STMICROELECTRONICS STCD2400

STCD22x0, STCD23x0, STCD24x0
Multichannel clock distribution circuit
Features
■
2, 3 or 4 output buffered clock distribution
■
Single-ended square wave (or sine wave) clock
input
■
Rail-to-rail (0 V to VTCXO) square wave output
■
Individual enable pin for each output
■
1.8 V, high PSRR LDO for external clock
source voltage supply (VTCXO)
■
No AC coupling capacitor needed
■
Ultra-low phase noise and standby current
■
Common system clock request, open drain,
active low
■
Clock enable signal polarities factory
programmable (STCD23x0)
■
Option pins allow clock enable polarities to be
user configurable (STCD22x0 and STCD24x0)
Applications
■
High isolation output-to-output & output-to-input
■
Multimode RF clock reference
■
2.5 V to 5.1 V battery supply voltage
■
Baseband peripheral device clock reference
■
40 pF max load driving capability per output
■
Mobile Internet Devices (MIDs)
■
Available in chip scale package (CSP)
■
Operating temperature : –20 °C to 85 °C
Table 1.
Flip Chip (12-bump, 16-bump)
Device summary
Reference
Part number
Channels
STCD22x0
STCD2200(1)
2-channel
STCD2410
(1)
Package
Flip Chip 12-bump
(1.2 mm x 1.6 mm)
User program
STCD2400
STCD24x0
Enable polarity
4-channel
Flip Chip 16-bump
(1.6 mm x 1.6 mm)
STCD2300(1)
STCD2310(1)
STCD23x0
STCD2320
(1)
3-channel
Factory program
Flip Chip 12-bump
(1.2 mm x 1.6 mm)
STCD2330(1)
1. Contact local ST sales office for availability.
January 2010
Doc ID 15400 Rev 2
1/39
www.st.com
1
Contents
STCD22x0, STCD23x0, STCD24x0
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
3.1
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2
Enable polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1
LDO input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2
LDO output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3
LDO BYP pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4
MCREQ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5
Phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6
Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.7
Output trace line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.8
Typical application connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5
Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2/39
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin functions (STCD22x0, 2-channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pin functions (STCD23x0, 3-channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pin functions (STCD24x0, 4-channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Truth table for clock enable (EN1-4), master clock request (MCREQ) and VTCXO . . . . . . 12
Truth table for enable signals (EN1-4), master clock input (MCLK) and output
clocks (CLK1-4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
STCD22x0, STCD23x0 and STCD24x0 and enable polarity options . . . . . . . . . . . . . . . . . 13
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Operating and AC measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DC and AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Flip Chip 12-bump, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Flip Chip 16-bump, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Doc ID 15400 Rev 2
3/39
List of figures
STCD22x0, STCD23x0, STCD24x0
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
4/39
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Hardware hookup (master clock enable active low) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Hardware hookup (master clock enable active high) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Connections diagram Flip Chip 12-bump (STCD22x0, 2-channel). . . . . . . . . . . . . . . . . . . . 8
Connections diagram Flip Chip 12-bump (STCD23x0, 3-channel). . . . . . . . . . . . . . . . . . . . 9
Connections diagram Flip Chip 16-bump (STCD24x0, 4-channel). . . . . . . . . . . . . . . . . . . . 9
Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Typical application circuit using STCD24x0 for RF ends of TD-SCDMA/GSM dual-mode
mobile phone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Typical application circuit using STCD24x0 for baseband peripherals in mobile phone. . . 18
Quiescent current vs. supply voltage (EN1 = EN2 = EN3 = EN4 = 1,
no master clock input). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Quiescent current vs. temperature (EN1 = EN2 = EN3 = EN4 = 1,
Cload = 20 pF, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Active current vs. temperature (EN1 = EN2 = EN3 = EN4 = 1, Cload = 20 pF,
VCC = 3.8 V, fMCLK = 26 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Standby current vs. supply voltage (EN1 = EN2 = EN3 = EN4 = 0, no master clock input) 20
Active current vs. supply voltage (EN1 = EN2 = EN3 = EN4 = 1, fMCLK = 26 MHz,
Cload = 20 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Active current vs. master clock input voltage level (EN1 = EN2 = EN3 = EN4 = 1,
fMCLK = 26 MHz, Cload = 20 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Active current vs. master clock frequency (EN1 = EN2 = EN3 = EN4 = 1, Cload = 20 pF) . 21
STCD2400 recovery time from standby to active (VTCXO is on) . . . . . . . . . . . . . . . . . . . . 22
STCD2400 recovery time from off to on (VTCXO first in standby) . . . . . . . . . . . . . . . . . . . 22
Output clock rise/fall time (Cload = 40 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
STCD2400 power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STCD2400 power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Phase noise input (from the clock source, 26 MHz square wave XO KC2520C26 from
Kyocera) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Phase noise output (include the clock source and STCD2400 additive phase noise) . . . . 26
Flip Chip 12-bump, package mechanical outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Flip Chip 16-bump, package mechanical outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Flip Chip 12-bump tape and reel specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Flip Chip 16-bump tape and reel specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
1
Description
Description
The STCD22x0, STCD23x0 and STCD24x0 are 2, 3 or 4 output clock distribution circuits
which accept external square wave or sine wave signals and output rail-to-rail (0 V to
VTCXO) square wave signals. They are used to provide a common frequency clock to
multimode mobile RF applications. They can also be used for those baseband peripheral
applications in mobile phones such as WLAN, Bluetooth, GPS and DVB-H as the clock
reference. The STCD22x0, STCD23x0 and STCD24x0 isolate each device driven by their
clock outputs and minimize interference between the devices. Each of the clock buffers can
be disabled to lower the power consumption whenever the connected device does not need
the clock. The STCD22x0, STCD23x0 and STCD24x0 accept commonly used mobile
master clock frequencies ranging from 10 MHz to 52 MHz.
