STMICROELECTRONICS M27C160

M27C160
16 Mbit (2 Mb x 8 or 1 Mb x 16) UV EPROM and OTP EPROM
Features
■
5V ± 10% Supply Voltage in Read Operation
■
Access Time: 50 ns
■
Byte-wide or Word-wide Configurable
■
16 Mbit Mask ROM Replacement
■
Low Power Consumption
– Active Current: 70 mA at 8 MHz
– Standby Current: 100 µA
■
Programming Voltage: 12.5V ± 0.25V
■
Programming Time: 50 µs/word
■
Electronic Signature
– Manufacturer Code: 20h
– Device Code: B1h
42
42
1
1
PDIP42 (B)
FDIP42W (F)
42
1
■
SDIP42 (S)
44
ECOPACK® packages available
1
PLCC44 (K)
April 2006
Rev 5
SO44 (M)
1/26
www.st.com
1
Contents
M27C160
Contents
1
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1
Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3
Two-line output control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4
System considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6
Presto III programming algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7
Program Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8
Program Verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.9
Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.10
Erasure operation (applies to UV EPROM) . . . . . . . . . . . . . . . . . . . . . . . 11
3
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
DC and AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1
42-pin Ceramic Frit-seal DIP with window (FDIP42WB) . . . . . . . . . . . . . 19
5.2
42-pin Plastic DIP, 600 mils width (PDIP42) . . . . . . . . . . . . . . . . . . . . . . . 20
5.3
42-lead Shrink Plastic DIP, 600 mils width (SDIP42) . . . . . . . . . . . . . . . . 21
5.4
44-lead Square Plastic Leaded Chip Carrier (PLCC44) . . . . . . . . . . . . . . 22
5.5
44-lead Plastic Small Outline, 525 mils body width (SO44) . . . . . . . . . . . 23
6
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2/26
M27C160
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Read Mode DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Programming Mode DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Read Mode AC Characteristics (-50 and -70) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Read Mode AC Characteristics (-90, -100, -120 and -150) . . . . . . . . . . . . . . . . . . . . . . . . 16
Programming Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
FDIP42WB package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PDIP42 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SDIP42 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
PLCC44 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SO44 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Ordering Information Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3/26
List of figures
M27C160
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
4/26
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
PLCC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SO Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
AC Testing Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Word-Wide Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Byte-Wide Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
BYTE Transition AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Programming and Verify Modes AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
FDIP42WB package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PDIP42 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SDIP42 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
PLCC44 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SO44 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
M27C160
1
Summary description
Summary description
The M27C160 is a 16-Mbit EPROM offered in two ranges UV (Ultraviolet Erase) and OTP
(One-Time Programmable). It is ideally suited for microprocessor systems requiring large
data or program storage and is organized as either 2 Mbit words of 8 bits or 1 Mbit word of
16 bits. The pin-out is compatible with a 16-Mbit Mask ROM.
The FDIP42W (window ceramic frit-seal package) has a transparent lid which enables the
user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be
written rapidly to the device by following the programming procedure.
For applications where the content is programmed only one time and erasure is not
required, the M27C160 is offered in PDIP42, SDIP42, PLCC44 and SO44 packages.
In order to meet environmental requirements, ST offers the M27C160 in ECOPACK®
packages. ECOPACK packages are Lead-free. The category of second Level Interconnect
is marked on the package and on the inner box label, in compliance with JEDEC Standard
JESD97. The maximum ratings related to soldering conditions are also marked on the inner
box label.
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
See Figure 1: Logic diagram and Table 1: Signal names for a brief overview of the signals
connected to this device.
Figure 1.
Logic diagram
VCC
20
Q15A–1
A0-A19
15
Q0-Q14
E
M27C160
G
BYTEVPP
VSS
AI00739B
5/26
Summary description
Table 1.
