MITSUBISHI IGBT MODULES CM100DU-34KA HIGH POWER SWITCHING USE CM100DU-34KA ● IC ................................................................... 100A ● VCES .......................................................... 1700V ● Insulated Type ● 2-elements in a pack APPLICATION General purpose inverters & Servo controls, etc OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm Tc measured point 108 93 ±0.25 14 14 C1 E2 25 25 G1 E1 62 48 6 CIRCUIT DIAGRAM 15.85 C2E1 C1 E2 C2E1 ±0.25 6 15 E2 G2 G1 E1 CM (18) (8.25) E2 G2 14 21.5 2.5 3-M6 NUTS 4-φ6. 5 MOUNTING HOLES 4 18 0.5 2.8 29 +1.0 –0.5 LABEL 0.5 0.5 0.5 4 7 7.5 18 8.5 7 22 18 Sep. 2001 MITSUBISHI IGBT MODULES CM100DU-34KA HIGH POWER SWITCHING USE MAXIMUM RATINGS (Tj = 25°C) Symbol VCES VGES IC ICM IE (Note 1) IEM (Note 1) PC (Note 3) Tj Tstg Viso Parameter Collector-emitter voltage Gate-emitter voltage Collector current Emitter current Maximum collector dissipation Junction temperature Storage temperature Isolation voltage — Torque strength — Weight Conditions G-E Short C-E Short TC = 25°C Pulse TC = 25°C Pulse TC = 25°C Ratings 1700 ±20 100 200 100 200 890 –40 ~ +150 –40 ~ +125 3500 3.5 ~ 4.5 3.5 ~ 4.5 400 (Note 2) (Note 2) Main terminal to base plate, AC 1 min. Main Terminal M6 Mounting holes M6 Typical value Unit V V A A W °C °C V N•m N•m g ELECTRICAL CHARACTERISTICS (Tj = 25°C) Symbol Test conditions Parameter Limits Typ. — Max. 1 Unit ICES Collector cutoff current VCE = VCES, VGE = 0V Min. — VGE(th) Gate-emitter threshold voltage IC = 10mA, VCE = 10V 4 5.5 7 V IGES Gate leakage current Collector-emitter saturation voltage Cies Coes Cres QG td(on) tr td(off) tf trr (Note 1) Qrr (Note 1) Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Reverse recovery time Reverse recovery charge — — — — — — — — — — — — — — — — — — — — 3.2 3.8 — — — 450 — — — — — 5.8 — 2.2 — — 0.04 — 0.5 4.0 — 14 2.4 0.75 — 350 150 550 800 600 — 4.6 — 0.14 0.24 — 0.09*3 µA VCE(sat) VGE = VGES, VCE = 0V Tj = 25°C IC = 100A, VGE = 15V Tj = 125°C VEC(Note 1) Emitter-collector voltage Rth(j-c)Q Rth(j-c)R Rth(c-f) Rth(j-c’)Q Thermal resistance*1 Contact thermal resistance Thermal resistance VCE = 10V VGE = 0V VCC = 1000V, IC = 100A, VGE = 15V VCC = 1000V, IC = 100A VGE1 = VGE2 = 15V RG = 3.1Ω, Inductive load switching operation IE = 100A IE = 100A, VGE = 0V, Tj = 25°C IE = 100A, VGE = 0V, Tj = 125°C IGBT part (1/2 module) FWDi part (1/2 module) Case to fin, Thermal compound applied*2 (1/2 module) Tc measured point is just under the chips mA V nF nC ns ns µC V V °C/W Note 1. IE, VEC, trr, Qrr, die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode. (FWDi). 2. Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed Tjmax rating. 3. Junction temperature (Tj) should not increase beyond 150°C. 4. Pulse width and repetition rate should be such as to cause negligible temperature rise. *1 : Tc measured point is indicated in OUTLINE DRAWING. *2 : Typical value is measured by using Shin-etsu Silicone “G-746”. *3 : If you use this value, Rth(f-a) should be measured just under the chips. Sep. 2001 MITSUBISHI IGBT MODULES CM100DU-34KA HIGH POWER SWITCHING USE PERFORMANCE CURVES TRANSFER CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) 200 12 15 14 COLLECTOR CURRENT (A) VGE = 20V 160 10 120 80 9 40 8 0 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) 200 11 0 2 4 6 8 120 80 40 0 4 8 12 16 20 COLLECTOR-EMITTER VOLTAGE VCE (V) GATE-EMITTER VOLTAGE VGE (V) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 6 VGE = 15V Tj = 25°C 5 Tj = 125°C 4 3 2 1 0 0 40 80 120 160 200 Tj = 25°C 8 6 IC = 200A 4 IC = 100A 2 0 IC = 40A 6 8 10 12 14 16 18 GATE-EMITTER VOLTAGE VGE (V) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) CAPACITANCE–VCE CHARACTERISTICS (TYPICAL) 20 102 7 5 3 2 CAPACITANCE Cies, Coes, Cres (nF) Tj = 25°C 102 7 5 3 2 101 7 5 3 2 100 10 COLLECTOR CURRENT IC (A) 103 EMITTER CURRENT IE (A) VCE = 10V Tj = 25°C 160 Tj = 125°C 0 10 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) COLLECTOR CURRENT IC (A) Tj = 25°C 1 2 3 4 5 EMITTER-COLLECTOR VOLTAGE VEC (V) 7 5 3 2 101 Cies 7 5 3 2 100 7 5 3 2 Coes Cres VGE = 0V 10–1 –1 10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 COLLECTOR-EMITTER VOLTAGE VCE (V) Sep. 2001 MITSUBISHI IGBT MODULES CM100DU-34KA HIGH POWER SWITCHING USE SWITCHING TIMES (ns) 104 7 5 3 2 tf td(off) 103 7 5 3 2 td(on) Conditions: VCC = 1000V VGE = ±15V RG = 3.1Ω Tj = 125°C Inductive load 102 7 5 3 2 tr 101 1 10 2 3 5 7 102 2 3 5 7 103 REVERSE RECOVERY TIME trr (ns) REVERSE RECOVERY CURRENT lrr (A) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 103 7 5 3 2 trr Irr 102 7 5 Conditions: VCC = 1000V VGE = ±15V RG = 3.1Ω Tj = 25°C Inductive load 3 2 101 1 10 COLLECTOR CURRENT IC (A) 2 3 3 2 10–1 7 5 3 2 7 5 3 2 10–2 10–2 7 5 3 2 10–3 7 5 3 2 Single Pulse TC = 25°C 10–3 10–5 2 3 5 710–4 2 3 5 7 10–3 TMIE (s) 5 7 103 3 GATE CHARGE CHARACTERISTICS (TYPICAL) 20 GATE-EMITTER VOLTAGE VGE (V) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j–c) (°C/W) 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 101 7 IGBT part: 5 Per unit base = Rth(j–c) = 0.14°C/ W 3 FWDi part: 2 Per unit base = Rth(j–c) = 0.24°C/ W 100 10–1 2 EMITTER CURRENT IE (A) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT part & FWDi part) 7 5 3 2 5 7 102 IC = 100A 16 VCC = 800V 12 VCC = 1000V 8 4 0 0 100 200 300 400 500 600 GATE CHARGE QG (nC) Sep. 2001