The STCD22x0, STCD23x0 and STCD24x0 have a common clock request (open drain
output, active low) controlling the external clock source. A 1.8 V, high PSRR LDO is also
integrated in the STCD22x0, STCD23x0 and STCD24x0 to supply power to the external
clock source (for example, TCXO). STMicroelectronics offers different versions for the
enable polarities. The STCD22x0, STCD23x0 and STCD24x0 are available in, respectively,
1.2 mm x 1.6 mm (12-bump), 1.2 mm x 1.6 mm (12-bump) and 1.6 mm x 1.6 mm (16-bump)
chip scale packages and can be operated with a battery supply voltage ranging from 2.5 V
to 5.1 V. The operating temperature is –20 to +85 °C.
Doc ID 15400 Rev 2
5/39
Device overview
2
STCD22x0, STCD23x0, STCD24x0
Device overview
Figure 1.
Logic diagram
VCC
MCLK
MC REQ
EN1
EN2
CLK1
STCD24x0
(1)
CLK2
EN3
(1)(2)
EN4
Clock
Distribution
(1)
CLK3
(1)(2)
BYP
CLK4
(2)
OPT1
VTCXO
(2)
OPT2
GND
1. EN3, CLK3, EN4, and CLK4 do not exist for STCD22x0.
2. OPT1, OPT2, EN4, and CLK4 do not exist for STCD23x0.
6/39
Doc ID 15400 Rev 2
ai14020
STCD22x0, STCD23x0, STCD24x0
Figure 2.
Device overview
Block diagram
VCC
STCD24x0
VCC
VTCXO
CLK4
4
Bandgap
BYP
VTCXO
LDO
VTCXO
EN3
CLK3
3
VTCXO
MC REQ
EN4
EN2
CLK2
2
OPT1
OPT2
VTCXO
MCLK
1
EN1
CLK1
GND
Note:
ai14021
Enable signals (EN1-4) can be factory programmed either active high or active low for
STCD23x0 and can have different polarity options by configuring OPT1 and OPT2 for
STCD22x0 and STCD24x0. Master clock request (MCREQ) is open drain output and active
low.
Figure 3.
Hardware hookup (master clock enable active low)
VCC
Enable
control
C
EN4
BYP
C
VTCXO
VIO
C
CLK4
EN3
STCD24x0 CLK3
XO
Clock #4 output
VDD
MCREQ
EN
VCC
MCLK
Clock #3 output
EN2
CLK2
OPT1
EN1
OPT2
CLK1
Clock #2 output
Clock #1 output
ai14028a
Doc ID 15400 Rev 2
7/39
Device overview
Figure 4.
STCD22x0, STCD23x0, STCD24x0
Hardware hookup (master clock enable active high)
VCC
Enable
control
C
EN4
BYP
C
Clock #4 output
CLK4
VTCXO
C
EN3
STCD24x0 CLK3
XO
VDD
EN2
MCREQ
EN
VCC
Clock #3 output
Clock #2 output
CLK2
MCLK
OPT1
EN1
OPT2
CLK1
Clock #1 output
ai14028b
Figure 5.
Connections diagram Flip Chip 12-bump (STCD22x0, 2-channel)
3
CLK1
EN1
EN2
CLK2
3
CLK2
EN2
EN1
CLK1
2
BYP
GND
MCREQ
OPT1
2
OPT1
MCREQ
GND
BYP
1
VCC
VTCXO
MCLK
OPT2
1
OPT2
MCLK
VTCXO
VCC
Bottom view
Top view
A
B
C
D
D
C
B
A
ai14017
Note:
8/39
OPT1 is used to configure EN1 polarity. Connect OPT1 to VCC to configure EN1 active high
or connect OPT1 to GND to configure EN1 active low. In the same way OPT2 is used to
configure EN2.
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
Figure 6.
Device overview
Connections diagram Flip Chip 12-bump (STCD23x0, 3-channel)
3
CLK1
EN1
EN2
CLK2
3
CLK2
EN2
EN1
CLK1
2
BYP
GND
MCREQ
CLK3
2
CLK3
MCREQ
GND
BYP
1
VCC
VTCXO
MCLK
EN3
1
EN3
MCLK
VTCXO
VCC
Bottom view
Top view
A
B
C
D
D
C
B
A
ai14018
Note:
EN1~EN3 can be active high or active low. STMicroelectronics offers several polarity
options, refer to Section 3.2: Enable polarity for detailed information.