M27C160
Signal names
Signal
Description
A0-A19
Address Inputs
Q0-Q7
Data Outputs
Q8-Q14
Data Outputs
Q15A–1
Data Output / Address Input
E
Chip Enable
G
Output Enable
BYTEVPP
Byte Mode / Program Supply
VCC
Supply Voltage
VSS
Ground
NC
Not Connected Internally
PLCC Connections
A5
A6
A7
A17
A18
VSS
A19
A8
A9
A10
A11
Figure 2.
1 44
A4
A3
A2
A1
A0
E
12
M27C160
34
VSS
G
Q0
Q8
Q1
A12
A13
A14
A15
A16
BYTEVPP
VSS
Q15A–1
Q7
Q14
Q6
Q9
Q2
Q10
Q3
Q11
NC
VCC
Q4
Q12
Q5
Q13
23
AI03012
6/26
M27C160
Summary description
Figure 3.
DIP Connections
A18
A17
A7
A6
A5
A4
A3
A2
A1
A0
E
VSS
G
Q0
Q8
Q1
Q9
Q2
Q10
Q3
Q11
1
42
41
2
40
3
39
4
5
38
6
37
7
36
8
35
9
34
10
33
M27C160
11
32
12
31
13
30
14
29
15
28
16
27
17
26
18
25
19
24
20
23
21
22
A19
A8
A9
A10
A11
A12
A13
A14
A15
A16
BYTEVPP
VSS
Q15A-1
Q7
Q14
Q6
Q13
Q5
Q12
Q4
VCC
AI00740
Figure 4.
SO Connections
NC
A18
A17
A7
A6
A5
A4
A3
A2
A1
A0
E
VSS
G
Q0
Q8
Q1
Q9
Q2
Q10
Q3
Q11
1
44
2
43
42
3
41
4
5
40
6
39
7
38
8
37
9
36
10
35
11
34
M27C160
12
33
13
32
14
31
15
30
16
29
28
17
27
18
26
19
25
20
24
21
22
23
NC
A19
A8
A9
A10
A11
A12
A13
A14
A15
A16
BYTEVPP
VSS
Q15A-1
Q7
Q14
Q6
Q13
Q5
Q12
Q4
VCC
AI01264
7/26
Device description
2
M27C160
Device description
Table 2 lists the operating modes of the M27C160. A single power supply is required in the
read mode. All inputs are TTL compatible except for VPP and 12V on A9 for the Electronic
Signature.
Table 2.
Operating Modes
Mode
E
G
BYTEVPP
A9
Q15A–1
Q8-Q14
Q7-Q0
Read Word-wide
VIL
VIL
VIH
X
Data Out
Data Out
Data Out
Read Byte-wide Upper
VIL
VIL
VIL
X
VIH
Hi-Z
Data Out
Read Byte-wide Lower
VIL
VIL
VIL
X
VIL
Hi-Z
Data Out
Output Disable
VIL
VIH
X
X
Hi-Z
Hi-Z
Hi-Z
VIL Pulse
VIH
VPP
X
Data In
Data In
Data In
Verify
VIH
VIL
VPP
X
Data Out
Data Out
Data Out
Program Inhibit
VIH
VIH
VPP
X
Hi-Z
Hi-Z
Hi-Z
Standby
VIH
X
X
X
Hi-Z
Hi-Z
Hi-Z
Electronic Signature
VIL
VIL
VIH
VID
Code
Codes
Codes
Program
Note:
X = VIH or VIL, VID = 12V ± 0.5V.
2.1
Read mode
The M27C160 has two organisations, Word-wide and Byte-wide. The organisation is
selected by the signal level on the BYTEVPP pin. When BYTEVPP is at VIH the Word-wide
organisation is selected and the Q15A–1 pin is used for Q15 Data Output. When the
BYTEVPP pin is at VIL the Byte-wide organisation is selected and the Q15A–1 pin is used for
the Address Input A–1. When the memory is logically regarded as 16 bit wide, but read in
the Byte-wide organisation, then with A–1 at VIL the lower 8 bits of the 16 bit data are
selected and with A–1 at VIH the upper 8 bits of the 16 bit data are selected.
