STCD1020, STCD1030, STCD1040 Multi-channel clock distribution circuit Features ■ 2, 3 or 4 outputs buffered clock distribution ■ Single-ended sine wave or square wave clock input and output ■ Individual clock enable for each output ■ Lower fan-out on clock source ■ No AC coupling capacitor needed at the input ■ Ultra-low phase noise and standby current ■ 2.5 V to 3.6 V supply voltage(a) ■ 10 pF typical load driving capability ■ Available in TDFN packages – STCD1020 - 8-lead (2 mm x 2 mm) – STCD1030 - 10-lead (2 mm x 2.5 mm) – STCD1040 - 12-lead (2 mm x 3 mm) ■ Operational temperature : –40°C to 85°C Applications ■ Multi-mode RF clock reference ■ Baseband peripheral devices clock reference a. For the 1.65 to 2.75 V version, please contact local ST sales office Table 1. TDFN (8, 10 or 12 lead) Description The STCD1020, STCD1030 and STCD1040 are 2, 3 or 4 outputs unity gain clock distribution circuits, which are used to provide a common frequency clock to multi-mode mobile RF applications. It can also be used for those baseband peripheral applications in a mobile phone such as WLAN, Bluetooth, GPS and DVBH as a clock reference. The STCD1020, STCD1030 and STCD1040 isolate each device driven by their clock outputs and minimize interference between the devices. Each of the clock buffers can be disabled to lower the power consumption if the connected device does not need the clock. The STCD1020, STCD1030 and STCD1040 accept commonly used mobile master clock frequencies ranging from 10 MHz to 52 MHz. The STCD1020, STCD1030 and STCD1040 are available in 2 mm x 2 mm 8-lead, 2 mm x 2.5 mm 10-lead and 2 mm x 3 mm 12-lead TDFN packages and can be operated with a single 2.8 V (or 1.8 V) supply. The operational temperature is –40°C to +85°C. Device summary Order code Operating temperature range Channel Supply Package STCD1020RDG6E –40°C to 85°C 2 2.8 V TDFN8 STCD1030RDH6E –40°C to 85°C 3 2.8 V TDFN10 STCD1040RDM6F –40°C to 85°C 4 2.8 V TDFN12 May 2008 Rev 4 1/40 www.st.com 1 Contents STCD1020, STCD1030, STCD1040 Contents 1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Connection of the source clock to MCLK . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6 Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2/40 STCD1020, STCD1030, STCD1040 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin names and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Truth table for enable signals (EN 1-4) and output clocks (CLK1-4) . . . . . . . . . . . . . . . . . 10 Absolute maximum ratings (1.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Absolute maximum ratings (2.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Operating and AC measurement conditions (1.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . 15 DC and AC characteristics (1.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Operating and AC measurement conditions (2.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . 16 DC and AC characteristics (2.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 TDFN - 8-lead (2 x 2 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 TDFN - 10-lead (2 x 2.5 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . 35 TDFN - 12-lead (2 x 3 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3/40 List of figures STCD1020, STCD1030, STCD1040 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. 4/40 Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Connections diagram (STCD1020, 2-channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Connections diagram (STCD1030, 3-channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Connections diagram (STCD1040, 4-channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Hardware hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Typical application circuit using STCD1040 for RF ends of TD-SCDMA/GSM dual mode mobile phone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Typical application circuit using STCD1040 for baseband peripherals in mobile phone . . 