Figure 7.
Connections diagram Flip Chip 16-bump (STCD24x0, 4-channel)
4
3
2
1
CLK2
EN2
EN3
CLK3
CLK1
EN1
EN4
CLK4
BYP
GND
MCREQ
OPT1
VCC
VTCXO
MCLK
OPT2
CLK3
EN3
EN2
CLK2
CLK4
EN4
EN1
CLK1
2
OPT1
MCREQ
GND
BYP
1
OPT2
MCLK
VTCXO
VCC
4
3
Top view
A
B
Bottom view
C
D
D
C
B
A
ai14019
Note:
OPT1 is used to configure EN1 and EN2 polarity. Connect OPT1 to VCC to configure EN1
and EN2 active high or connect OPT1 to GND to configure EN1 and EN2 active low. In the
same way OPT2 is used to configure EN3 and EN4. STMicroelectronics offers different
control options, refer to Section 3.2: Enable polarity for detailed information.
Doc ID 15400 Rev 2
9/39
Device overview
Table 2.
Pin functions (STCD22x0, 2-channel)
Pin
number
Pin
name
A1
VCC
B1
Description
Supply voltage (decouple with a 1 µF capacitor to GND)
VTCXO LDO output for external clock source (decouple with a 1 µF capacitor to GND)
C1
MCLK
Master clock input
D1
OPT2
Optional pin 2. Connect to VCC or GND on PC board to field configure EN2
active high/low. Refer to Section 3.2: Enable polarity for detailed information.
A2
BYP
Bypass capacitor input pin (10 nF capacitor should be connected to GND in
order to improve thermal noise performance)
B2
GND
Supply ground
C2
MCREQ Master clock request signal (open drain, active low)
D2
OPT1
Optional pin 1. Connect to VCC or GND on PC board to field configure EN1
active high/low. Refer to Section 3.2: Enable polarity for detailed information.
A3
CLK1
Clock output channel - output 1
B3
EN1
Clock output channel enable-1 (active high/low OPT1 field programmable)
C3
EN2
Clock output channel enable-2 (active high/low OPT2 field programmable)
D3
CLK2
Clock output channel - output 2
Table 3.
Pin functions (STCD23x0, 3-channel)
Pin
number
Pin
name
A1
VCC
B1
Description
Supply voltage (decouple with a 1 µF capacitor to GND)
VTCXO LDO output for external clock source (decouple with a 1 µF capacitor to GND)
C1
MCLK
D1
EN3
Clock output channel enable-3 (active high/low factory laser programmable)
A2
BYP
Bypass capacitor input pin (10 nF capacitor should be connected to GND in
order to improve thermal noise performance)
B2
GND
Supply ground
C2
10/39
STCD22x0, STCD23x0, STCD24x0
Master clock input
MCREQ Master clock request signal (open drain, active low)
D2
CLK3
Clock output channel - output 3
A3
CLK1
Clock output channel - output 1
B3
EN1
Clock output channel enable-1 (active high/low factory laser programmable)
C3
EN2
Clock output channel enable-2 (active high/low factory laser programmable)
D3
CLK2
Clock output channel - output 2
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
Table 4.
Pin functions (STCD24x0, 4-channel)
Pin
number
Pin
name
A1
VCC
B1
Device overview
Description
Supply voltage (decouple with a 1 µF capacitor to GND)
VTCXO LDO output for external clock source (decouple with a 1 µF capacitor to GND)
C1
MCLK
Master clock input
D1
OPT2
Optional pin 2. Connect to VCC or GND on PC board to field configure EN3 and
EN4 active high/low. Refer to Section 3.2: Enable polarity for detailed
information.
A2
BYP
Bypass capacitor input pin (10 nF capacitor should be connected to GND in
order to improve thermal noise performance)
B2
GND
Supply ground
C2
MCREQ Master clock request signal (open drain, active low)
D2
OPT1
Optional pin 1. Connect to VCC or GND on PC board to field configure EN1 and
EN2 active high/low. Refer to Section 3.2: Enable polarity for detailed
information.
A3
CLK1
Clock output channel - output 1
B3
EN1
Clock output channel enable-1 (active high/low OPT1 field programmable)
C3
EN4
Clock output channel enable-4 (active high/low OPT2 field programmable)
D3
CLK4
Clock output channel - output 4
A4
CLK2
Clock output channel - output 2
B4
EN2
Clock output channel enable-2 (active high/low OPT1 field programmable)
C4
EN3
Clock output channel enable-3 (active high/low OPT2 field programmable)
D4
CLK3
Clock output channel - output 3
Doc ID 15400 Rev 2
11/39
Device operation
STCD22x0, STCD23x0, STCD24x0
3
Device operation
3.1
Operation
The STCD22x0, STCD23x0 and STCD24x0 are 2, 3 or 4 buffered clock distribution circuits.