The M27C160 has two control functions, both of which must be logically active in order to
obtain data at the outputs. In addition the Word-wide or Byte- wide organisation must be
selected.
Chip Enable (E) is the power control and should be used for device selection. Output Enable
(G) is the output control and should be used to gate data to the output pins independent of
device selection. Assuming that the addresses are stable, the address access time (tAVQV)
is equal to the delay from E to output (tELQV). Data is available at the output after a delay of
tGLQV from the falling edge of G, assuming that E has been low and the addresses have
been stable for at least tAVQV-tGLQV.
2.2
Standby mode
The M27C160 has a standby mode which reduces the active current from 50mA to 100µA.
The M27C160 is placed in the standby mode by applying a CMOS high signal to the E input.
8/26
M27C160
Device description
When in the standby mode, the outputs are in a high impedance state, independent of the G
input.
2.3
Two-line output control
Because EPROMs are usually used in larger memory arrays, this product features a 2-line
control function which accommodates the use of multiple memory connection. The two line
control function allows:
●
the lowest possible memory power dissipation,
●
complete assurance that output bus contention will not occur.
For the most efficient use of these two control lines, E should be decoded and used as the
primary device selecting function, while G should be made a common connection to all
devices in the array and connected to the READ line from the system control bus. This
ensures that all deselected memory devices are in their low power standby mode and that
the output pins are only active when data is required from a particular memory device.
2.4
System considerations
The power switching characteristics of Advanced CMOS EPROMs require careful
decoupling of the supplies to the devices. The supply current ICC has three segments of
importance to the system designer: the standby current, the active current and the transient
peaks that are produced by the falling and rising edges of E.
The magnitude of the transient current peaks is dependent on the capacitive and inductive
loading of the device outputs. The associated transient voltage peaks can be suppressed by
complying with the two line output control and by properly selected decoupling capacitors. It
is recommended that a 0.1µF ceramic capacitor is used on every device between VCC and
VSS. This should be a high frequency type of low inherent inductance and should be placed
as close as possible to the device. In addition, a 4.7µF electrolytic capacitor should be used
between VCC and VSS for every eight devices.
This capacitor should be mounted near the power supply connection point. The purpose of
this capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.
2.5
Programming
When delivered (and after each erasure for UV EPROM), all bits of the M27C160 are in the
'1' state. Data is introduced by selectively programming '0's into the desired bit locations.
Although only '0's will be programmed, both '1's and '0's can be present in the data word.
The only way to change a '0' to a '1' is by die exposure to ultraviolet light (UV EPROM). The
M27C160 is in the programming mode when VPP input is at 12.5V, G is at VIH and E is
pulsed to VIL. The data to be programmed is applied to 16 bits in parallel to the data output
pins. The levels required for the address and data inputs are TTL. VCC is specified to be
6.25V ± 0.25V.
2.6
Presto III programming algorithm
The Presto III Programming Algorithm allows the whole array to be programed with a
guaranteed margin in a typical time of 52.5 seconds. Programming with Presto III consists of
9/26
Device description
M27C160
applying a sequence of 50µs program pulses to each word until a correct verify occurs (see
Figure 5). During programing and verify operation a Margin mode circuit is automatically
activated to guarantee that each cell is programed with enough margin. No overprogram
pulse is applied since the verify in Margin mode provides the necessary margin to each
programmed cell.
Figure 5.