12 Direct connection of the source clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Connection of the DC-CUT capacitor and bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Quiescent current (IQ) vs. supply voltage (VCC) (STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=1, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Quiescent current (IQ) vs. temperature (STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=1, Cload = 30 pF, no master clock input) . . . . . . . . . . . . . . . . . . . . . 18 Standy current (ISB) vs. supply voltage (VCC) (STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=0, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Active current (IACT) vs. supply voltage (VCC) (STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input from TCXO) . . . . . . . . . . 19 Active current (IACT) vs. master clock input voltage level (Vpp) (STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input) . . . . . . . . . . . . . . . . . . . . 20 Active current (IACT) vs. input frequency (STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=1, master clock input Vpp = 1 V) . . . . . . . . . . . . . . . . . . . . . . . . . . 20 STCD10x0 recovery time from standby to active (STCD1040, 2.8 V version, EN2=EN3=EN4=0, measure CLK1 when EN1 from 0 to 1) . . . . . . . . . . . . . . . . . . . . . . . . 21 STCD10x0 buffer recovery time from off to on (STCD1040, 2.8 V version, EN2=EN3=EN4=1, measure CLK1 when EN1 from 0 to 1) . . . . . . . . . . . . . . . . . . . . . . . . 21 Sine wave input clock vs. output clock (STCD1040, 2.8 V version, 26 MHz sine wave master clock input from TCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Rise and fall time for square wave output (STCD1040, 2.8 V, 10 MHz square wave master clock input, Cload = 20 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Input clock phase noise (STCD1040, 2.8 V version, 26 MHz master clock input from TCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Output clock phase noise (STCD1040, 2.8V version, this phase noise includes the additive phase noise from TCXO and STCD1040) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Clock bandwidth (STCD1040, 2.8 V version, Cload = 10 pF) . . . . . . . . . . . . . . . . . . . . . . . 24 Quiescent current (IQ) vs. supply voltage (VCC) (STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=1, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Quiescent current (IQ) vs. temperature (STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=1, Cload = 30 pF, no master clock input) . . . . . . . . . . . . . . . . . . . . 25 Standby current (ISB) vs. supply voltage (VCC) (STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=0, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Active current (IACT) vs. supply voltage (VCC) (STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input from TCXO) . . . . . . . . . . 26 Active current (IACT) vs. master clock input voltage level (Vpp) (STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input) . . . . . . . . . . . . . . . . . . . . 26 Active current (IACT) vs. input frequency (STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=1, master clock input Vpp=1 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 STCD1020, STCD1030, STCD1040 Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. List of figures STCD10x0 recovery time from standby to active (STCD1040, 1.8 V version, EN2=EN3=EN4=0, measure CLK1 when EN1 from 0 to 1) . . . . . . . . . . . . . . . . . . . . . . . . 27 STCD10x0 buffer recovery time from off to on (STCD1040, 1.8 V version, EN2 =EN3=EN4=1, measure CLK1 when EN1 from 0 to 1). . . . . . . . . . . . . . . . . . . . . . . . 