STMICROELECTRONICS M27W201-80F6

M27W201
2 Mbit (256Kb x 8) Low Voltage UV EPROM and OTP EPROM
■
2.7V to 3.6V LOW VOLTAGE in READ
OPERATION
■
ACCESS TIME:
– 70ns at VCC = 3.0V to 3.6V
32
32
– 80ns at VCC = 2.7V to 3.6V
■
PIN COMPATIBLE with M27C2001
■
LOW POWER CONSUMPTION:
1
1
FDIP32W (F)
PDIP32 (B)
– 15µA max Standby Current
– 15mA max Active Current at 5MHz
■
PROGRAMMING TIME 100µs/byte
■
HIGH RELIABILITY CMOS TECHNOLOGY
– 2,000V ESD Protection
PLCC32 (K)
TSOP32 (N)
8 x 20 mm
– 200mA Latchup Protection Immunity
■
ELECTRONIC SIGNATURE
– Manufacturer Code: 20h
– Device Code: 61h
DESCRIPTION
The M27W201 is a low voltage 2 Mbit EPROM offered in the two range UV (ultra violet erase) and
OTP (one time programmable). It is ideally suited
for microprocessor systems requiring large data or
program storage and is organised as 262,144 by 8
bits.
The M27W201 operates in the read mode with a
supply voltage as low as 2.7V at –40 to 85°C temperature range. The decrease in operating power
allows either a reduction of the size of the battery
or an increase in the time between battery recharges.
The FDIP32W (window ceramic frit-seal package)
has a transparent lid which allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written to the
device by following the programming procedure.
For application where the content is programmed
only one time and erasure is not required, the
M27W201 is offered in PDIP32, PLCC32 and
TSOP32 (8 x 20mm and 8 x 14mm) packages.
TSOP32 (NZ)
8 x 14 mm
Figure 1. Logic Diagram
VCC
VPP
18
8
A0-A17
P
Q0-Q7
M27W201
E
G
VSS
AI01359
October 2001
1/16
M27W201
Figure 2A. DIP Connections
VCC
P
A17
A14
A13
A8
A9
A11
G
A10
E
Q7
Q6
Q5
Q4
Q3
A12
A15
A16
VPP
VCC
P
A17
1 32
A7
A6
A5
A4
A3
A2
A1
A0
Q0
9
M27W201
17
AI01360
AI02675
Figure 2C. TSOP Connections
A11
A9
A8
A13
A14
A17
P
VCC
VPP
A16
A15
A12
A7
A6
A5
A4
1
8
9
16
Table 1. Signal Names
32
M27W201
25
24
17
AI01361
2/16
25
A14
A13
A8
A9
A11
G
A10
E
Q7
VSS
Q3
Q4
Q5
Q6
32
1
31
2
30
3
29
4
28
5
27
6
26
7
25
8
M27W201
24
9
23
10
22
11
21
12
20
13
19
14
18
15
17
16
Q1
Q2
VPP
A16
A15
A12
A7
A6
A5
A4
A3
A2
A1
A0
Q0
Q1
Q2
VSS
Figure 2B. LCC Connections
G
A10
E
Q7
Q6
Q5
Q4
Q3
VSS
Q2
Q1
Q0
A0
A1
A2
A3
A0-A17
Address Inputs
Q0-Q7
Data Outputs
E
Chip Enable
G
Output Enable
P
Program
VPP
Program Supply
VCC
Supply Voltage
VSS
Ground
M27W201
Table 2. Absolute Maximum Ratings (1)
Symbol
Parameter
Value
Unit
Ambient Operating Temperature (3)
–40 to 125
°C
TBIAS
Temperature Under Bias
–50 to 125
°C
TSTG
Storage Temperature
–65 to 150
°C
VIO (2)
Input or Output Voltage (except A9)
–2 to 7
V
Supply Voltage
–2 to 7
V
–2 to 13.5
V
–2 to 14
V
TA
VCC
VA9 (2)
A9 Voltage
VPP
Program Supply Voltage
Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC
voltage on Output is VCC +0.5V with possible overshoot to VCC +2V for a period less than 20ns.
