MITSUBISHI CM150DU

MITSUBISHI IGBT MODULES
CM150DU-24NFH
HIGH POWER SWITCHING USE
CM150DU-24NFH
¡IC ................................................................... 150A
¡VCES ......................................................... 1200V
¡Insulated Type
¡2-elements in a pack
APPLICATION
High frequency switching use (30kHz to 60kHz).
Gradient amplifier, Induction heating, power supply, etc.
OUTLINE DRAWING & CIRCUIT DIAGRAM
Dimensions in mm
TC measured point
94
80 ±0.25
4
G1E1
12
4
4 11
18
E2 G2
C1
E2
C2E1
2–φ6.5
MOUNTING HOLES
23
23
48
CM
24
17
13
7
13.5
2.5 16
TAB
C2E1
E2
21.2
+1
30 –0.5
LABEL
#110. t=0.5
C1
G1 E1
25
7.5
16 2.5
E2 G2
3–M5NUTS
12mm deep
CIRCUIT DIAGRAM
Feb.2004
MITSUBISHI IGBT MODULES
CM150DU-24NFH
HIGH POWER SWITCHING USE
MAXIMUM RATINGS
Symbol
VCES
VGES
IC
ICM
IE (Note 1)
IEM (Note 1)
PC (Note 3)
PC’ (Note 3)
Tj
Tstg
Viso
—
—
—
(Tj = 25°C)
Parameter
Collector current
Emitter current
Maximum collector dissipation
Maximum collector dissipation
Junction temperature
Storage temperature
Isolation voltage
Mounting torque
Weight
ELECTRICAL CHARACTERISTICS
Symbol
Conditions
Collector-emitter voltage
Gate-emitter voltage
G-E Short
C-E Short
Operation
Pulse
Operation
Pulse
TC = 25°C
TC’ = 25°C*4
Ratings
1200
±20
150
300
150
300
650
960
–40 ~ +150
–40 ~ +125
2500
2.5 ~ 3.5
3.5 ~ 4.5
310
(Note 2)
(Note 2)
(Note 2)
(Note 2)
Main Terminal to base plate, AC 1 min.
Main Terminal M5
Mounting holes M6
Typical value
Unit
V
V
A
A
A
A
W
W
°C
°C
V
N•m
N•m
g
(Tj = 25°C)
Test conditions
Parameter
Limits
Typ.
—
Max.
1
Unit
ICES
Collector cutoff current
VCE = VCES, VGE = 0V
Min.
—
VGE(th)
Gate-emitter threshold voltage
IC = 15mA, VCE = 10V
4.5
6
7.5
V
IGES
Gate leakage current
Collector-emitter
saturation voltage
(Note 4)
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
Reverse recovery time
Reverse recovery charge
Emitter-collector voltage
VGE = VGES, VCE = 0V
Tj = 25°C
IC = 150A, VGE = 15V
Tj = 125°C
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
2.1
—
5.0
5.0
—
—
—
680
—
—
—
—
—
7.5
—
—
—
0.07
—
—
—
0.5
6.5
—
24
2.0
0.45
—
150
80
400
150
150
—
3.5
0.19
0.35
—
µA
VCE(sat)
Cies
Coes
Cres
QG
td(on)
tr
td(off)
tf
trr (Note 1)
Qrr (Note 1)
VEC(Note 1)
Rth(j-c)Q
Rth(j-c)R
Rth(c-f)
Rth(j-c’)Q
Rth(j-c’)R
RG
Thermal resistance*1
Contact thermal resistance
Thermal resistance*4
VCE = 10V
VGE = 0V
VCC = 600V, IC = 150A, VGE = 15V
VCC = 600V, IC = 150A
VGE1 = VGE2 = 15V
RG = 2.1Ω, Inductive load switching operation
IE = 150A
IE = 150A, VGE = 0V
IGBT part (1/2 module)
FWDi part (1/2 module)
Case to fin, Thermal compound Applied*2 (1/2 module)
IGBT part (1/2 module)
FWDi part (1/2 module)
External gate resistance
0.13*3
0.21*3
21
mA
V
nF
nF
nF
nC
ns
ns
ns
ns
ns
µC
V
°C/W
°C/W
°C/W
°C/W
°C/W
Ω
*1 : TC measured point is shown in page OUTLINE DRAWING.