28 Sine wave input clock vs. output clock (STCD1040, 1.8 V version, 26 MHz sine wave master clock input from TCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Rise and fall time for square wave output (STCD1040, 1.8 V version, 10MHz square wave master clock input, Cload = 20 pF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Input clock phase noise (STCD1040, 1.8 V version, 26 MHz master clock input from TCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Output clock phase noise (STCD1040, 1.8 V version, this phase noise includes the additive phase noise from TCXO and STCD1040) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Clock bandwidth (STCD1040, 1.8 V version, Cload = 10 pF) . . . . . . . . . . . . . . . . . . . . . . . 30 TDFN - 8-lead, 2 x 2 mm package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 TDFN - 10-lead, 2 x 2.5 mm package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 TDFN - 12-lead, 2 x 3 mm package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5/40 Device overview 1 STCD1020, STCD1030, STCD1040 Device overview Figure 1. Logic diagram V CC MCLK CLK1 STCD1040 EN1 EN2 CLK2 Clock distribution EN3 CLK3 CLK4 EN4 GND ai13948 Note: No EN3, EN4, CLK3 nor CLK4 for STCD1020 and no EN4 nor CLK4 for STCD1030. Figure 2. Connections diagram (STCD1020, 2-channel) V CC 1 MCLK 2 EN1 3 EN2 4 STCD1020 TDFN8 8 GND 7 NC 6 CLK1 5 CLK2 ai13949 6/40 STCD1020, STCD1030, STCD1040 Figure 3. Device overview Connections diagram (STCD1030, 3-channel) VCC 1 MCLK 2 EN1 3 EN2 EN3 10 GND 9 NC 8 CLK1 4 7 CLK2 5 6 CLK3 STCK1030 TDFN10 ai13950 Figure 4. Connections diagram (STCD1040, 4-channel) V CC 1 12 GND MCLK 2 11 NC EN1 3 10 CLK1 EN2 4 9 CLK2 EN3 5 8 CLK3 EN4 6 7 CLK4 STCD1040 TDFN12 ai13951 7/40 Device overview Table 2. STCD1020, STCD1030, STCD1040 Pin names and functions Pin Type CLK1, CLK2, CLK3, CLK4 Output EN1, EN2, EN3, EN4 Input Clock output channel #1, #2, #3, #4 enable, active high MCLK Input Master clock input VCC Supply Supply voltage. Bypass to GND with a 0.1 μ F capacitor. GND Supply Supply ground NC Figure 5. Function Clock output channel #1, #2, #3, #4. A 0.001μ F DC cut capacitor needed outside. Not connected Block diagram VCC EN4 STCD1040 4 CLK4 EN3 3 MCLK CLK3 EN2 2 CLK2 EN1 1 GND 8/40 CLK1 ai13952 STCD1020, STCD1030, STCD1040 Figure 6. Device overview Hardware hookup VCC Clock enable control VCC STCD1040 Master Clock input MCLK GND EN4 CLK4 EN3 CLK3 EN2 CLK2 EN1 CLK1 Clock #4 output Clock #3 output Clock #2 output Clock #1 output ai13953 9/40 Device operation 2 STCD1020, STCD1030, STCD1040 Device operation The STCD1020, STCD1030 and STCD1040 are 2, 3 or 4 buffered unity gain clock distribution circuits. They accept the clock input from an external clock source and send 2, 3 or 4 buffered outputs to different devices. Each clock output of the STCD1020, STCD1030 and STCD1040 can be enabled for the device connected to it. If the device connected is in standby and does not require a clock, the buffer can be disabled to save power consumption. If all the devices connected are in standby, the STCD1020, STCD1030 and STCD1040 will also be put into standby mode for further power consumption saving. The enable signals and output clock signals truth table are given in Table 3. The input DC cut capacitor is embedded in STCD1020, STCD1030 and STCD1040. A capacitor outside is needed for each of the clock outputs. The STCD1020, STCD1030 and STCD1040 are internally biased at 1/2 VCC DC voltage level at the outputs. Table 3. Note: 10/40 Truth table for enable signals (EN 1-4) and output clocks (CLK1-4) EN1 EN2 EN3 EN4 CLK1 CLK2 CLK3 CLK4 0 0 0 0 NO CLOCK NO CLOCK NO CLOCK NO CLOCK 1 0 0 0 CLOCK NO CLOCK NO CLOCK NO CLOCK 1 1 0 0 CLOCK CLOCK NO CLOCK NO CLOCK ... ... ... ... ... ... ... ... 