Programming Flowchart
VCC = 6.25V, VPP = 12.5V
n=0
E = 50µs Pulse
NO
++n
= 25
YES
FAIL
NO
VERIFY
++ Addr
YES
Last
Addr
NO
YES
CHECK ALL WORDS
BYTEVPP =VIH
1st: VCC = 6V
2nd: VCC = 4.2V
AI01044B
2.7
Program Inhibit
Programming of multiple M27C160s in parallel with different data is also easily
accomplished. Except for E, all like inputs including G of the parallel M27C160 may be
common. A TTL low level pulse applied to a M27C160's E input and VPP at 12.5V, will
program that M27C160. A high level E input inhibits the other M27C160s from being
programmed.
2.8
Program Verify
A verify (read) should be performed on the programmed bits to determine that they were
correctly programmed. The verify is accomplished with E at VIH and G at VIL, VPP at 12.5V
and VCC at 6.25V.
2.9
Electronic Signature
The Electronic Signature (ES) mode allows the reading out of a binary code from an
EPROM that will identify its manufacturer and type. This mode is intended for use by
programming equipment to automatically match the device to be programmed with its
corresponding programming algorithm. The ES mode is functional in the 25°C ± 5°C
10/26
M27C160
Device description
ambient temperature range that is required when programming the M27C160. To activate
the ES mode, the programming equipment must force 11.5V to 12.5V on address line A9 of
the M27C160, with VPP = VCC = 5V. Two identifier bytes may then be sequenced from the
device outputs by toggling address line A0 from VIL to VIH. All other address lines must be
held at VIL during Electronic Signature mode. Byte 0 (A0 = VIL) represents the manufacturer
code and byte 1 (A0 = VIH) the device identifier code. For the STMicroelectronics M27C160,
these two identifier bytes are given in Table 3 and can be read-out on outputs Q7 to Q0.
Table 3.
Electronic Signature
Identifier
A0
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0
Hex Data
Manufacturer’s Code
VIL
0
0
1
0
0
0
0
0
20h
Device Code
VIH
1
0
1
1
0
0
0
1
B1h
Note:
Outputs Q15-Q8 are set to '0'.
2.10
Erasure operation (applies to UV EPROM)
The erasure characteristics of the M27C160 is such that erasure begins when the cells are
exposed to light with wavelengths shorter than approximately 4000 Å. It should be noted
that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 Å
range. Research shows that constant exposure to room level fluorescent lighting could
erase a typical M27C160 in about 3 years, while it would take approximately 1 week to
cause erasure when exposed to direct sunlight. If the M27C160 is to be exposed to these
types of lighting conditions for extended periods of time, it is suggested that opaque labels
be put over the M27C160 window to prevent unintentional erasure. The recommended
erasure procedure for M27C160 is exposure to short wave ultraviolet light which has a
wavelength of 2537 Å. The integrated dose (i.e. UV intensity x exposure time) for erasure
should be a minimum of 30 W-sec/cm2. The erasure time with this dosage is approximately
30 to 40 minutes using an ultraviolet lamp with 12000 µW/cm2 power rating. The M27C160
should be placed within 2.5cm (1 inch) of the lamp tubes during the erasure. Some lamps
have a filter on their tubes which should be removed before erasure.
11/26
Maximum ratings
3
M27C160
Maximum ratings
Table 4.
Absolute Maximum Ratings (1)
Symbol
Value
Unit
Ambient Operating Temperature (2)
–40 to 125
°C
TBIAS
Temperature Under Bias
–50 to 125
°C
TSTG
Storage Temperature
–65 to 150
°C
VIO (3)
Input or Output Voltage (except A9)
–2 to 7
V
Supply Voltage
–2 to 7
V
–2 to 13.5
V
–2 to 14
V
TA
VCC
VA9
(3)
VPP
Parameter
A9 Voltage
Program Supply Voltage
1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute
Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and
operation of the device at these or any other conditions above those indicated in the Operating sections of
this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods
may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality
documents.
2. Depends on range.
3. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than
20ns.
Maximum DC voltage on Output is VCC +0.5V with possible overshoot to VCC +2V for a period less than
20ns.
12/26
M27C160
4
DC and AC characteristics
DC and AC characteristics
TA = 0 to 70 °C or –40 to 85 °C; VCC = 5V ± 5% or 5V ± 10%; VPP = VCC
Table 5.
Symbol
Read Mode DC Characteristics (1)
Parameter
Test Condition
Min.
Max.
Unit
ILI
Input Leakage Current
0V ≤ VIN ≤ VCC
±1
µA
ILO
Output Leakage Current
0V ≤ VOUT ≤ VCC
±10
µA
E = VIL, G = VIL,
IOUT = 0mA, f = 8MHz
70
mA
E = VIL, G = VIL,
IOUT = 0mA, f = 5MHz
50
mA
E = VIH
1
mA
ICC
Supply Current
ICC1
Supply Current (Standby) TTL
ICC2
Supply Current (Standby) CMOS E > VCC – 0.2V
100
µA
IPP
Program Current
10
µA
VIL
Input Low Voltage
–0.3
0.8
V
Input High Voltage
2
VCC + 1
V
0.4
V
VIH
(2)
VPP = VCC
VOL
Output Low Voltage
IOL = 2.1mA
VOH
Output High Voltage TTL
IOH = –400µA
2.4
V
1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
2. Maximum DC voltage on Output is VCC +0.5V.
TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.5V ± 0.25V
Table 6.
Symbol
Programming Mode DC Characteristics (1)
Parameter
Test Condition
Min.
0 ≤ VIN ≤ VCC
Max.
Unit
±1
µA
50
mA
50
mA
ILI
Input Leakage Current
ICC
Supply Current
IPP
Program Current
VIL
Input Low Voltage
–0.3
0.8
V
VIH
Input High Voltage
2.4
VCC +
0.5
V
VOL
Output Low Voltage
IOL = 2.1mA
0.4
V
VOH
Output High Voltage TTL
IOH = –2.5mA
VID
A9 Voltage
E = VIL
3.5
11.5
V
12.5
V
1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
13/26
DC and AC characteristics
Table 7.
M27C160
Capacitance (1)
Symbol
CIN
COUT
Parameter
Test Condition
Min.
Max.
Unit
Input Capacitance (except BYTEVPP)
VIN = 0V
10
pF
Input Capacitance (BYTEVPP)
VIN = 0V
120
pF
VOUT = 0V
12
pF
Output Capacitance
1. Sampled only, not 100% tested.
TA = 25 °C, f = 1 MHz
Table 8.
AC Measurement Conditions
Parameter
High Speed
Standard
Input Rise and Fall Times
≤ 10ns
≤ 20ns
Input Pulse Voltages
0 to 3V
0.4V to 2.4V
1.5V
0.8V and 2V
Input and Output Timing Ref. Voltages
Figure 6.
AC Testing Input Output Waveform
High Speed
3V
1.5V
0V
Standard
2.4V
2.0V
0.8V
0.4V
AI01822
Figure 7.
AC Testing Load Circuit
1.3V
1N914
3.3kΩ
DEVICE
UNDER
TEST
OUT
CL
CL = 30pF for High Speed
CL = 100pF for Standard
CL includes JIG capacitance
14/26
AI01823B
M27C160
DC and AC characteristics
TA = 0 to 70 °C or –40 to 85 °C; VCC = 5V ± 5% or 5V ± 10%; VPP = VCC
Table 9.
Read Mode AC Characteristics (1) (-50 and -70)
M27C160
Symbol
Alt
Parameter
Test
Condition
-50 (2)
Min.
tAVQV
tACC Address Valid to Output Valid E = VIL, G = VIL
Max.
-70 (2)
Min.
Unit
Max.
