MITSUBISHI CM100DU-34KA

MITSUBISHI IGBT MODULES
CM100DU-34KA
HIGH POWER SWITCHING USE
CM100DU-34KA
● IC ................................................................... 100A
● VCES .......................................................... 1700V
● Insulated
Type
● 2-elements in a pack
APPLICATION
General purpose inverters & Servo controls, etc
OUTLINE DRAWING & CIRCUIT DIAGRAM
Dimensions in mm
Tc measured point
108
93 ±0.25
14
14
C1
E2
25
25
G1 E1
62
48
6
CIRCUIT DIAGRAM
15.85
C2E1
C1
E2
C2E1
±0.25
6
15
E2 G2
G1 E1
CM
(18)
(8.25)
E2 G2
14
21.5
2.5
3-M6 NUTS
4-φ6. 5 MOUNTING HOLES
4
18
0.5
2.8
29 +1.0
–0.5
LABEL
0.5
0.5
0.5
4
7
7.5
18
8.5
7
22
18
Sep. 2001
MITSUBISHI IGBT MODULES
CM100DU-34KA
HIGH POWER SWITCHING USE
MAXIMUM RATINGS (Tj = 25°C)
Symbol
VCES
VGES
IC
ICM
IE (Note 1)
IEM (Note 1)
PC (Note 3)
Tj
Tstg
Viso
Parameter
Collector-emitter voltage
Gate-emitter voltage
Collector current
Emitter current
Maximum collector dissipation
Junction temperature
Storage temperature
Isolation voltage
—
Torque strength
—
Weight
Conditions
G-E Short
C-E Short
TC = 25°C
Pulse
TC = 25°C
Pulse
TC = 25°C
Ratings
1700
±20
100
200
100
200
890
–40 ~ +150
–40 ~ +125
3500
3.5 ~ 4.5
3.5 ~ 4.5
400
(Note 2)
(Note 2)
Main terminal to base plate, AC 1 min.
Main Terminal M6
Mounting holes M6
Typical value
Unit
V
V
A
A
W
°C
°C
V
N•m
N•m
g
ELECTRICAL CHARACTERISTICS (Tj = 25°C)
Symbol
Test conditions
Parameter
Limits
Typ.
—
Max.
1
Unit
ICES
Collector cutoff current
VCE = VCES, VGE = 0V
Min.
—
VGE(th)
Gate-emitter threshold voltage
IC = 10mA, VCE = 10V
4
5.5
7
V
IGES
Gate leakage current
Collector-emitter saturation voltage
Cies
Coes
Cres
QG
td(on)
tr
td(off)
tf
trr (Note 1)
Qrr (Note 1)
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
Reverse recovery time
Reverse recovery charge
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
3.2
3.8
—
—
—
450
—
—
—
—
—
5.8
—
2.2
—
—
0.04
—
0.5
4.0
—
14
2.4
0.75
—
350
150
550
800
600
—
4.6
—
0.14
0.24
—
0.09*3
µA
VCE(sat)
VGE = VGES, VCE = 0V
Tj = 25°C
IC = 100A, VGE = 15V
Tj = 125°C
VEC(Note 1) Emitter-collector voltage
Rth(j-c)Q
Rth(j-c)R
Rth(c-f)
Rth(j-c’)Q
Thermal resistance*1
Contact thermal resistance
Thermal resistance
VCE = 10V
VGE = 0V
VCC = 1000V, IC = 100A, VGE = 15V
VCC = 1000V, IC = 100A
VGE1 = VGE2 = 15V
RG = 3.1Ω, Inductive load switching operation
IE = 100A
IE = 100A, VGE = 0V, Tj = 25°C
IE = 100A, VGE = 0V, Tj = 125°C
IGBT part (1/2 module)
FWDi part (1/2 module)
Case to fin, Thermal compound applied*2 (1/2 module)
Tc measured point is just under the chips
mA
V
nF
nC
ns
ns
µC
V
V
°C/W
Note 1. IE, VEC, trr, Qrr, die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode. (FWDi).
2. Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed Tjmax rating.
3. Junction temperature (Tj) should not increase beyond 150°C.
4. Pulse width and repetition rate should be such as to cause negligible temperature rise.
*1 : Tc measured point is indicated in OUTLINE DRAWING.
*2 : Typical value is measured by using Shin-etsu Silicone “G-746”.
*3 : If you use this value, Rth(f-a) should be measured just under the chips.
Sep. 2001
MITSUBISHI IGBT MODULES
CM100DU-34KA
HIGH POWER SWITCHING USE
PERFORMANCE CURVES
TRANSFER CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
200
12
15
14
COLLECTOR CURRENT (A)
VGE = 20V
160
10
120
80
9
40
8
0
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
200
11
0
2
4
6
8
120
80
40
0
4
8
12
16
20
COLLECTOR-EMITTER VOLTAGE VCE (V)
GATE-EMITTER VOLTAGE VGE (V)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
6
VGE = 15V
Tj = 25°C
5
Tj = 125°C
4
3
2
1
0
0
40
80
120
160
200
Tj = 25°C
8
6
IC = 200A
4
IC = 100A
2
0
IC = 40A
6
8
10
12
14
16
18
GATE-EMITTER VOLTAGE VGE (V)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
CAPACITANCE–VCE
CHARACTERISTICS
(TYPICAL)
20
102
7
5
3
2
CAPACITANCE Cies, Coes, Cres (nF)
Tj = 25°C
102
7
5
3
2
101
7
5
3
2
100
10
COLLECTOR CURRENT IC (A)
103
EMITTER CURRENT IE (A)
VCE = 10V
Tj = 25°C
160
Tj = 125°C
0
10
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
COLLECTOR CURRENT IC (A)
Tj = 25°C
1
2
3
4
5
EMITTER-COLLECTOR VOLTAGE VEC (V)
7
5
3
2
101
Cies
7
5
3
2
100
7
5
3
2
Coes
Cres
VGE = 0V
10–1 –1
10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
COLLECTOR-EMITTER VOLTAGE VCE (V)
Sep. 2001
MITSUBISHI IGBT MODULES
CM100DU-34KA
HIGH POWER SWITCHING USE
SWITCHING TIMES (ns)
104
7
5
3
2
tf
td(off)
103
7
5
3
2
td(on)
Conditions:
VCC = 1000V
VGE = ±15V
RG = 3.1Ω
Tj = 125°C
Inductive load
102
7
5
3
2
tr
101 1
10
2
3
5 7 102
2
3
5 7 103
REVERSE RECOVERY TIME trr (ns)
REVERSE RECOVERY CURRENT lrr (A)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(TYPICAL)
103
7
5
3
2
trr
Irr
102
7
5
Conditions:
VCC = 1000V
VGE = ±15V
RG = 3.1Ω
Tj = 25°C
Inductive load
3
2
101 1
10
COLLECTOR CURRENT IC (A)
2
3
3
2
10–1
7
5
3
2
7
5
3
2
10–2
10–2
7
5
3
2
10–3
7
5
3
2
Single Pulse
TC = 25°C
10–3
10–5 2 3 5 710–4 2 3 5 7 10–3
TMIE (s)
5 7 103
3
GATE CHARGE
CHARACTERISTICS
(TYPICAL)
20
GATE-EMITTER VOLTAGE VGE (V)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j–c) (°C/W)
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
101
7 IGBT part:
5 Per unit base = Rth(j–c) = 0.14°C/ W
3 FWDi part:
2 Per unit base = Rth(j–c) = 0.24°C/ W
100
10–1
2
EMITTER CURRENT IE (A)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT part & FWDi part)
7
5
3
2
5 7 102
IC = 100A
16
VCC = 800V
12
VCC = 1000V
8
4
0
0
100
200
300
400
500
600
GATE CHARGE QG (nC)
Sep. 2001