1 1 1 1 CLOCK CLOCK CLOCK CLOCK "0" means logic low and "1" means logic high. When NO CLOCK outputs, the CLKx pins stay at High Impedance. STCD1020, STCD1030, STCD1040 Application information 3 Application information 3.1 Typical applications The STCD1020, STCD1030 and STCD1040 distribute a source clock (for example, from VCTCXO) to 2, 3 or 4 channel outputs. The typical application circuits using STCD1040 are shown in Figure 7 and Figure 8 below. In Figure 7, the clock from VCTCXO is distributed to the TD-SCDMA transmitter and receiver and GSM transceiver separately. In Figure 8, the buffer #4 output is fed into the Bluetooth system. In order to allow minimum power consumption, a Bluetooth system always has a clock request feature. If the Bluetooth system does not require the clock, the clock request will disable the clock output. The enable pins can also be connected to logic high to let the channel output always on. If the channels of STCD1020, STCD1030 and STCD1040 are not used in the application, the enable pins of the channels should be connected to ground on PCB. Figure 7. Typical application circuit using STCD1040 for RF ends of TDSCDMA/GSM dual mode mobile phone VCC Mode selection VCC VCTCXO STCD1040 EN4 CLK4 EN3 CLK3 MCLK EN2 CLK2 GND TD-SCDMA transmitter TD-SCDMA receiver EN1 CLK1 GSM transceiver ai13954 11/40 Application information Figure 8. STCD1020, STCD1030, STCD1040 Typical application circuit using STCD1040 for baseband peripherals in mobile phone VCC BT_External_Req Internal_Req VCC VCTCXO Bluetooth STCD1040 EN4 CLK4 MCLK EN3 CLK3 WLAN EN2 CLK2 GND GPS EN1 CLK1 Other device ai13955 3.2 Connection of the source clock to MCLK If the output of the clock source voltage level is within the supply rails of the STCD1020, STCD1030 and STCD1040, the output of the source clock should be connected directly to the MCLK of the clock distribution circuits. This is described in Figure 9. The direct connection of the source clock is the common case and a DC-CUT capacitor is saved on PCB. Figure 9. Direct connection of the source clock VCC OUT VCTCXO MCLK STCD1020 STCD1030 STCD1040 ai13956 Note: 12/40 The input clock voltage level of the STCD1020, STCD1030, and STCD1040 cannot exceed the supply rails when it is directly connected to the source clock. If it is needed to connect a source clock with the voltage level exceeds the supply rails of the clock distribution circuits, the user needs to connect a DC-CUT capacitor serially as shown in Figure 10. A voltage divider formed by a resistor string is also needed to set a proper DC bias for the clock input STCD1020, STCD1030, STCD1040 Application information of the STCD1020, STCD1030 and STCD1040. The proper DC voltage is around half of the supply. The connection of the DC-CUT capacitor and bias for the STCD1020, STCD1030 and STCD1040 is only needed when the output of VCTCXO voltage level exceeds the supply of the clock distribution circuit (see Figure 10). Figure 10. Connection of the DC-CUT capacitor and bias VCC R1 VCTCXO OUT 0.1μF DC-CUT MCLK R2 STCD1020 STCD1030 STCD1040 ai13957 13/40 Maximum rating 4 STCD1020, STCD1030, STCD1040 Maximum rating Stressing the device above the rating listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 4. Absolute maximum ratings (1.8 V supply) Symbol TSTG TSLD (1) TJ Parameter Value Unit Lead solder temperature for 10 seconds 260 Maximum junction temperature 150 °C °C °C Storage temperature (VCC off) -55 to 150 VCC Supply voltage -0.3 to 3.6 V VIN Input voltage level -0.3 to 3.6 V VEN Voltage on enable pins -0.3 to 3.6 V θJA Thermal resistance (junction to ambient) TDFN8 149.0 TDFN10 136.6 TDFN12 132.4 °C/W °C/W °C/W 1. Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C for between 90 to 150 seconds). Table 5. Absolute maximum ratings (2.8 V supply) Symbol TSTG TSLD(1) TJ Parameter Value Unit Lead solder temperature for 10 seconds 260 Maximum junction temperature 150 °C °C °C Storage temperature (VCC off) -55 to 150 VCC Supply voltage -0.3 to 6 V VIN Input voltage level -0.3 to 6 V VEN Voltage on enable pins -0.3 to 6 V θJA Thermal resistance (junction to ambient) TDFN8 149.0 TDFN10 136.6 TDFN12 132.4 °C/W °C/W °C/W 1. Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C for between 90 to 150 seconds). 14/40 STCD1020, STCD1030, STCD1040 5 DC and AC parameters DC and AC parameters This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics tables that follow are derived from tests performed under the measurement conditions summarized in Table 6. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters. Table 6. Operating and AC measurement conditions (1.8 V supply) Parameter Condition Unit 1.65 to 2.75 V Output clock voltage (CLK1…CLK4) 0 to VCC V Device enable voltage (EN1…EN4) 0 to VCC V Ambient operating temperature (TA) -40 to +85 °C VCC supply Table 7. DC and AC characteristics (1.8 V supply) Symbol Parameter Condition(1) Min Typ Max Unit fMCLK Master clock (eg. from VCTCXO) Sine wave/square wave 10 26 52 MHz 1.65 1.8 2.75 V 0.75 1 Vpp -1.5 -0.5 dB VCC Supply voltage Vin Input clock voltage level(2) Vout IQ IACT Output gain level Quiescent (3) current(4) Active current(5) CL = 10 pF 2 buffers version 1.6 2.6 3 buffers version 2.0 3.3 4 buffers version 2.6 4 1 channel enabled 1.7 2 channels enabled 2.2 3 channels enabled 2.7 4 channels enabled 3.2 mA mA Standby current All buffers disabled RIN Input resistance At DC level >100 CIN Input capacitance f = 26 MHz 3 4 pF tr/f Rise/fall time(6) Vin = 1 Vpp, CL = 10 pF Square wave input/output 2 5 ns Vin = 1 Vpp, –1 dB, CL = 10 pF Sine wave input/output 52 BW VENH VENL Signal bandwidth(3) Enable voltage high(7) Enable voltage low(7) EN1~EN4 EN1~EN4 1 μA ISB kΩ MHz 1.2 V 0.6 V 15/40 DC and AC parameters Table 7. DC and AC characteristics (1.8 V supply) Symbol PN STCD1020, STCD1030, STCD1040 Condition(1) Parameter Additive phase noise(3)(8) Min Typ Max Unit at 1 kHz offset -135 at 10 kHz offset -145 at 100 kHz offset -150 STCD10x0 active 20 μs μs tRECB Buffer recovery time from off to on tRECC STCD10x0 active recovery time from standby to active 50 CL Capacitive load for each channel 10 RL Resistive load for each channel dBc/ Hz 20 pF 10 kΩ 1. Valid for ambient operating temperature: TA = -40°C to 85°C; VCC = 1.65 V to 2.75 V; typical TA = 25°C; Load capacitance = 10 pF (except where noted). 2. Clock input voltage level should not exceed supply rails. 3. Simulated and determined via design and NOT 100% tested. 4. The quiescent current is measured when the enable pins are active, but without input master clock signal (fmclk = 0 Hz). 5. The active current is dependent on the master clock input Vpp and frequency and the capacitive load condition. The typical test condition is 26 MHz sine wave with 1 Vpp master clock input, CL = 10 pF. 6. The rise time is measured when clock edge transfers from 10% VCC to 90% VCC. The fall time is measured when clock edge transfers from 90% VCC to 10% VCC. 7. Other test results are under test condition VENH = 1.8 V and VENL = 0 V. 8. Guaranteed with the supply noise of 30 μ Vrms from 300 Hz to 50 kHz. Table 8. Operating and AC measurement conditions (2.8 V supply) Parameter Condition Unit VCC supply 2.5 to 3.6 V Output clock voltage (CLK1…CLK4) 0 to VCC V Device enable voltage (EN1…EN4) 0 to VCC V Ambient operating temperature (TA) -40 to +85 °C Table 9. Symbol fMCLK VCC DC and AC characteristics (2.8 V supply) Parameter Master clock (eg. from VCTCXO) Input clock voltage Vout Output gain level(3) 16/40 Min Typ Max Unit Sine wave/square wave 10 26 52 MHz 2.5 2.8 3.6 V 0.75 1 Vpp -1.5 -0.5 dB Supply voltage Vin IQ Condition(1) Quiescent current level(2) (4) CL = 10 pF 2 buffers version 1.7 2.6 3 buffers version 2.2 3.3 4 buffers version 2.8 4 mA STCD1020, STCD1030, STCD1040 Table 9. Symbol IACT DC and AC parameters DC and AC characteristics (2.8 V supply) (continued) Condition(1) Parameter Active current(5) Min Typ 1 channel enabled 1.8 2 channels enabled 2.3 3 channels enabled 2.85 4 channels enabled 3.4 Max Unit mA μA ISB Standby current All buffers disabled RIN Input resistance At DC level >100 CIN Input capacitance f = 26 MHz 3 4 pF tr/f Rise/fall times(6) Vin = 1Vpp, CL = 10 pF Square wave input/output 2 5 ns Vin =1 Vpp, -1dB, CL = 10 pF Sine wave input/output 52 BW VENH VENL PN Signal bandwidth(3) Enable voltage high(7) Enable voltage EN1~EN4 low(7) Additive phase noise(3)(8) 1 kΩ MHz 1.2 V EN1~EN4 0.6 V at 1 kHz offset -135 at 10 kHz offset -145 at 100 kHz offset -150 STCD10x0 active 20 μs μs tRECB Buffer recovery time from off to on tRECC STCD10x0 active recovery time from standby to active 50 CL Capacitive load for each channel 10 RL Resistive load for each channel dBc/ Hz 20 pF 10 kΩ 1. Valid for ambient operating temperature: TA = -40°C to 85°C; VCC = 2.5 V to 3.6 V; typical TA = 25°C; Load capacitance = 10 pF (except where noted). 2. Clock input voltage level should not exceed supply rails. 3. Simulated and determined via design and NOT 100% tested. 4. The quiescent current is measured when the enable pins are active, but without input master clock signal (fMCLK = 0 Hz). 5. The active current is dependent on the master clock input Vpp and frequency and the capacitive load condition. The typical test condition is 26 MHz sine wave with 1 Vpp master clock input, CL = 10 pF. 6. The rise time is measured when clock edge transfers from 10% VCC to 90% VCC. The fall time is measured when clock edge transfers from 90% VCC to 10% VCC. 7. Other test results are under test condition VENH = 1.8 V and VENL = 0 V. 8. Guaranteed with the supply noise of 30 μ Vrms from 300 Hz to 50 kHz. 17/40 Typical operating characteristics 6 STCD1020, STCD1030, STCD1040 Typical operating characteristics Typical operating characteristics of STCD1040 are VCC = 2.8 V; TA = 25°C; load capacitance = 10 pF, 26 MHz TCXO ENE3127B from NDK (except where noted). Figure 11. Quiescent current (IQ) vs. supply voltage (VCC) (STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=1, no master clock input) Quiescent current vs. Supply voltage 3 2.9 10pF 2.8 20pF 2.7 30pF 2.6 2.5 3. 6 3. 4 3. 2 3 2. 8 2. 6 2.4 2. 4 Quiescent current (mA) 3.1 Supply voltage (V) Figure 12. Quiescent current (IQ) vs. temperature (STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=1, Cload = 30 pF, no master clock input) Quiescent current (mA) Quiescent current vs. Temperature 3.2 3 2.8 2.6 2.4 2.2 2 -50 -30 -10 10 30 50 Temperature (ºC) 18/40 70 90 STCD1020, STCD1030, STCD1040 Typical operating characteristics Figure 13. Standy current (ISB) vs. supply voltage (VCC) (STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=0, no master clock input) Standby current vs. Supply voltage Standby current (µA) 1 0.5 0 -0.5 -1 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Supply voltage (V) Figure 14. Active current (IACT) vs. supply voltage (VCC) (STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input from TCXO) Active current vs. Supply voltage Active current (mA) 6 4 10pF 2 20pF 30pF 0 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Supply voltage (V) 19/40 Typical operating characteristics STCD1020, STCD1030, STCD1040 Figure 15. Active current (IACT) vs. master clock input voltage level (Vpp) (STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input) Active current vs. Master clock voltage level Active current (mA) 6 5 4 3 2 10pF 1 20pF 30pF 1. 3 1. 2 1. 1 1 0. 9 0. 8 0. 7 0 Master clock voltage level Vpp(V) Figure 16. Active current (IACT) vs. input frequency (STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=1, master clock input Vpp = 1 V) Active current vs. Input frequency Active current (mA) 10 8 6 4 10pF 2 20pF 30pF 0 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 Frequency (MHZ) 20/40 STCD1020, STCD1030, STCD1040 Typical operating characteristics Figure 17. STCD10x0 recovery time from standby to active (STCD1040, 2.8 V version, EN2=EN3=EN4=0, measure CLK1 when EN1 from 0 to 1) Figure 18. STCD10x0 buffer recovery time from off to on (STCD1040, 2.8 V version, EN2=EN3=EN4=1, measure CLK1 when EN1 from 0 to 1) 21/40 Typical operating characteristics STCD1020, STCD1030, STCD1040 Figure 19. Sine wave input clock vs. output clock (STCD1040, 2.8 V version, 26 MHz sine wave master clock input from TCXO) Figure 20. Rise and fall time for square wave output (STCD1040, 2.8 V, 10 MHz square wave master clock input, Cload = 20 pF) 22/40 STCD1020, STCD1030, STCD1040 Typical operating characteristics Figure 21. Input clock phase noise (STCD1040, 2.8 V version, 26 MHz master clock input from TCXO) Figure 22. Output clock phase noise (STCD1040, 2.8V version, this phase noise includes the additive phase noise from TCXO and STCD1040) 23/40 Typical operating characteristics STCD1020, STCD1030, STCD1040 Figure 23. Clock bandwidth (STCD1040, 2.8 V version, Cload = 10 pF) Output gain (dB) Clock bandwidth 0.00 -1.00 -2.00 -3.00 -4.00 -5.00 -6.00 -7.00 -8.00 0 1 10 Input frequency (MHz) 100 Figure 24. Quiescent current (IQ) vs. supply voltage (VCC) (STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=1, no master clock input) Quiescent current vs. Supply voltage 2.8 2.6 2.4 10pF 2.2 20pF 2 Supply voltage (V) 24/40 2. 7 2. 5 2. 3 2. 1 1. 9 1. 7 30pF 1. 5 Quiescent current (mA) 3 STCD1020, STCD1030, STCD1040 Typical operating characteristics Figure 25. Quiescent current (IQ) vs. temperature (STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=1, Cload = 30 pF, no master clock input) Quiescent current (mA) Quiescent current vs. Temperature 2.9 2.7 2.5 2.3 2.1 1.9 1.7 1.5 -50 -30 -10 10 30 50 70 90 Temperature (˚C) Figure 26. Standby current (ISB) vs. supply voltage (VCC) (STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=0, no master clock input) Standby current vs. Supply voltage 0.5 0 -0.5 2. 7 2. 5 2. 3 2. 1 1. 9 1. 7 -1 1. 5 Standby current (µA) 1 Supply voltage (V) 25/40 Typical operating characteristics STCD1020, STCD1030, STCD1040 Figure 27. Active current (IACT) vs. supply voltage (VCC) (STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input from TCXO) Active current vs. Supply voltage Active current (mA) 6 4 10pF 2 20pF 30pF 0 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Supply voltage (V) Figure 28. Active current (IACT) vs. master clock input voltage level (Vpp) (STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input) Active current vs. Master clock voltage level Active current (mA) 6 5 4 3 10pF 2 20pF 1 30pF 1. 3 1. 2 1. 1 1 0. 9 0. 8 0. 7 0 Master clock voltage level Vpp(V) 26/40 STCD1020, STCD1030, STCD1040 Typical operating characteristics Figure 29. Active current (IACT) vs. input frequency (STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=1, master clock input Vpp=1 V) Active current vs. Input frequency Active current (mA) 12 10 8 6 10pF 4 20pF 2 30pF 0 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 Frequency (MHZ) Figure 30. STCD10x0 recovery time from standby to active (STCD1040, 1.8 V version, EN2=EN3=EN4=0, measure CLK1 when EN1 from 0 to 1) 27/40 Typical operating characteristics STCD1020, STCD1030, STCD1040 Figure 31. STCD10x0 buffer recovery time from off to on (STCD1040, 1.8 V version, EN2 =EN3=EN4=1, measure CLK1 when EN1 from 0 to 1) Figure 32. Sine wave input clock vs. output clock (STCD1040, 1.8 V version, 26 MHz sine wave master clock input from TCXO) 28/40 STCD1020, STCD1030, STCD1040 Typical operating characteristics Figure 33. Rise and fall time for square wave output (STCD1040, 1.8 V version, 10MHz square wave master clock input, Cload = 20 pF) Figure 34. Input clock phase noise (STCD1040, 1.8 V version, 26 MHz master clock input from TCXO) 29/40 Typical operating characteristics STCD1020, STCD1030, STCD1040 Figure 35. Output clock phase noise (STCD1040, 1.8 V version, this phase noise includes the additive phase noise from TCXO and STCD1040) Figure 36. Clock bandwidth (STCD1040, 1.8 V version, Cload = 10 pF) Output gain(db) Clock bandwidth 30/40 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 0 1 10 Input frequency(MHz) 100 STCD1020, STCD1030, STCD1040 7 Package mechanical data Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 31/40 Package mechanical data STCD1020, STCD1030, STCD1040 Figure 37. TDFN - 8-lead, 2 x 2 mm package outline D A B 0.10 C 2x E PIN 1 INDEX AREA 0.10 C 2x TOP VIEW A A1 0.10 C C SEATING PLANE SIDE VIEW 0.08 C e b PIN 1 INDEX AREA 1 0.10 4 C A B L Pin#1 ID 5 8 BOTTOM VIEW TDFN-8L 32/40 STCD1020, STCD1030, STCD1040 Table 10. Package mechanical data TDFN - 8-lead (2 x 2 mm) package mechanical data mm inches Symbol Min. Typ. Max. Min. Typ. Max. A 0.70 0.75 0.80 0.028 0.030 0.031 A1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.20 0.25 0.006 0.008 0.010 D 2.00 BSC 0.079 BSC E 2.00 BSC 0.079 BSC e 0.50 0.020 L 0.45 0.55 0.65 0.018 0.022 0.026 33/40 Package mechanical data STCD1020, STCD1030, STCD1040 Figure 38. TDFN - 10-lead, 2 x 2.5 mm package outline D A B 0.10 C 2x E PIN 1 INDEX AREA 0.10 C 2x TOP VIEW A A1 0.10 C SEATING PLANE 0.08 C SIDE VIEW e b PIN 1 INDEX AREA 0.10 C A B L Pin#1 ID BOTTOM VIEW TDFN-10L 34/40 STCD1020, STCD1030, STCD1040 Table 11. Package mechanical data TDFN - 10-lead (2 x 2.5 mm) package mechanical data mm inches Symbol Min. Typ. Max. Min. Typ. Max. A 0.70 0.75 0.80 0.028 0.030 0.031 A1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.20 0.25 0.006 0.008 0.010 D 2.50 BSC 0.098 BSC E 2.00 BSC 0.079 BSC e 0.50 0.020 L 0.45 0.55 0.65 0.018 0.022 0.026 35/40 Package mechanical data STCD1020, STCD1030, STCD1040 Figure 39. TDFN - 12-lead, 2 x 3 mm package outline D A B INDEX AREA 0.10 C 2x E (D/2xE/2) 0.10 C TOP VIEW A A1 0.10 C C SEATING PLANE SIDE VIEW 0.08 C e b 1 6 12 7 0.10 C A B PIN#1 ID INDEX AREA L (D/2xE/2) BOTTOM VIEW TDFN-12L 36/40 STCD1020, STCD1030, STCD1040 Table 12. Package mechanical data TDFN - 12-lead (2 x 3 mm) package mechanical data mm inches Symbol Min. Typ. Max. Min. Typ. Max. A 0.70 0.75 0.80 0.028 0.030 0.031 A1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.20 0.25 0.006 0.008 0.010 D 3.00 BSC 0.118 E 2.00 BSC 0.079 e 0.50 0.020 L 0.45 0.55 0.65 0.018 0.022 0.026 37/40 Part numbering 8 STCD1020, STCD1030, STCD1040 Part numbering Table 13. Ordering information scheme Example: STCD 1020 R DG 6 E Device type STCD = clock distribution Channels 1020 = 2-channel 1030 = 3-channel 1040 = 4-channel Operating voltage R = 2.5 to 3.6 V P = 1.65 to 2.75 V(1) Package DG = TDFN8 (2-channel) DH = TDFN10 (3-channel) DM = TDFN12 (4-channel) Temperature range 6 = –40°C to +85°C Shipping method E = ECOPACK® package, tubes F = ECOPACK® package, tape & reel 1. Contact local ST sales office for availability. For other options, or for more information on any aspect of this device, please contact the ST sales office nearest you. 38/40 STCD1020, STCD1030, STCD1040 9 Revision history Revision history Table 14. Document revision history Date Revision Changes 08-Aug-2007 1 Initial release. 08-Oct-2007 2 Addition of footnote 4 in Table 7: DC and AC characteristics (1.8 V supply); updated Vout in Table 7 and Table 9; minor text changes. 03-Apr-2008 3 Updated cover page, Table 2, 5, 7, 9, 13, Figure 1, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, Section 2 and 6; added Figure 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36. 08-May-2008 4 Updated cover page, Table 7, 8, Figure 14, 15, 27, 28, and Section 6; datasheet status upgraded to full datasheet. 39/40 STCD1020, STCD1030, STCD1040 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 40/40