50
70
ns
tBHQV
tST
BYTE High to Output Valid
E = VIL, G = VIL
50
70
ns
tELQV
tCE
Chip Enable Low to Output
Valid
G = VIL
50
70
ns
tGLQV
tOE
Output Enable Low to Output
E = VIL
Valid
30
35
ns
tBLQZ (3)
tSTD
BYTE Low to Output Hi-Z
E = VIL, G = VIL
30
30
ns
tEHQZ (3)
tDF
Chip Enable High to Output
Hi-Z
G = VIL
0
25
0
25
ns
tGHQZ (3)
tDF
Output Enable High to
OutputHi-Z
E = VIL
0
25
0
25
ns
tAXQX
tOH
Address Transition to Output
E = VIL, G = VIL
Transition
5
5
ns
tBLQX
tOH
BYTE Low to
Output Transition
5
5
ns
E = VIL, G = VIL
1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
2. Speed obtained with High Speed AC measurement conditions.
3. Sampled only, not 100% tested.
15/26
DC and AC characteristics
Table 10.
M27C160
Read Mode AC Characteristics(1) (-90, -100, -120 and -150)
M27C160
Symbol
Alt
Test
Condition
Parameter
-90 (2)
-100 (2)
-120/-150 (2) Unit
Min. Max. Min. Max. Min. Max.
Address Valid to Output
Valid
E = VIL,
G = VIL
90
100
120
ns
tST
BYTE High to Output
Valid
E = VIL,
G = VIL
90
100
120
ns
tELQV
tCE
Chip Enable Low to
Output Valid
G = VIL
90
100
120
ns
tGLQV
tOE
Output Enable Low to
Output Valid
E = VIL
45
50
60
ns
tBLQZ (3)
tSTD
BYTE Low to Output Hi- E = VIL,
Z
G = VIL
30
40
50
ns
tEHQZ (3)
tDF
Chip Enable High to
Output Hi-Z
G = VIL
0
30
0
40
0
50
ns
tGHQZ (3)
tDF
Output Enable High to
OutputHi-Z
E = VIL
0
30
0
40
0
50
ns
tAXQX
tOH
Address Transition to
Output Transition
E = VIL,
G = VIL
5
5
5
ns
tBLQX
tOH
BYTE Low to
Output Transition
E = VIL,
G = VIL
5
5
5
ns
tAVQV
tACC
tBHQV
1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
2. Speed obtained with High Speed AC measurement conditions.
3. Sampled only, not 100% tested.
Figure 8.
Word-Wide Read Mode AC Waveforms
A0-A19
VALID
tAVQV
VALID
tAXQX
E
tGLQV
tEHQZ
G
tELQV
Q0-Q15
tGHQZ
Hi-Z
AI00741B
Note:
16/26
BYTEVPP = VIH.
M27C160
DC and AC characteristics
Figure 9.
Byte-Wide Read Mode AC Waveforms
VALID
A–1,A0-A19
VALID
tAVQV
tAXQX
E
tEHQZ
tGLQV
G
tGHQZ
tELQV
Hi-Z
Q0-Q7
AI00742B
Note:
BYTEVPP = VIL.
Figure 10. BYTE Transition AC Waveforms
VALID
A0-A19
A–1
VALID
tAXQX
tAVQV
BYTEVPP
tBHQV
DATA OUT
Q0-Q7
tBLQX
Hi-Z
Q8-Q15
DATA OUT
tBLQZ
AI00743C
Note:
Chip Enable (E) and Output Enable (G) = VIL.
17/26
DC and AC characteristics
M27C160
TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.5V ± 0.25V
Table 11.
Programming Mode AC Characteristics(1)
Symbol
Alt
tAVEL
tAS
Address Valid to Chip Enable Low
2
µs
tQVEL
tDS
Input Valid to Chip Enable Low
2
µs
tVPHAV
tVPS
VPP High to Address Valid
2
µs
tVCHAV
tVCS
VCC High to Address Valid
2
µs
tELEH
tPW
Chip Enable Program Pulse Width
45
tEHQX
tDH
Chip Enable High to Input Transition
2
µs
tQXGL
tOES
Input Transition to Output Enable Low
2
µs
tGLQV
tOE
Output Enable Low to Output Valid
tDFP
Output Enable High to Output Hi-Z
0
tAH
Output Enable High to Address
Transition
0
tGHQZ
(2)
tGHAX
Parameter
Test Condition
Min
Max
55
Unit
µs
120
ns
130
ns
ns
1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
2. Sampled only, not 100% tested.
Figure 11. Programming and Verify Modes AC Waveforms
A0-A19
VALID
tAVEL
DATA IN
Q0-Q15
tQVEL
DATA OUT
tEHQX
BYTEVPP
tVPHAV
tGLQV
tGHQZ
VCC
tVCHAV
tGHAX
E
tELEH
tQXGL
G
PROGRAM
VERIFY
AI00744
18/26
M27C160
Package mechanical data
5
Package mechanical data
5.1
42-pin Ceramic Frit-seal DIP with window (FDIP42WB)
Figure 12. FDIP42WB package outline
A2
A1
B1
B
A
L
α
e
C
eA
D2
eB
D
S
N
K
E1
E
K1
1
FDIPW-C
Table 12.
FDIP42WB package mechanical data
millimeters
inches
Symbol
Min.
Typ.
A
Max.
Min.
Typ.
5.71
Max.
0.225
A1
0.50
1.78
0.020
0.070
A2
3.90
5.08
0.154
0.200
B
0.40
0.55
0.016
0.022
B1
1.27
1.52
0.050
0.060
C
0.22
0.31
0.009
0.012
D
54.81
D2
2.158
50.80
E
2.000
15.24
0.600
E1
14.50
14.90
0.571
0.587
e
2.29
2.79
0.090
0.110
eA
15.40
15.80
0.606
0.622
eB
16.17
18.32
0.637
0.721
K
9.32
9.47
0.367
0.373
K1
11.30
11.55
0.445
0.455
L
3.18
4.10
0.125
0.161
S
1.52
2.49
0.060
0.098
α
4°
15°
4°
15°
N
42
42
19/26
Package mechanical data
5.2
M27C160
42-pin Plastic DIP, 600 mils width (PDIP42)
Figure 13. PDIP42 package outline
A2
A1
B1
B
A
L
α
e1
eA
D2
C
eB
D
S
N
E1
E
1
PDIP
Table 13.
PDIP42 package mechanical data
millimeters
inches
Symbol
Min.
Typ.
A
Min.
Typ.
5.08
Max.
0.200
A1
0.25
A2
3.56
4.06
0.140
0.160
B
0.38
0.53
0.015
0.021
0.010
B1
1.27
1.65
0.050
0.065
C
0.20
0.36
0.008
0.014
D
52.20
52.71
2.055
2.075
D2
50.80
E
E1
2.000
15.24
13.59
0.600
13.84
0.535
0.545
e1
2.54
0.100
eA
14.99
0.590
eB
15.24
17.78
0.600
0.700
L
3.18
3.43
0.125
0.135
S
0.86
1.37
0.034
0.054
α
0°
10°
0°
10°
N
20/26
Max.
42
42
M27C160
5.3
Package mechanical data
42-lead Shrink Plastic DIP, 600 mils width (SDIP42)
Figure 14. SDIP42 package outline
A2
A1
b2
b
A
L
e
eA
D2
c
eB
D
S
N
E1
E
1
SDIP
Table 14.
SDIP42 package mechanical data
millimeters
inches
Symbol
Min.
Typ.
A
Max.
Min.
Typ.
5.08
Max.
0.200
A1
0.51
A2
3.05
3.81
4.57
0.120
0.150
0.180
b
0.38
0.46
0.56
0.015
0.018
0.022
b2
0.89
1.02
1.14
0.035
0.040
0.045
c
0.23
0.25
0.38
0.009
0.010
0.015
D
36.58
36.83
37.08
1.440
1.450
1.460
D2
0.020
35.60
e
1.78
E
15.24
E1
12.70
eA
13.72
0.070
16.00
0.600
14.48
0.500
15.24
eB
L
1.402
0.630
0.540
0.600
18.54
2.54
3.30
0.570
3.56
0.730
0.100
0.130
S
0.64
0.025
N
42
42
0.140
21/26
Package mechanical data
5.4
M27C160
44-lead Square Plastic Leaded Chip Carrier (PLCC44)
Figure 15. PLCC44 package outline
D
D1
A1
c
1 N
B1
E3
e
E2
E1 E
B
D3
A2
A
CP
D2
PLCC-B
Table 15.
PLCC44 package mechanical data
millimeters
inches
Symbol
Min.
Typ.
Min.
Typ.
Max.
A
4.200
4.570
0.1654
0.1799
A1
2.290
3.040
0.0902
0.1197
A2
3.650
3.700
0.1437
0.1457
B
0.331
0.533
0.0130
0.0210
B1
0.661
0.812
0.0260
0.0320
CP
0.101
c
0.0040
0.510
0.0201
D
17.400
17.650
0.6850
0.6949
D1
16.510
16.662
0.6500
0.6560
D2
14.990
16.000
0.5902
D3
22/26
Max.
12.700
0.6299
0.5000
E
17.400
17.650
0.6850
0.6949
E1
16.510
16.660
0.6500
0.6559
E2
14.990
16.000
0.5902
0.6299
E3
12.700
0.5000
e
1.270
0.0500
N
44
44
M27C160
5.5
Package mechanical data
44-lead Plastic Small Outline, 525 mils body width (SO44)
Figure 16. SO44 package outline
A
A2
C
b
e
CP
D
N
E
EH
1
A1
α
L
SO-d
Table 16.
SO44 package mechanical data
millimeters
inches
Symbol
Min.
Typ.
A
Max.
Min.
Typ.
2.80
Max.
0.1102
A1
0.10
0.0039
A2
2.20
2.30
2.40
0.0866
0.0906
0.0945
b
0.35
0.40
0.50
0.0138
0.0157
0.0197
C
0.10
0.15
0.20
0.0039
0.0059
0.0079
CP
0.08
0.0030
D
28.00
28.20
28.40
1.1024
1.1102
1.1181
E
13.20
13.30
13.50
0.5197
0.5236
0.5315
EH
15.75
16.00
16.25
0.6201
0.6299
0.6398
e
1.27
0.0500
L
0.80
0.0315
α
N
8°
44
8°
44
23/26
Part numbering
6
M27C160
Part numbering
Table 17.
Ordering Information Scheme
Example:
M27C160
-70 X
M
1
Device Type
M27
Supply Voltage
C = 5V
Device Function
160 = 16 Mbit (2mb x 8 or 1Mb x 16)
Speed
-50 (1) = 50 ns
-70 (1) = 70 ns
-90 = 90 ns
-100 = 100 ns
-120 = 120 ns
-150 = 150 ns
VCC Tolerance
blank = ± 10%
X = ± 5%
Package
F = FDIP42W
B = PDIP42
S = SDIP42
K = PLCC44
M = SO44
Temperature Range
1 = 0 to 70 °C
6 = –40 to 85 °C
1. High Speed, see AC Characteristics section for further information.
For a list of available options (Speed, Package, etc...) or for further information on any
aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.
24/26
M27C160
7
Revision history
Revision history
Table 18.
Document revision history
Date
Revision
Changes
January 1999
1
First Issue
20-Sep-00
2
AN620 Reference removed
19-Jul-01
3
SDIP42 package added
17-Jan-02
4
50ns speed class added, SO44 package mechanical data and drawing
clarified
12-Apr-2006
5
Converted to new template. Updated ECOPACK® information.
Removed Tape & Reel info.
25/26
M27C160
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
26/26