*2 : Typical value is measured by using Shin-etsu Silicone “G-746”.
*3 : If you use this value, Rth(f-a) should be measured just under the chips.
*4 : TC’ measured point is just under the chips.
Note 1. IE, VEC, trr & Qrr represent characteristics of the anti-parallel, emitter to collector free-wheel diode (FWDi).
2. Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed Tjmax rating.
3. Junction temperature (Tj) should not increase beyond 150°C.
4. No short circuit capability is designed.
Feb.2004
MITSUBISHI IGBT MODULES
CM150DU-24NFH
HIGH POWER SWITCHING USE
PERFORMANCE CURVES
TRANSFER CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
Tj = 25°C
VGE=20
(V)
250
300
14
VCE = 10V
13
COLLECTOR CURRENT IC (A)
COLLECTOR CURRENT IC (A)
300
15
12
200
150
11
100
10
50
9
250
200
150
100
50
Tj = 25°C
Tj = 125°C
8
2
4
6
8
0
10
0
5
10
15
20
COLLECTOR-EMITTER VOLTAGE VCE (V)
GATE-EMITTER VOLTAGE VGE (V)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
9
VGE = 15V
8
Tj = 25°C
Tj = 125°C
7
6
5
4
3
2
1
0
EMITTER CURRENT IE (A)
0
0
50
100
150
200
250
10
IC = 150A
4
IC = 60A
2
6
8
10
12
14
16
18
20
COLLECTOR CURRENT IC (A)
GATE-EMITTER VOLTAGE VGE (V)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
CAPACITANCE CHARACTERISTICS
(TYPICAL)
102
7
5
7
5
Tj = 125°C
3
Tj = 25°C
2
102
7
5
3
2
0
IC = 300A
6
103
101
Tj = 25°C
8
0
300
CAPACITANCE Cies, Coes, Cres (nF)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
0
1
2
3
4
5
EMITTER-COLLECTOR VOLTAGE VEC (V)
3
2
Cies
101
7
5
3
2
Coes
100
7
5
3
2
Cres
VGE = 0V
10–1 –1
10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
COLLECTOR-EMITTER VOLTAGE VCE (V)
Feb.2004
MITSUBISHI IGBT MODULES
CM150DU-24NFH
HALF-BRIDGE
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
SWITCHING TIME (ns)
7
5
3
2
td(off)
102
7
5
td(on)
tf
tr
Conditions:
VCC = 600V
VGE = ±15V
RG = 2.1Ω
Tj = 125°C
Inductive load
2 3
5 7 103
3
2
101
7
5
3
2
100 1
10
2
3
5 7 102
REVERSE RECOVERY TIME trr (ns)
103
5
5
3
3
2
2
Irr
102
102
trr
7
5
3
2
101 1
10
2
3
5 7 102
7
Conditions:
5
VCC = 600V
VGE = ±15V
3
RG = 2.1Ω
2
Tj = 25°C
Inductive load
101
2 3
5 7 103
COLLECTOR CURRENT IC (A)
EMITTER CURRENT IE (A)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT part)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi part)
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
100
7
5
3
2
Single Pulse
TC = 25°C
10–1
10–1
7
5
3
2
7
5
3
2
10–2
10–2
7
5
3
Per unit base =
2
7
5
3
2
Rth(j–c) = 0.19°C/W
10–3
10–3
10–5 2 3 5 710–4 2 3 5 7 10–3
TIME (s)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j – c)
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
100
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j – c)
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(TYPICAL)
103
103
Tj = 25°C
7
7
REVERSE RECOVERY CURRENT Irr (A)
HIGH POWER SWITCHING USE
7
5
3
2
Single Pulse
TC = 25°C
10–1
10–1
7
5
3
2
7
5
3
2
10–2
10–2
7
5
3
Per unit base =
2
Rth(j–c) = 0.35°C/W
10–3
7
5
3
2
10–3
10–5 2 3 5 710–4 2 3 5 7 10–3
TIME (s)
GATE CHARGE CHARACTERISTICS
(TYPICAL)
GATE-EMITTER VOLTAGE VGE (V)
20
IC = 150A
VCC = 400V
15
VCC = 600V
10
5
0
0
200
400
600
800
1000
GATE CHARGE QG (nC)
Feb.2004