STMICROELECTRONICS SMP30-180

SMP30
®
TRISIL™ FOR TELECOM EQUIPMENT PROTECTION
FEATURES
■ Bidirectional crowbar protection
■ Voltage range from 62V to 270V
■ Low capacitance from 10pF to 20pF typ.@ 50V
■ Low leakage current: IR = 2µA max.
■ Holding current: IH = 150 mA min.
■ Repetitive peak pulse current:
IPP = 30 A (10/1000 µs)
MAIN APPLICATIONS
Telecommunication equipment such as:
■
■
Analog and digital line cards (xDSL, T1/E1,
ISDN...).
Terminals (phone, fax, modem...) and central
office equipment.
DESCRIPTION
The SMP30-xxx series has been designed to
protect telecommunication equipment against
lightning and transient induced by AC power lines.
The package / die size ratio has been optimized by
using the SMA package.
BENEFITS
Trisils are not subject to ageing and provide a fail
safe mode in short circuit for a better protection.
They are used to help equipment to meet various
standards such as UL1950, IEC950 / CSA C22.2,
UL1459 and FCC part 68.
Trisils have UL94 V0 approved resin.
SMA package is JEDEC registered (DO-214AC).
Trisils are UL497B approved (file: E136224).
December 2004
SMA
(JEDEC DO-214AC)
Table 1: Order Codes
Part Number
SMP30-62
SMP30-68
SMP30-100
SMP30-120
SMP30-130
SMP30-180
SMP30-200
SMP30-220
SMP30-240
SMP30-270
Marking
QAA
QAB
QAC
QAD
QAE
QAF
QAG
QAH
QAI
QAJ
Figure 1: Schematic Diagram
REV. 6
1/9
SMP30
Table 2: In compliance with the following standards
STANDARD
Peak Surge
Voltage
(V)
Waveform
Voltage
Required
peak current
(A)
Current
waveform
Minimum serial
resistor to meet
standard (Ω)
GR-1089 Core
First level
2500
1000
2/10 µs
10/1000 µs
500
100
2/10 µs
10/1000 µs
20
24
GR-1089 Core
Second level
5000
2/10 µs
500
2/10 µs
40
GR-1089 Core
Intra-building
1500
2/10 µs
100
2/10 µs
0
ITU-T-K20/K21
6000
1500
10/700 µs
150
37.5
5/310 µs
110
0
ITU-T-K20
(IEC61000-4-2)
8000
15000
1/60 ns
VDE0433
4000
2000
10/700 µs
100
50
5/310 µs
60
10
VDE0878
4000
2000
1.2/50 µs
100
50
1/20 µs
18
0
IEC61000-4-5
4000
4000
10/700 µs
1.2/50 µs
100
100
5/310 µs
8/20 µs
60
18
FCC Part 68, lightning
surge type A
1500
800
10/160 µs
10/560 µs
200
100
10/160 µs
10/560 µs
26
15
FCC Part 68, lightning
surge type B
1000
9/720 µs
25
5/320 µs
0
ESD contact discharge
ESD air discharge
0
0
Table 3: Absolute Ratings (Tamb = 25°C)
Symbol
Parameter
IPP
Repetitive peak pulse current (see figure 2)
IFS
Fail-safe mode : maximum current (note 1)
ITSM
I2t
Tstg
Tj
TL
Non repetitive surge peak on-state current (sinusoidal)
I2t value for fusing
Storage temperature range
Maximum junction temperature
Maximum lead temperature for soldering during 10 s.
Note 1: in fail safe mode, the device acts as a short circuit.
2/9
Value
Unit
30
70
35
40
45
70
100
A
8/20 µs
2.5
kA
t = 0.2 s
t=1s
t=2s
t = 15 mn
14
10.5
9
3
A
t = 16.6 ms
t = 20 ms
5.7
4.9
A2s
-55 to 150
150
°C
260
°C
10/1000 µs
8/20 µs
10/560 µs
5/310 µs
10/160 µs
1/20 µs
2/10 µs
SMP30
Table 4: Thermal Resistances
Symbol
Parameter
Rth(j-a) Junction to ambient (with recommended footprint)
Rth(j-l) Junction to leads
Value
120
30
Unit
°C/W
°C/W
Table 5: Electrical Characteristics (Tamb = 25°C)
Symbol
Parameter
VRM
Stand-off voltage
VBR
Breakdown voltage
VBO
Breakover voltage
IRM
Leakage current
IPP
Peak pulse current
IBO
Breakover current
IH
Holding current
VR
Continuous reverse voltage
IR
Leakage current at VR
C
Capacitance
IRM @ VRM
Types
max.
IR @ VR
max.
note1
µA
SMP30-62
SMP30-68
SMP30-100
SMP30-120
SMP30-130
SMP30-180
SMP30-200
SMP30-220
SMP30-240
SMP30-270
Note 1:
Note 2:
Note 3:
Note 4:
Note 5:
Note 6:
2
V
56
61
90
108
117
162
180
198
216
243
µA
5
Dynamic
VBO
max.
note 2
V
62
68
100
120
130
180
200
220
240
270
V
85
93
135
160
173
235
262
285
300
350
Static
VBO @ IBO
max. max.
IH
C
C
min.
typ.
typ.
note 3
V
82
90
133
160
173
240
267
293
320
360
note 4
note 5
note 6
mA
mA
800
150
pF
20
20
16
16
14
12
12
10
10
10
pF
40
40
35
30
30
25
25
20
20
20
IR measured at VR guarantee VBR min ≥ VR
see functional test circuit 1
see test circuit 2
see functional holding current test circuit 3
VR = 50V bias, VRMS=1V, F=1MHz
VR = 2V bias, VRMS=1V, F=1MHz
3/9
SMP30
Figure 2: Pulse waveform
% I PP
Figure 3: Non repetitive surge peak on-state
current versus overload duration
ITSM(A)
Repetitive peak pulse current
tr = rise time (µs)
25
tp = pulse duration time (µs)
F=50Hz
100
20
15
50
10
5
0
tr
t(s)
t
tp
0
1E-2
Figure 4: On-state voltage versus on-state
current (typical values)
1E-1
1E+0
1E+1
1E+2
1E+3
Figure 5: Relative variation of holding current
versus junction temperature
IH[Tj] / IH[Tj=25°C]
IT(A)
2.0
50
1.8
1.6
Tj=25°C
20
1.4
1.2
10
1.0
5
0.8
0.6
0.4
2
0.2
VT(V)
1
0
1
2
3
4
5
6
7
8
9
10
Figure 6: Relative variation of breakover
voltage versus junction temperature
Tj(°C)
0.0
-40
-20
0
20
40
60
80
100
120
Figure 7: Relative variation of leakage current
versus junction temperature (typical values)
VBO[Tj] / VBO[Tj=25°C]
IRM[Tj] / IRM[Tj=25°C]
2000
1000
1.10
VR=VRM
1.05
100
1.00
270 V
10
0.95
62 V
0.90
-40
4/9
Tj(°C)
Tj(°C)
-20
0
20
40
60
80
100
1
25
50
75
100
125
SMP30
Figure 8: Variation of thermal impedance
junction to ambient versus pulse duration
(Printed circuit board FR4, SCu=35µm,
recommended pad layout)
Figure 9: Relative variation of junction
capacitance versus reverse voltage applied
(typical values)
C[VR] / C[VR=50V]
Zth(j-a)(°C/W)
2.5
1E+2
Zth(j-a)
Tj=25°C
F=1MHz
VRMS=1V
2.0
1E+1
1.5
1.0
1E+0
0.5
VR(V)
tp(s)
1E-1
1E-3
0.0
1E-2
1E-1
1E+0
1E+1
1E+2
5E+2
1
2
5
10
20
50
100
300
Figure 10: Test circuit 1 for dynamic IBO and VBO parameters
100 V / µs, di /dt < 10 A / µs, Ipp = 30 A
2Ω
U
83 Ω
45 Ω
10 µF
66 Ω
46 µH
0.36 nF
470 Ω
KeyTek 'System 2' generator with PN246I module
1 kV / µs, di /dt < 10 A / µs, Ipp = 10 A
250 Ω
26 µH
U
60 µF
47 Ω
46 µH
12 Ω
KeyTek 'System 2' generator with PN246I module
5/9
SMP30
Figure 11: Test circuit 2 for IBO and VBO parameters
K
ton = 20ms
R1 = 140Ω
R2 = 240Ω
220V 50Hz
DUT
Vout
VBO
measurement
1/4
IBO
measurement
TEST PROCEDURE
Pulse test duration (tp = 20ms):
● for Bidirectional devices = Switch K is closed
● for Unidirectional devices = Switch K is open
VOUT selection:
● Device with VBO < 200V ➔ VOUT = 250 VRMS, R1 = 140Ω
● Device with VBO ≤ 200V ➔ VOUT = 480 VRMS, R2 = 240Ω
Figure 12: Test circuit 3 for dynamic IH parameter
R
VBAT = - 48 V
Surge generator
D.U.T
This is a GO-NOGO test which allows to confirm the holding current (IH) level in a
functional test circuit.
TEST PROCEDURE
1/ Adjust the current level at the IH value by short circuiting the AK of the D.U.T.
2/ Fire the D.U.T. with a surge current ➔ IPP = 10A, 10/1000µs.
3/ The D.U.T. will come back off-state within 50ms maximum.
6/9
SMP30
Figure 13: Ordering Information Scheme
SMP
30
-
xxx
Trisil Surface Mount
Repetitive Peak Pulse Current
30 = 30A
Voltage
62 = 62V
Figure 14: SMA Package Mechanical data
DIMENSIONS
REF.
A1
Millimeters
Inches
Min.
Max.
Min.
Max.
1.90
2.03
0.075
0.080
A2
0.05
0.20
0.002
0.008
b
1.25
1.65
0.049
0.065
c
0.15
0.41
0.006
0.016
E
4.80
5.60
0.189
0.220
E1
3.95
4.60
0.156
0.181
D
2.25
2.95
0.089
0.116
L
0.75
1.60
0.030
0.063
Figure 15: Foot Print Dimensions (in millimeters)
1.65
1.45
2.40
1.45
7/9
SMP30
Table 6: Ordering Information
Part Number
Marking
SMP30-62
QAA
SMP30-68
QAB
SMP30-100
QAC
SMP30-120
QAD
SMP30-130
QAE
SMP30-180
QAF
SMP30-200
QAG
SMP30-220
QAH
SMP30-240
QAI
SMP30-270
QAJ
Package
Weight
Base qty
Delivery mode
SMA
0.06 g
5000
Tape & reel
Table 7: Revision History
8/9
Date
Revision
November-2002
4B
Description of Changes
10-Nov-2004
5
SMA package dimensions update. Reference A1 max.
changed from 2.70mm (0.106 inc.) to 2.03mm (0.080 inc.).
13-Dec-2004
6
Figure 7 text legend corrected from “... reverse voltage
applied” to “... junction capacitance”.
Last update.
SMP30
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
9/9