3. Depends on range.
Table 3. Operating Modes
E
G
P
A9
VPP
Q7-Q0
Read
VIL
VIL
X
X
VCC or VSS
Data Out
Output Disable
VIL
VIH
X
X
VCC or VSS
Hi-Z
Program
VIL
VIH
VIL Pulse
X
VPP
Data In
Verify
VIL
VIL
VIH
X
VPP
Data Out
Program Inhibit
VIH
X
X
X
VPP
Hi-Z
Standby
VIH
X
X
X
VCC or VSS
Hi-Z
Electronic Signature
VIL
VIL
VIH
VID
VCC
Codes
Mode
Note: X = VIH or VIL, VID = 12V ± 0.5V.
Table 4. Electronic Signature
Identifier
A0
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0
Hex Data
Manufacturer’s Code
VIL
0
0
1
0
0
0
0
0
20h
Device Code
VIH
0
1
1
0
0
0
0
1
61h
3/16
M27W201
Table 5. AC Measurement Conditions
High Speed
Standard
Input Rise and Fall Times
≤ 10ns
≤ 20ns
Input Pulse Voltages
0 to 3V
0.4V to 2.4V
1.5V
0.8V and 2V
Input and Output Timing Ref. Voltages
Figure 3. AC Testing Input Output Waveform
Figure 4. AC Testing Load Circuit
1.3V
High Speed
1N914
3V
1.5V
3.3kΩ
0V
DEVICE
UNDER
TEST
Standard
2.4V
OUT
CL
2.0V
0.8V
0.4V
CL = 30pF for High Speed
AI01822
CL = 100pF for Standard
CL includes JIG capacitance
AI01823B
Table 6. Capacitance (1) (TA = 25 °C, f = 1 MHz)
Symbol
CIN
COUT
Parameter
Input Capacitance
Output Capacitance
Test Condition
Min
Max
Unit
VIN = 0V
6
pF
VOUT = 0V
12
pF
Note: 1. Sampled only, not 100% tested.
DEVICE OPERATION
The operating modes of the M27W201 are listed in
the Operating Modes table. A single power supply
is required in the read mode. All inputs are TTL
levels except for VPP and 12V on A9 for Electronic
Signature.
Read Mode
The M27W201 has two control functions, both of
which must be logically active in order to obtain
data at the outputs. Chip Enable (E) is the power
control and should be used for device selection.
Output Enable (G) is the output control and should
be used to gate data to the output pins, independent of device selection. Assuming that the addresses are stable, the address access time
4/16
(tAVQV) is equal to the delay from E to output
(tELQV). Data is available at the output after a delay
of tGLQV from the falling edge of G, assuming that
E has been low and the addresses have been stable for at least tAVQV-tGLQV.
Standby Mode
The M27W201 has a standby mode which reduces the supply current from 15mA to 15µA with low
voltage operation VCC ≤ 3.6V, see Read Mode DC
Characteristics table for details.The M27W201 is
placed in the standby mode by applying a CMOS
high signal to the E input. When in the standby
mode, the outputs are in a high impedance state,
independent of the G input.
M27W201
Table 7. Read Mode DC Characteristics (1)
(TA = –40 to 85 °C; VCC = 2.7V to 3.6V; VPP = VCC)
Symbol
Parameter
ILI
Input Leakage Current
ILO
Output Leakage Current
ICC
Supply Current
ICC1
Supply Current (Standby) TTL
ICC2
Supply Current (Standby) CMOS
Test Condition
Min
Max
Unit
0V ≤ VIN ≤ VCC
±10
µA
0V ≤ VOUT ≤ VCC
±10
µA
E = VIL, G = VIL,
IOUT = 0mA, f = 5MHz
VCC ≤ 3.6V
15
mA
E = VIH
1
mA
E > VCC – 0.2V
VCC ≤ 3.6V
15
µA
VPP = VCC
10
µA
IPP
Program Current
VIL
Input Low Voltage
–0.6
0.2 VCC
V
VIH (2)
Input High Voltage
0.7 VCC
VCC + 0.5
V
VOL
Output Low Voltage
0.4
V
VOH
Output High Voltage TTL
IOL = 2.1mA
IOH = –400µA
2.4
V
Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
2. Maximum DC voltage on Output is VCC +0.5V.
Two Line Output Control
Because EPROMs are usually used in larger
memory arrays, this product features a 2 line control function which accommodates the use of multiple memory connection. The two line control
function allows:
a. the lowest possible memory power dissipation,
b. complete assurance that output bus contention
will not occur.
