.200 V
0x07
–0.085 V
0x0f
–0.125 V
0x17
–0.165 V
0x1f
–0.205 V
If RSNS bit is FUNCTION_CONTROL = 1, then the corresponding voltage threshold is divided by 2.
OLD: Overload Delay time configuration register
OLD REGISTER (0x07)
22
7
6
5
4
3
2
1
0
0
0
0
0
OLD3
OLD2
OLD1
OLD0
bq29330
www.ti.com
SLUS673A – SEPTEMBER 2005 – REVISED DECEMBER 2005
OLD(b3-b0): These four bits select the value of the delay time for overload with a default of 0000.
0x00
1 ms
0x04
9 ms
0x08
17 ms
0x0c
25 ms
0x01
3 ms
0x05
11 ms
0x09
19 ms
0x0d
27 ms
0x02
5 ms
0x06
13 ms
0x0a
21 ms
0x0e
29 ms
0x03
7 ms
0x07
15 ms
0x0b
23 ms
0x0f
31 ms
SCC : Short Circuit In Charge configuration register
SCC REGISTER (0x08)
7
6
5
4
3
2
1
0
SCCD3
SCCD2
SCCD1
SCCD0
SCCV3
SCCV2
SCCV1
SCCV0
This register selects the short circuit in charge voltage threshold and delay.
SCCV (b3-b0) : These lower nibble bits select the value of the short circuit in charge voltage threshold with 0000 as the default. (1)
(1)
0x00
0.100 V
0x04
0.200 V
0x08
0.300 V
0x0c
0.400 V
0x01
0.125 V
0x05
0.225 V
0x09
0.325 V
0x0d
0.425 V
0x02
0.150 V
0x06
0.250 V
0x0a
0.350 V
0x0e
0.450 V
0x03
0.175 V
0x07
0.275 V
0x0b
0.375 V
0x0f
0.475 V
If RSNS bit is FUNCTION_CTL = 1, then the corresponding voltage threshold is divided by 2.
SCCD (b7-b4): These upper nibble bits select the value of the short circuit in charge delay time. Exceeding the short circuit in charge
voltage threshold for longer than this period turns off the CHG and DSG outputs. 0000 is the default.
0 µs
0x04
244 µs
0x08
488 µs
0x0c
732 µs
0x01
61 µs
0x05
305 µs
0x09
549 µs
0x0d
793 µs
0x02
122 µs
0x06
366 µs
0x0a
610 µs
0x0e
854 µs
0x03
183 µs
0x07
427 µs
0x0b
671 µs
0x0f
915 µs
0x00
SCD : Short Circuit In Discharge configuration register
SCD REGISTER (0x08)
7
6
5
4
3
2
1
0
SCDD3
SCDD2
SCDD1
SCDD0
SCDV3
SCDV2
SCDV1
SCDV0
This register selects the short circuit in discharge voltage threshold and delay.
SCDV(b3-b0) : These lower nibble bits select the value of the short circuit in discharge voltage threshold with 0000 as the default. (1)
(1)
0x00
–0.100 V
0x04
–0.200 V
0x08
–0.300 V
0x0c
–0.400 V
0x01
–0.125 V
0x05
–0.225 V
0x09
–0.325 V
0x0d
–0.425 V
0x02
–0.150 V
0x06
–0.250 V
0x0a
–0.350 V
0x0e
–0.450 V
0x03
–0.175 V
0x07
–0.275 V
0x0b
–0.375 V
0x0f
–0.475 V
If RSNS bit is FUNCTION_CTL = 1, then the corresponding voltage threshold is divided by 2.
SCCD (b7-b4): These upper nibble bits select the value of the short circuit in charge delay time. Exceeding the Short Circuit in charge
voltage threshold for longer than this period will turn off the CHG and DSG outputs. 0000 is the default.
0x00
0 µs
0x04
244 µs
0x08
488 µs
0x0c
732 µs
0x01
61 µs
0x05
305 µs
0x09
549 µs
0x0d
793 µs
0x02
122 µs
0x06
366 µs
0x0a
610 µs
0x0e
854 µs
0x03
183 µs
0x07
427 µs
0x0b
671 µs
0x0f
915 µs
23
PACKAGE OPTION ADDENDUM
www.ti.com
14-Dec-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
BQ29330DBT
ACTIVE
SM8
DBT
30
60
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
BQ29330DBTG4
ACTIVE
SM8
DBT
30
60
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
BQ29330DBTR
ACTIVE
SM8
DBT
30
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated