SMP30 ® TRISIL™ FOR TELECOM EQUIPMENT PROTECTION FEATURES ■ Bidirectional crowbar protection ■ Voltage range from 62V to 270V ■ Low capacitance from 10pF to 20pF typ.@ 50V ■ Low leakage current: IR = 2µA max. ■ Holding current: IH = 150 mA min. ■ Repetitive peak pulse current: IPP = 30 A (10/1000 µs) MAIN APPLICATIONS Telecommunication equipment such as: ■ ■ Analog and digital line cards (xDSL, T1/E1, ISDN...). Terminals (phone, fax, modem...) and central office equipment. DESCRIPTION The SMP30-xxx series has been designed to protect telecommunication equipment against lightning and transient induced by AC power lines. The package / die size ratio has been optimized by using the SMA package. BENEFITS Trisils are not subject to ageing and provide a fail safe mode in short circuit for a better protection. They are used to help equipment to meet various standards such as UL1950, IEC950 / CSA C22.2, UL1459 and FCC part 68. Trisils have UL94 V0 approved resin. SMA package is JEDEC registered (DO-214AC). Trisils are UL497B approved (file: E136224). December 2004 SMA (JEDEC DO-214AC) Table 1: Order Codes Part Number SMP30-62 SMP30-68 SMP30-100 SMP30-120 SMP30-130 SMP30-180 SMP30-200 SMP30-220 SMP30-240 SMP30-270 Marking QAA QAB QAC QAD QAE QAF QAG QAH QAI QAJ Figure 1: Schematic Diagram REV. 6 1/9 SMP30 Table 2: In compliance with the following standards STANDARD Peak Surge Voltage (V) Waveform Voltage Required peak current (A) Current waveform Minimum serial resistor to meet standard (Ω) GR-1089 Core First level 2500 1000 2/10 µs 10/1000 µs 500 100 2/10 µs 10/1000 µs 20 24 GR-1089 Core Second level 5000 2/10 µs 500 2/10 µs 40 GR-1089 Core Intra-building 1500 2/10 µs 100 2/10 µs 0 ITU-T-K20/K21 6000 1500 10/700 µs 150 37.5 5/310 µs 110 0 ITU-T-K20 (IEC61000-4-2) 8000 15000 1/60 ns VDE0433 4000 2000 10/700 µs 100 50 5/310 µs 60 10 VDE0878 4000 2000 1.2/50 µs 100 50 1/20 µs 18 0 IEC61000-4-5 4000 4000 10/700 µs 1.2/50 µs 100 100 5/310 µs 8/20 µs 60 18 FCC Part 68, lightning surge type A 1500 800 10/160 µs 10/560 µs 200 100 10/160 µs 10/560 µs 26 15 FCC Part 68, lightning surge type B 1000 9/720 µs 25 5/320 µs 0 ESD contact discharge ESD air discharge 0 0 Table 3: Absolute Ratings (Tamb = 25°C) Symbol Parameter IPP Repetitive peak pulse current (see figure 2) IFS Fail-safe mode : maximum current (note 1) ITSM I2t Tstg Tj TL Non repetitive surge peak on-state current (sinusoidal) I2t value for fusing Storage temperature range Maximum junction temperature Maximum lead temperature for soldering during 10 s. Note 1: in fail safe mode, the device acts as a short circuit. 2/9 Value Unit 30 70 35 40 45 70 100 A 8/20 µs 2.5 kA t = 0.2 s t=1s t=2s t = 15 mn 14 10.5 9 3 A t = 16.6 ms t = 20 ms 5.7 4.9 A2s -55 to 150 150 °C 260 °C 10/1000 µs 8/20 µs 10/560 µs 5/310 µs 10/160 µs 1/20 µs 2/10 µs SMP30 Table 4: Thermal Resistances Symbol Parameter Rth(j-a) Junction to ambient (with recommended footprint) Rth(j-l) Junction to leads Value 120 30 Unit °C/W °C/W Table 5: Electrical Characteristics (Tamb = 25°C) Symbol Parameter VRM Stand-off voltage VBR Breakdown voltage VBO Breakover voltage IRM Leakage current IPP Peak pulse current IBO Breakover current IH Holding current VR Continuous reverse voltage IR Leakage current at VR C Capacitance IRM @ VRM Types max. IR @ VR max. note1 µA SMP30-62 SMP30-68 SMP30-100 SMP30-120 SMP30-130 SMP30-180 SMP30-200 SMP30-220 SMP30-240 SMP30-270 Note 1: Note 2: Note 3: Note 4: Note 5: Note 6: 2 V 56 61 90 108 117 162 180 198 216 243 µA 5 Dynamic VBO max. note 2 V 62 68 100 120 130 180 200 220 240 270 V 85 93 135 160 173 235 262 285 300 350 Static VBO @ IBO max. max. IH C C min. typ. typ. note 3 V 82 90 133 160 173 240 267 293 320 360 note 4 note 5 note 6 mA mA 800 150 pF 20 20 16 16 14 12 12 10 10 10 pF 40 40 35 30 30 25 25 20 20 20 IR measured at VR guarantee VBR min ≥ VR see functional test circuit 1 see test circuit 2 see functional holding current test circuit 3 VR = 50V bias, VRMS=1V, F=1MHz VR = 2V bias, VRMS=1V, F=1MHz 3/9 SMP30 Figure 2: Pulse waveform % I PP Figure 3: Non repetitive surge peak on-state current versus overload duration ITSM(A) Repetitive peak pulse current tr = rise time (µs) 25 tp = pulse duration time (µs) F=50Hz 100 20 15 50 10 5 0 tr t(s) t tp 0 1E-2 Figure 4: On-state voltage versus on-state current (typical values) 1E-1 1E+0 1E+1 1E+2 1E+3 Figure 5: Relative variation of holding current versus junction temperature IH[Tj] / IH[Tj=25°C] IT(A) 2.0 50 1.8 1.6 Tj=25°C 20 1.4 1.2 10 1.0 5 0.8 0.6 0.4 2 0.2 VT(V) 1 0 1 2 3 4 5 6 7 8 9 10 Figure 6: Relative variation of breakover voltage versus junction temperature Tj(°C) 0.0 -40 -20 0 20 40 60 80 100 120 Figure 7: Relative variation of leakage current versus junction temperature (typical values) VBO[Tj] / VBO[Tj=25°C] IRM[Tj] / IRM[Tj=25°C] 2000 1000 1.10 VR=VRM 1.05 100 1.00 270 V 10 0.95 62 V 0.90 -40 4/9 Tj(°C) Tj(°C) -20 0 20 40 60 80 100 1 25 50 75 100 125 SMP30 Figure 8: Variation of thermal impedance junction to ambient versus pulse duration (Printed circuit board FR4, SCu=35µm, recommended pad layout) Figure 9: Relative variation of junction capacitance versus reverse voltage applied (typical values) C[VR] / C[VR=50V] Zth(j-a)(°C/W) 2.5 1E+2 Zth(j-a) Tj=25°C F=1MHz VRMS=1V 2.0 1E+1 1.5 1.0 1E+0 0.5 VR(V) tp(s) 1E-1 1E-3 0.0 1E-2 1E-1 1E+0 1E+1 1E+2 5E+2 1 2 5 10 20 50 100 300 Figure 10: Test circuit 1 for dynamic IBO and VBO parameters 100 V / µs, di /dt < 10 A / µs, Ipp = 30 A 2Ω U 83 Ω 45 Ω 10 µF 66 Ω 46 µH 0.36 nF 470 Ω KeyTek 'System 2' generator with PN246I module 1 kV / µs, di /dt < 10 A / µs, Ipp = 10 A 250 Ω 26 µH U 60 µF 47 Ω 46 µH 12 Ω KeyTek 'System 2' generator with PN246I module 5/9 SMP30 Figure 11: Test circuit 2 for IBO and VBO parameters K ton = 20ms R1 = 140Ω R2 = 240Ω 220V 50Hz DUT Vout VBO measurement 1/4 IBO measurement TEST PROCEDURE Pulse test duration (tp = 20ms): ● for Bidirectional devices = Switch K is closed ● for Unidirectional devices = Switch K is open VOUT selection: ● Device with VBO < 200V ➔ VOUT = 250 VRMS, R1 = 140Ω ● Device with VBO ≤ 200V ➔ VOUT = 480 VRMS, R2 = 240Ω Figure 12: Test circuit 3 for dynamic IH parameter R VBAT = - 48 V Surge generator D.U.T This is a GO-NOGO test which allows to confirm the holding current (IH) level in a functional test circuit. TEST PROCEDURE 1/ Adjust the current level at the IH value by short circuiting the AK of the D.U.T. 2/ Fire the D.U.T. with a surge current ➔ IPP = 10A, 10/1000µs. 3/ The D.U.T. will come back off-state within 50ms maximum. 6/9 SMP30 Figure 13: Ordering Information Scheme SMP 30 - xxx Trisil Surface Mount Repetitive Peak Pulse Current 30 = 30A Voltage 62 = 62V Figure 14: SMA Package Mechanical data DIMENSIONS REF. A1 Millimeters Inches Min. Max. Min. Max. 1.90 2.03 0.075 0.080 A2 0.05 0.20 0.002 0.008 b 1.25 1.65 0.049 0.065 c 0.15 0.41 0.006 0.016 E 4.80 5.60 0.189 0.220 E1 3.95 4.60 0.156 0.181 D 2.25 2.95 0.089 0.116 L 0.75 1.60 0.030 0.063 Figure 15: Foot Print Dimensions (in millimeters) 1.65 1.45 2.40 1.45 7/9 SMP30 Table 6: Ordering Information Part Number Marking SMP30-62 QAA SMP30-68 QAB SMP30-100 QAC SMP30-120 QAD SMP30-130 QAE SMP30-180 QAF SMP30-200 QAG SMP30-220 QAH SMP30-240 QAI SMP30-270 QAJ Package Weight Base qty Delivery mode SMA 0.06 g 5000 Tape & reel Table 7: Revision History 8/9 Date Revision November-2002 4B Description of Changes 10-Nov-2004 5 SMA package dimensions update. Reference A1 max. changed from 2.70mm (0.106 inc.) to 2.03mm (0.080 inc.). 13-Dec-2004 6 Figure 7 text legend corrected from “... reverse voltage applied” to “... junction capacitance”. Last update. SMP30 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 9/9