For the most efficient use of these two control
lines, E should be decoded and used as the primary device selecting function, while G should be
made a common connection to all devices in the
array and connected to the READ line from the
system control bus. This ensures that all deselected memory devices are in their low power standby
mode and that the output pins are only active
when data is required from a particular memory
device.
System Considerations
The power switching characteristics of Advanced
CMOS EPROMs require careful decoupling of the
devices. The supply current, ICC, has three segments that are of interest to the system designer:
the standby current level, the active current level,
and transient current peaks that are produced by
the falling and rising edges of E. The magnitude of
the transient current peaks is dependent on the
capacitive and inductive loading of the device at
the output.
The associated transient voltage peaks can be
suppressed by complying with the two line output
control and by properly selected decoupling capacitors. It is recommended that a 0.1µF ceramic
capacitor be used on every device between VCC
and VSS. This should be a high frequency capacitor of low inherent inductance and should be
placed as close to the device as possible. In addition, a 4.7µF bulk electrolytic capacitor should be
used between VCC and VSS for every eight devices. The bulk capacitor should be located near the
power supply connection point. The purpose of the
bulk capacitor is to overcome the voltage drop
caused by the inductive effects of PCB traces.
5/16
M27W201
Table 8. Read Mode AC Characteristics (1)
(TA = –40 to 85 °C; VCC = 2.7V to 3.6V; VPP = VCC)
M27W201
Symbol
Alt
Parameter
-100
(-120/-150/-200)
-80 (3)
Test
Condition
Unit
VCC = 3.0V to 3.6V VCC = 2.7V to 3.6V VCC = 2.7V to 3.6V
Min
Max
Min
Max
Min
Max
tAVQV
tACC
Address Valid to
Output Valid
E = VIL,
G = VIL
70
80
100
ns
tELQV
tCE
Chip Enable Low to
Output Valid
G = VIL
70
80
100
ns
tGLQV
tOE
Output Enable Low
to Output Valid
E = VIL
40
50
60
ns
tEHQZ (2)
tDF
Chip Enable High to
Output Hi-Z
G = VIL
0
40
0
50
0
60
ns
tGHQZ (2)
tDF
Output Enable High
to Output Hi-Z
E = VIL
0
40
0
50
0
60
ns
tAXQX
tOH
Address Transition
to Output Transition
E = VIL,
G = VIL
0
0
0
ns
Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
2. Sampled only, not 100% tested.
3. Speed obtained with High Speed AC measurement conditions.
Figure 5. Read Mode AC Waveforms
A0-A17
VALID
tAVQV
VALID
tAXQX
E
tGLQV
tEHQZ
G
tELQV
Q0-Q7
tGHQZ
Hi-Z
AI00719B
6/16
M27W201
Table 9. Programming Mode DC Characteristics (1)
(TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V)
Symbol
Parameter
Test Condition
Min
0 ≤ VIN ≤ VCC
Max
Unit
±10
µA
50
mA
50
mA
ILI
Input Leakage Current
ICC
Supply Current
IPP
Program Current
VIL
Input Low Voltage
–0.3
0.8
V
VIH
Input High Voltage
2
VCC + 0.5
V
VOL
Output Low Voltage
0.4
V
VOH
Output High Voltage TTL
VID
A9 Voltage
E = VIL
IOL = 2.1mA
IOH = –400µA
2.4
V
11.5
12.5
V
Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
Table 10. Programming Mode AC Characteristics (1)
(TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V)
Symbol
Alt
Parameter
Test Condition
Min
Max
tAVPL
tAS
Address Valid to Program Low
2
µs
tQVPL
tDS
Input Valid to Program Low
2
µs
tVPHPL
tVPS
VPP High to Program Low
2
µs
tVCHPL
tVCS
VCC High to Program Low
2
µs
tELPL
tCES
Chip Enable Low to Program Low
2
µs
tPLPH
tPW
Program Pulse Width
95
tPHQX
tDH
Program High to Input Transition
2
µs
tQXGL
tOES
Input Transition to Output Enable Low
2
µs
tGLQV
tOE
Output Enable Low to Output Valid
tGHQZ (2)
tDFP
Output Enable High to Output Hi-Z
0
tGHAX
tAH
Output Enable High to Address
Transition
0
105
Unit
µs
100
ns
130
ns
ns
Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
2. Sampled only, not 100% tested.
Programming
The M27W201 has been designed to be fully compatible with the M27C2001 and has the same electronic signature. As a result the M27W201 can be
programmed as the M27C2001 on the same programming equipment applying 12.75V on VPP and
6.25V on VCC by the use of the same PRESTO II
algorithm.
When delivered (and after each ‘1’s erasure for UV
EPROM), all bits of the M27W201 are in the '1'
state.Data is introduced by selectively program-
ming '0's into the desired bit locations. Although
only '0's will be programmed, both '1's and '0's can
be present in the data word. The only way to
change a ‘0’ to a ‘1’ is by die exposure to ultraviolet
light (UV EPROM). The M27W201 is in the programming mode when VPP input is at 12.75V, E is
at VIL and P is pulsed to VIL. The data to be programmed is applied to 8 bits in parallel to the data
output pins. The levels required for the address
and data inputs are TTL. VCC is specified to be
6.25V ± 0.25V.
7/16
M27W201
Figure 6. Programming and Verify Modes AC Waveforms
VALID
A0-A17
tAVPL
Q0-Q7
DATA IN
tQVPL
DATA OUT
tPHQX
VPP
tVPHPL
tGLQV
tGHQZ
VCC
tVCHPL
tGHAX
E
tELPL
P
tPLPH
tQXGL
G
PROGRAM
VERIFY
AI00720
Figure 7. Programming Flowchart
VCC = 6.25V, VPP = 12.75V
n=0
P = 100µs Pulse
NO
++n
= 25
YES
FAIL
NO
VERIFY
++ Addr
YES
Last
Addr
NO
YES
CHECK ALL BYTES
1st: VCC = 5V
2nd: VCC = 2.7V
AI00715D
8/16
PRESTO II Programming Algorithm
PRESTO II Programming Algorithm allows the
whole array to be programmed with a guaranteed
margin, in a typical time of 26.5 seconds. Programming with PRESTO II consists of applying a
sequence of 100µs program pulses to each byte
until a correct verify occurs (see Figure 7). During
programming and verify operation, a MARGIN
MODE circuit is automatically activated in order to
guarantee that each cell is programmed with
enough margin. No overprogram pulse is applied
since the verify in MARGIN MODE at VCC much
higher than 3.6V, provides the necessary margin
to each programmed cell.
Program Inhibit
Programming of multiple M27W201s in parallel
with different data is also easily accomplished. Except for E, all like inputs including G of the parallel
M27W201 may be common. A TTL low level pulse
applied to a M27W201's P input, with E low and
VPP at 12.75V, will program that M27W201. A high
level E input inhibits the other M27W201s from being programmed.
Program Verify
A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with E
and G at VIL, P at VIH, VPP at 12.75V and VCC at
6.25V.
M27W201
Electronic Signature
The Electronic Signature (ES) mode allows the
reading out of a binary code from an EPROM that
will identify its manufacturer and type. This mode
is intended for use by programming equipment to
automatically match the device to be programmed
with its corresponding programming algorithm.
The ES mode is functional in the 25°C ± 5°C ambient temperature range that is required when programming the M27W201. To activate the ES
mode, the programming equipment must force
11.5V to 12.5V on address line A9 of the
M27W201 with VPP = VCC = 5V. Two identifier
bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All
other address lines must be held at VIL during
Electronic Signature mode. Byte 0 (A0 = VIL)
repres ents the manufacturer code and byte 1
(A0 = VIH) the device identifier code. For the STMicroelectronics M27W201, these two identifier
bytes are given in Table 4 and can be read-out on
outputs Q7 to Q0. Note that the M27W201 and
M27C2001 have the same identifier byte.
ERASURE OPERATION (applies to UV EPROM)
The erasure characteristics of the M27W201 are
such that erasure begins when the cells are exposed to light with wavelengths shorter than approximately 4000 Å. It should be noted that
sunlight and some type of fluorescent lamps have
wavelengths in the 3000-4000 Å range. Data
shows that constant exposure to room level fluorescent lighting could erase a typical M27W201 in
about 3 years, while it would take approximately 1
week to cause erasure when exposed to direct
sunlight. If the M27W201 is to be exposed to these
types of lighting conditions for extended periods of
time, it is suggested that opaque labels be put over
the M27W201 window to prevent unintentional
erasure. The recommended erasure procedure for
the M27W201 is exposure to short wave ultraviolet
light which has wavelength of 2537 Å. The integrated dose (i.e. UV intensity x exposure time) for
erasure should be a minimum of 15 W-sec/cm2.
The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with
12000 µW/cm2 power rating. The M27W201
should be placed within 2.5 cm (1 inch) of the lamp
tubes during the erasure. Some lamps have a filter
on their tubes which should be removed before
erasure.
9/16
M27W201
Table 11. Ordering Information Scheme
Example:
M27W201
-80
K
6
TR
Device Type
M27
Supply Voltage
W = 2.7V to 3.6V
Device Function
201 = 2 Mbit (256Kb x 8)
Speed
-80 (1,2) = 80 ns
-100 = 100 ns
Not For New Design (3)
-120 = 120 ns
-150 = 150 ns
-200 = 200 ns
Package
F = FDIP32W (4)
B = PDIP32
K = PLCC32
N = TSOP32: 8 x 20 mm (4)
NZ = TSOP32: 8 x 14 mm (4)
Temperature Range
6 = –40 to 85 °C
Options
TR = Tape & Reel Packing
Note: 1.
2.
3.
4.
High Speed, see AC Characteristics section for further information.
This speed also guarantees 70ns access time at V CC = 3.0V to 3.6V.
These speeds are replaced by the 100ns.
Packages option available on request. Please contact STMicroelectronics local Sales Office.
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.
Table 12. Revision History
Date
Version
Revision Details
July 1999
-01
First Issue
19-Apr-2000
-02
FDIP32W Package Dimension, L Max added (Table 13)
TSOP32 Package Dimension changed (Table 16)
0 to 70°C Temperature Range deleted, Programming Time changed
24-Oct-2001
-03
TSOP32 8x14mm added
10/16
M27W201
Table 13. FDIP32W - 32 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data
millimeters
Symbol
Typ
inches
Min
Max
A
Typ
Min
5.72
Max
0.225
A1
0.51
1.40
0.020
0.055
A2
3.91
4.57
0.154
0.180
A3
3.89
4.50
0.153
0.177
B
0.41
0.56
0.016
0.022
B1
–
–
–
–
C
1.45
0.23
0.30
0.009
0.012
D
41.73
42.04
1.643
1.655
–
–
1.500
–
–
0.600
D2
38.10
E
15.24
E1
0.057
–
–
13.06
13.36
–
–
0.514
0.526
e
2.54
–
–
0.100
–
–
eA
14.99
–
–
0.590
–
–
eB
16.18
18.03
0.637
0.710
L
3.18
4.10
0.125
0.161
S
1.52
2.49
0.060
0.098
–
–
–
–
α
4°
11°
4°
11°
N
32
∅
7.11
0.280
32
Figure 8. FDIP32W - 32 pin Ceramic Frit-seal DIP, with window, Package Outline
A2
A3
A1
B1
B
A
L
e
α
eA
D2
C
eB
D
S
N
∅
E1
E
1
FDIPW-a
Drawing is not to scale.
11/16
M27W201
Table 14. PDIP32 - 32 lead Plastic DIP, 600 mils width, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
Max
A
–
A1
Min
Max
5.08
–
0.200
0.38
–
0.015
–
A2
3.56
4.06
0.140
0.160
B
0.38
0.51
0.015
0.020
–
–
–
–
C
0.20
0.30
0.008
0.012
D
41.78
42.04
1.645
1.655
B1
1.52
Typ
0.060
D2
38.10
–
–
1.500
–
–
E
15.24
–
–
0.600
–
–
13.59
13.84
0.535
0.545
E1
e1
2.54
–
–
0.100
–
–
eA
15.24
–
–
0.600
–
–
eB
15.24
17.78
0.600
0.700
L
3.18
3.43
0.125
0.135
S
1.78
2.03
0.070
0.080
α
0°
10°
0°
10°
N
32
32
Figure 9. PDIP32 - 32 lead Plastic DIP, 600 mils width, Package Outline
A2
A1
B1
B
A
L
e1
α
eA
D2
C
eB
D
S
N
E1
E
1
PDIP
Drawing is not to scale.
12/16
M27W201
Table 15. PLCC32 - 32 lead Plastic Leaded Chip Carrier, rectangular, Package Mechanical Data
millimeters
Symbol
Min
Max
A
2.54
A1
1.52
A2
0.38
B
0.33
0.53
0.013
0.021
B1
0.66
0.81
0.026
0.032
D
12.32
12.57
0.485
0.495
D1
11.35
11.56
0.447
0.455
D2
9.91
10.92
0.390
0.430
e
Typ
inches
Typ
Min
Max
3.56
0.100
0.140
2.41
0.060
0.095
0.015
1.27
0.050
E
14.86
15.11
0.585
0.595
E1
13.89
14.10
0.547
0.555
E2
12.45
13.46
0.490
0.530
F
0.00
0.25
0.000
0.010
R
0.89
0.035
N
32
32
Nd
7
7
Ne
9
9
CP
0.10
0.004
Figure 10. PLCC32 - 32 lead Plastic Leaded Chip Carrier, rectangular, Package Outline
D
D1
A1
A2
1 N
B1
E1 E
Ne
e
D2/E2
F
B
0.51 (.020)
1.14 (.045)
A
Nd
R
CP
PLCC
Drawing is not to scale.
13/16
M27W201
Table 16. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
Max
A
Typ
Min
1.200
0.0472
A1
0.050
0.150
0.0020
0.0059
A2
0.950
1.050
0.0374
0.0413
B
0.150
0.270
0.0059
0.0106
C
0.100
0.210
0.0039
0.0083
D
19.800
20.200
0.7795
0.7953
D1
18.300
18.500
0.7205
0.7283
–
–
–
–
E
7.900
8.100
0.3110
0.3189
L
0.500
0.700
0.0197
0.0276
α
0°
5°
0°
5°
e
0.500
CP
0.0197
0.100
N
0.0039
32
32
Figure 11. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Outline
A2
1
N
e
E
B
N/2
D1
A
CP
D
DIE
C
TSOP-a
Drawing is not to scale.
14/16
Max
A1
α
L
M27W201
Table 17. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 14 mm, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
Max
A
Typ
Min
1.200
Max
0.0472
A1
0.050
0.150
0.0020
0.0059
A2
0.950
1.050
0.0374
0.0413
B
0.170
0.270
0.0067
0.0106
C
0.100
0.210
0.0039
0.0083
D
13.800
14.200
0.5433
0.5591
D1
12.300
12.500
0.4843
0.4921
–
–
–
–
E
7.900
8.100
0.3110
0.3189
L
0.500
0.700
0.0197
0.0276
α
0°
5°
0°
5°
e
0.500
CP
0.0197
0.100
N
0.0039
32
32
Figure 12. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 14 mm, Package Outline
A2
1
N
e
E
B
N/2
D1
A
CP
D
DIE
C
TSOP-a
A1
α
L
Drawing is not to scale.
15/16
M27W201
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.
© 2001 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Austalia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
16/16