They accept the clock (either square wave or sine wave) input from an external clock source
and send 2, 3 or 4 buffered rail-to-rail (0 V to VTCXO) square wave outputs to different
devices. A 1.8 V, high PSRR LDO (VTCXO) is also integrated in the STCD22x0, STCD23x0
and STCD24x0 which can be used as a voltage supply for the external master clock source
(such as a TCXO). This LDO stops the current increase through PMOS when the load
current reaches the limit value of the current-limit protection circuit. When the load current
falls below the limit values, the current limit is released.
Each of the STCD22x0, STCD23x0 and STCD24x0 clock outputs can be enabled
individually. If the device connected to the output is in standby, and does not require a clock,
the buffered output can be disabled to save power consumption. Once the buffered output is
disabled, it is pulled down to GND internally. If all the devices connected are in standby, the
STCD22x0, STCD23x0 and STCD24x0 are also put into standby mode (the internal LDO is
also shut down) for further power consumption savings. All of the output enable signals are
logic ORed with an open drain output (MCREQ) to control the output of the source clock. If
the output clock is required by at least one device, the LDO wakes up and the MCREQ
activates the clock source. The truth table for enable signals, the master clock request signal
and the VTCXO is given in Table 5. The truth table for enable signals, output clock signals
and the master clock is given in Table 6.
The STCD22x0, STCD23x0 and STCD24x0 have the master clock input detector integrated.
If the input master clock peak-to-peak voltage is below the minimum specified level, even if
the outputs are enabled, there are no clock outputs and STCD22x0, STCD23x0 and
STCD24x0 enter standby mode. Once the master clock peak-to-peak voltage level reaches
the minimum value, the output clocks are asserted if the enable pins are active.
In Table 5 and 6, the enable signals are active high and the MCREQ is active low. These
enable signals can be active high or active low. The enable polarity is described in
Section 3.2: Enable polarity. Customers can select different polarity options for different
applications. Contact the STMicroelectronics local sales office for availability.
Table 5.
Note:
12/39
Truth table for clock enable (EN1-4), master clock request (MCREQ) and
VTCXO
EN1
EN2
EN3
EN4
MCREQ
VTCXO
0
0
0
0
1
GND
1
0
0
0
0
1.8 V
1
1
0
0
0
1.8 V
-
-
-
-
0
1.8 V
1
1
1
1
0
1.8 V
"0" means logic low which disables the clock output and "1" means logic high which enables
the clock output. This is an active high truth table. Refer to Section 3.2: Enable polarity for
the detailed enable active high/low options.
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
Table 6.
Device operation
Truth table for enable signals (EN1-4), master clock input (MCLK) and
output clocks (CLK1-4)
EN1
EN2
EN3
EN4
MCLK
CLK1
CLK2
CLK3
CLK4
0
0
0
0
X
NO CLOCK
NO CLOCK
NO CLOCK
NO CLOCK
1
0
0
0
CLOCK
CLOCK
NO CLOCK
NO CLOCK
NO CLOCK
1
1
0
0
CLOCK
CLOCK
CLOCK
NO CLOCK
NO CLOCK
-
-
-
-
-
-
-
-
-
1
1
1
1
CLOCK
CLOCK
CLOCK
CLOCK
CLOCK
Note:
"0" means logic low and "1" means logic high. When there is NO CLOCK output, the CLKx
pin stays at logic low. "X" means don't care. This is an active high truth table. Refer to
Section 3.2: Enable polarity for the detailed enable active high/low options.
3.2
Enable polarity
In different applications, the user may have different requirements for enable active high or
active low (enable polarities). MCREQ is active low. STMicroelectronics offers different
solutions for the user to obtain different enable polarities.
In the STCD22x0 and STCD24x0, the user can configure the enable active high or active
low on the PC board by connecting OPT1 and OPT2 to either VCC or ground. Refer to
Table 7 for detailed information.
In the STCD23x0, STMicroelectronics offers 4 enable polarity options by factory
programming for the user. Refer to Table 7 for detailed information.
The user should note that OPT1 and OPT2 must be connected to either VCC or GND on the
PC board and floating on these pins could cause problems.
Table 7.
STCD22x0, STCD23x0 and STCD24x0 and enable polarity options
Part number
Enable polarities (OPT1, OPT2)
STCD2200
OPT1 connected to VCC, EN1 active high
OPT1 connected to GND, EN1 active low
OPT2 controls EN2
STCD2400
OPT1 connected to VCC, EN1 and EN2 active high
OPT1 connected to GND, EN1 and EN2 active low
OPT2 controls EN3 and EN4
STCD2410
OPT1 connected to VCC, EN1 active high
OPT1 connected to GND, EN1 active low
OPT2 controls EN2, EN3, and EN4
STCD2300
EN1, EN2 and EN3 all active low
STCD2310
EN1, EN2 active low, and EN3 active high
STCD2320
EN1, EN2 active high and EN3 active low
STCD2330
EN1, EN2 and EN3 all active high
Enable polarity
program method
User program
Factory program
Doc ID 15400 Rev 2
13/39
Application information
STCD22x0, STCD23x0, STCD24x0
4
Application information
4.1
LDO input capacitor
A 1 µF input capacitor is required for the input of the LDO of the STCD22x0, STCD23x0 and
STCD24x0 (the amount of capacitance can be increased without limit). This capacitor must
be located as close as possible to the VCC pin on the PC board and return to a clean analog
ground. Any good quality ceramic, tantalum or film capacitor can be used for this capacitor.
4.2
LDO output capacitor
A 1 µF external capacitor is required for the output VTCXO of the LDO of the STCD22x0,
STCD23x0 and STCD24x0. The STCD22x0, STCD23x0 and STCD24x0 are designed to
work with low ESR (equivalent series resistance) ceramic capacitors. Make sure the ESR is
lower than 500 mΩ to stabilize the VTCXO. Also, capacitor tolerance and variation with
temperature must be considered to assure the minimum amount of capacitance provided at
all times. This capacitor should be located as close as possible to the VTCXO pin on the PC
board.
4.3
LDO BYP pin
A 10 nF ceramic capacitor is required for the LDO BYP pin to ensure lower noise. Any good
quality ceramic, tantalum or film capacitor can be used. The capacitor should be located as
close as possible to the BYP pin on the PC board.
4.4
MCREQ pin
In the STCD22x0, STCD23x0, and STCD24x0, the MCREQ pin is open drain and active low.
Since MCREQ is active low, if none of the clock output is required, the STCD22x0,
STCD23x0 and STCD24x0 are set to standby mode which turns off the internal LDO
VTCXO.
MCREQ is designed as an open drain structure. A pull-up resistor (50 kΩ recommended) is
needed on the PC board to connect this pin to an external 1.8 V supply. Make sure the
current flowing through this pin is kept within 3 mA to guarantee the proper function of the
circuit.
If the MCREQ function is not used in the application, the user can connect this pin to GND or
leave it unconnected. Other functions of the STCD2xx0 will not be affected.
14/39
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
4.5
Application information
Phase noise
Phase noise is a frequency domain phenomenon and is a critical specification in reference
clocks. It is illustrated by a continuous spreading of the energy of the wave mainly caused by
random noise. The phase noise is normally specified with a unit of dBc/Hz at a given offset
in frequency (for example, 10 kHz) from the carrier wave (for example, 26 MHz). The value
of the phase noise is the difference of the power contained within 1 Hz bandwidth of the
offset frequency to the power at the carrier frequency. The total phase noise of the clock tree
is obtained by adding the additive phase noise of STCD22x0, STCD23x0 and STCD24x0
and the phase noise of the clock source (for example, TCXO) in power which is illustrated in
Equation 1.
Equation 1
PN T = 10 log(10
PN C
10
+ 10
PN X
10
) < PN A
where:
PNT is the total phase noise in dBc/Hz
PNC is the additive phase noise of STCD22x0, STCD23x0 and STCD24x0 and
PNX is the phase noise of clock source
Make sure the total phase noise is kept within the phase noise requirement of each
application PNA. The user should choose the right TCXO with proper phase noise to meet
the requirement.
Doc ID 15400 Rev 2
15/39
Application information
4.6
STCD22x0, STCD23x0, STCD24x0
Jitter
In the time domain, energy spreading can result in jitter, which is the same phenomenon as
phase noise in the frequency domain. As a sine wave passes its zero-crossing or a square
wave changes state, the real clock signal transition is not exactly the same as the ideal
case, thus causing variation in the waveform transition point. This deviation of the transition
point is known as jitter as illustrated in Figure 8.
Figure 8.
Jitter
Ideal transfer point
1
2
3
PI1
4
PI2
PI3
5
PI4
PR1
PR2
PR3
PR4
6
7
8
9
t
10
Real square wave transfer point
ai14029
In Figure 8 the square wave ideal transition point should happen at points 1, 2, 3, 4 and 5,
and each "ideal" period PI1 to PI4 should be the same, thus no time jitter has occurred.
Actually, the real transition point happens at points 6, 7, 8, 9 and 10, thus causing "real"
periods PR1 to PR4 to not be the same, and exhibit visible jitter. If each of the real periods of
the cycles (PR1 to PR4) is measured, period jitter is obtained. The cycle-to-cycle jitter is
also obtained by calculating the difference between two adjacent periods (for example, PR2PR1, PR3-PR2 …).
These periods of jitter are described as peak-to-peak jitter and are calculated by subtracting
the minimum value from the maximum value or may also be described by the root-meansquare (RMS) value, representing one standard deviation of the Gaussian distribution.
4.7
Output trace line
The STCD22x0, STCD23x0 and STCD24x0 is designed with maximum 50 Ω impedance
output. On the PC board, a 50 Ω transmission line with proper series termination should be
used to avoid signal distortion and reflection.
16/39
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
4.8
Application information
Typical application connections
The STCD2400 clock distribution circuit requires a source clock input as the reference clock
(for example, XO). At most 4 devices can be connected to the outputs. The typical
application circuit using STCD2400 is shown in Figure 9 and 10 . The MCREQ is open drain
output and active low. A pull-up resistor is needed to connect to an external 1.8 V supply
VIO. If the clock source enable is active high, the user can use VTCXO as the master clock
enable control signal, please refer to Figure 4 for the detailed connection.
In Figure 9, the clock from XO is distributed to the TD-SCDMA transmitter and receiver and
GSM transceiver separately to be used as reference clocks.
In Figure 10, the buffer #4 output is fed into the Bluetooth system. In order to allow minimum
power consumption, a Bluetooth system always has a clock request feature. If the Bluetooth
system does not require the clock, the clock request disables the clock output. The enable
pins can also be connected to an external 1.8 V supply to force the buffer to always be on.
In Figure 9 and 10, all the output clock enables are active high since both OPT1 and OPT2
are connected to VCC.
Figure 9.
Typical application circuit using STCD24x0 for RF ends of TDSCDMA/GSM dual-mode mobile phone
VCC
Mode
Selection
C
STCD24x0
C
VIO
BYP
VTCXO
C
XO
EN4
CLK4
TD-SCDMA
Transmitter
EN3
CLK3
VDD
MCREQ
EN
VCC
MCLK
EN2
CLK2
TD-SCDMA
Receiver
EN1
OPT1
CLK1
OPT2 GND
GSM
Transceiver
ai14022
Doc ID 15400 Rev 2
17/39
Application information
STCD22x0, STCD23x0, STCD24x0
Figure 10. Typical application circuit using STCD24x0 for baseband peripherals in
mobile phone
VCC
BT_External_Req
Internal_Req
C
STCD24x0
BYP
Bluetooth
EN4
CLK4
C
VIO
VTCXO
C
VDD
EN
XO
VCC
MCREQ
MCLK
EN3
CLK3
WLAN
EN2
CLK2
GPS
EN1
OPT1
CLK1
OPT2 GND
Other device
ai14023
18/39
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
Typical operating characteristics
Typical operating characteristics are at TA = 25 °C, Cload = 20 pF at each channel,
VCC = 3.8 V, fMCLK = 26 MHz.
Figure 11.
Quiescent current vs. supply voltage (EN1 = EN2 = EN3 = EN4 = 1,
no master clock input)
Quiescent current ICC (µA)
75
74
73
72
71
70
69
68
67
2. 7
2. 3
3. 1
4. 3
3. 9
3. 5
4. 7
5. 5
5.1
Supply voltage VCC (V)
AM00496v1
Figure 12. Quiescent current vs. temperature (EN1 = EN2 = EN3 = EN4 = 1,
Cload = 20 pF, no master clock input)
Quiescent current ICC (µA)
5
Typical operating characteristics
100
80
60
40
20
0
–30
–20
0
25
50
85
Temperature (°C)
AM00497v1
Doc ID 15400 Rev 2
19/39
Typical operating characteristics
STCD22x0, STCD23x0, STCD24x0
Figure 13. Active current vs. temperature (EN1 = EN2 = EN3 = EN4 = 1, Cload = 20 pF, VCC = 3.8 V,
fMCLK = 26 MHz)
Active current IACT (mA)
8
6
1 channel enabled
2 channels enabled
4
3 channels enabled
4 channels enabled
2
0
–30
–20
0
25
50
85
Temperature (°C)
AM00498v1
Standby current ISB (µA)
Figure 14. Standby current vs. supply voltage (EN1 = EN2 = EN3 = EN4 = 0, no master clock
input)
0.25
0.2
0.15
0.1
0.05
2.
3
2.
5
2.
7
2.
9
3.
1
3.
3
3.
5
3.
7
3.
9
4.
1
4.
3
4.
5
4.
7
4.
9
5.
1
5.
3
5.
5
0
Supply voltage VCC (V)
20/39
Doc ID 15400 Rev 2
AM00500v1
STCD22x0, STCD23x0, STCD24x0
Typical operating characteristics
Active current IACT (mA)
Figure 15. Active current vs. supply voltage (EN1 = EN2 = EN3 = EN4 = 1, fMCLK = 26 MHz,
Cload = 20 pF)
6
5
1 channel enabled
4
2 channels enabled
3
3 channels enabled
2
4 channels enabled
1
0
2. 3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
Supply voltage VCC (V)
AM00612v1
Active current IACT (mA)
Figure 16. Active current vs. master clock input voltage level (EN1 = EN2 = EN3 = EN4 = 1,
fMCLK = 26 MHz, Cload = 20 pF)
7
6
1 channel enabled
5
2 channels enabled
4
3
3 channels enabled
2
4 channels enabled
1
0
0. 5
0. 8
1. 1
1. 4
1.8
Master clock fMCLK voltage level (Vpp)
AM00613v1
Figure 17. Active current vs. master clock frequency (EN1 = EN2 = EN3 = EN4 = 1, Cload = 20 pF)
Active current IACT
(mA)
15
10
1 channel enabled
2 channels enabled
3 channels enabled
4 channels enabled
5
0
5
10
15
20
25
30
35
40
45
50
Master clock frequency fMCLK (MHz)
Doc ID 15400 Rev 2
55
AM00614v1
21/39
Typical operating characteristics
STCD22x0, STCD23x0, STCD24x0
Figure 18. STCD2400 recovery time from standby to active (VTCXO is on)
Figure 19. STCD2400 recovery time from off to on (VTCXO first in standby)
22/39
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
Typical operating characteristics
Figure 20. Output clock rise/fall time (Cload = 40 pF)
Doc ID 15400 Rev 2
23/39
Typical operating characteristics
STCD22x0, STCD23x0, STCD24x0
Figure 21. STCD2400 power-up sequence
Figure 22. STCD2400 power-down sequence
24/39
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
Typical operating characteristics
Figure 23. Phase noise input (from the clock source, 26 MHz square wave XO
KC2520C26 from Kyocera)
Doc ID 15400 Rev 2
25/39
Typical operating characteristics
STCD22x0, STCD23x0, STCD24x0
Figure 24. Phase noise output (include the clock source and STCD2400 additive
phase noise)
26/39
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
6
Maximum ratings
Maximum ratings
Stressing the device above the rating listed in the absolute maximum ratings table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE
Program and other relevant quality documents.
Table 8.
Absolute maximum ratings
Symbol
TSTG
TSLD(1)
TJ
1.
Parameter
Value
Unit
Lead-free bump solder temperature for 10 seconds
260
Maximum junction temperature
150
°C
°C
°C
–0.3 to 6
V
Storage temperature (VCC off)
–55 to 150
VCC
Supply voltage
VIN
Input clock voltage
–0.3 to 3.6
V
VEN
Voltage on enable pins
–0.3 to 3.6
V
VOPT
Optional pins voltage
–0.3 to 6
V
MCREQ
Master clock request
–0.3 to 3.6
V
Reflow at peak temperature of 260 °C. The time above 255 °C must not exceed 30 seconds.
Doc ID 15400 Rev 2
27/39
DC and AC parameters
7
STCD22x0, STCD23x0, STCD24x0
DC and AC parameters
This section summarizes the operating measurement conditions, and the DC and AC
characteristics of the device. The parameters in the DC and AC characteristics tables that
follow are derived from tests performed under the measurement conditions summarized in
Table 9. Designers should check that the operating conditions in their circuit match the
operating conditions when relying on the quoted parameters.
Table 9.
Operating and AC measurement conditions
Parameter
Condition
Unit
2.5 to 5.1
V
Input source clock voltage (MCLK)
0 to 1.8
V
Output clock voltage (CLK1-4)
0 to 1.8
V
Device enable voltage (EN1-4)
0 to 1.8
V
Source clock request voltage (MCREQ)
0 to 1.8
V
Optional pins voltage (OPT1, OPT2)
0 to VCC
V
Ambient operating temperature (TA)
–20 to +85
°C
Flip-chip thermal resistance (Rthja)
90
°C/W
VCC supply
Table 10.
Sym.
DC and AC characteristics
Condition(1)
Parameter
Min
Typ
Max
Unit
5.1
V
1.85
V
20
mA
VTCXO (low dropout output)
VCC
Supply voltage
VTCXO
Output voltage
IO
Maximum output current
VOACC
ICL
Total output accuracy
regulation(3)
Line
IREG
Load regulation(3)
28/39
ILOAD = 5 mA
(2)
Current limit protection
VREG
ITR
2.5
Load
transient(3)
1.75
1.8
–5%
5%
VTCXO = 0 V
30
90
mA
ILOAD = 20 mA
0.5
10
mV
ILOAD = 10 µA to 20 mA
0.4
10
mV
ILOAD = 10 µA to 20 mA
ITR = 1 µs
100
110
mV
ILOAD = 20 mA to 10 µA
ITR = 1 µs
100
110
mV
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
Table 10.
DC and AC parameters
DC and AC characteristics (continued)
Sym.
Parameter
PSRR Power supply rejection ratio(3)(4)
Condition(1)
Min
Typ
VCC = 2.5 V to 5.1 V,
Fripple = 217 Hz,
ILOAD = 20 mA
60
67
VCC = 2.5 V to 5.1 V,
Fripple = 1 kHz,
ILOAD = 20 mA
40
60
VCC = 2.5 V to 5.1 V,
Fripple = 1 MHz,
ILOAD = 20 mA
40
VCC = 2.5 V to 5.1 V,
Fripple = 3.25 MHz,
ILOAD = 20 mA
40
Max
Unit
dB
eN
Output noise voltage(3)
ILOAD = 5 mA, 10 Hz to
100 kHz
45
tST
Startup time(3)
VTCXO > 90%,
ILOAD = 10 µA to 20 mA
150
400
µs
tF
Output voltage falling time(3)
VTCXO < 10%,
ILOAD = 0
120
400
µs
10
26
52
MHz
40
50
60
%
Square wave
0.8
1.8
VTCXO + 0.2
Vpp
Sine wave
0.8
1
VTCXO + 0.2
Vpp
µVrms
Clock distribution
fMCLK
Master clock (from external clock
source)
Square wave / sine
wave
fCLK duty cycle
VIN
Input clock voltage level(5)
VOH
Output high
CL = 20 pF
VOL
Output low
CL = 20 pF
Tr/f
IQC
ICC
Rise/fall
time(6)
Quiescent current(7)
(including LDO)
Active current(8)
ISB
Standby current
(including LDO)
RIN
Input impedance
VTCXO – 0.05 VTCXO
V
0.05
V
2
5
ns
1 channel enabled
80
200
2 channels enabled
80
200
3 channels enabled
80
200
4 channels enabled
80
200
1 channel enabled
1.9
2 channels enabled
3.0
3 channels enabled
4.1
4 channels enabled
5.2
All buffers off
0.2
CL =10 pF~ 40 pF
1
µA
mA
> 100
Doc ID 15400 Rev 2
1
µA
kΩ
29/39
DC and AC parameters
Table 10.
STCD22x0, STCD23x0, STCD24x0
DC and AC characteristics (continued)
Sym.
Parameter
CIN
Condition(1)
Typ
Max
Unit
Input capacitance
3
4
pF
IOO
Output to output isolation
45
dB
IOI
Output to input isolation
45
dB
VENH
VENL
(9)
For EN1-EN4
(9)
For EN1-EN4
Enable voltage high
Enable voltage low
Min
1.2
V
0.6
VOPTH
OPT pins voltage high
For OPT1 and OPT2
VOPTL
OPT pins voltage low
For OPT1 and OPT2
GND
at 1 kHz offset
–135
at 10 kHz offset
–145
at 100 kHz offset
–150
rms value
10
ps
rms value
10
ps
STCD2xx0 active
1
PN
tJP
tJC
Additive phase
noise(3)(10)
Additive period
jitter(3)
Additive cycle-cycle
jitter(3)
tRECB
Buffer recovery time from off to
on
tRECC
STCD2xx0 recovery time from
standby to active (include LDO
wakeup time)
tPD
Input to output propagation
delay(3)
CL
Capacitive load for each channel
RL
Resistive load for each channel
ZOUT
Output impedance for each
channel
VCC –0.3
V
Voltage transfer at 50%
VCC
V
GND+0.3
V
dBc/
Hz
10
µs
500
µs
3.5
6
ns
20
40
pF
10
kΩ
50
Ω
1. Valid for ambient operating temperature: TA = –20 °C to 85 °C; VCC = 2.5 V to 5.1 V; typical TA = 25 °C;
load capacitance = 20 pF, fMCLK = 26 MHz (except where noted).
2. Total accuracy includes line and load regulation, temperature and process condition. It does not include load and line
transients.
3. Simulated and determined via design and not 100% tested.
4. Ripple voltage = 0.1 Vpp.
5. Clock input voltage level should not exceed VTCXO voltage.
6. The rise time is measured when clock edge transfers from 10% VCC to 90%VCC. The fall time is measured when clock
edge transfers from 90%VCC to 10%VCC. The output rise/fall time is guaranteed for all input slew rates.
7. The quiescent current is measured when the enable pins are active, but with no input master clock signal (fMCLK = 0 Hz).
8. The active current depends on the input master clock Vpp and frequency and the load condition. The typical test condition
is 26 MHz with 1.8 Vpp master clock input, CL = 20 pF.
9. The test condition is VENH = 1.8 V and VENL = 0 V. When output enables simultaneously, there is no intentional skew in
design between the output clocks.
10. Guaranteed for all input clock slew rates.
30/39
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
8
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 25. Flip Chip 12-bump, package mechanical outline
7504892_L(E)
Doc ID 15400 Rev 2
31/39
Package mechanical data
Table 11.
STCD22x0, STCD23x0, STCD24x0
Flip Chip 12-bump, package mechanical data
mm
in
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.55
0.61
0.66
0.022
0.024
0.026
A1
0.17
0.21
0.24
0.007
0.008
0.009
A2
0.38
0.40
0.42
0.015
0.016
0.017
b
0.22
0.26
0.30
0.008
0.010
0.012
D
1.55
1.60
1.65
0.061
0.063
0.065
D1
E
1.20
1.15
E1
1.25
0.045
0.80
0.047
0.049
0.031
e
0.36
0.40
0.44
0.014
0.016
0.017
DE
0.18
0.20
0.22
0.007
0.008
0.009
f
0.185
0.195
0.210
0.007
0.008
0.008
ccc
32/39
1.20
0.047
0.05
Doc ID 15400 Rev 2
0.002
STCD22x0, STCD23x0, STCD24x0
Package mechanical data
Figure 26. Flip Chip 16-bump, package mechanical outline
7504892_L(A)
Doc ID 15400 Rev 2
33/39
Package mechanical data
Table 12.
STCD22x0, STCD23x0, STCD24x0
Flip Chip 16-bump, package mechanical data
mm
in
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.55
0.61
0.66
0.022
0.024
0.026
A1
0.17
0.21
0.24
0.007
0.008
0.009
A2
0.38
0.40
0.42
0.015
0.016
0.017
b
0.22
0.26
0.30
0.008
0.010
0.012
D
1.55
1.60
1.65
0.061
0.063
0.065
D1
E
1.20
1.55
E1
1.65
0.061
1.20
0.063
0.065
0.047
e
0.36
0.40
0.44
0.014
0.016
0.017
SD
0.18
0.20
0.22
0.007
0.008
0.009
SE
0.18
0.20
0.22
0.007
0.008
0.009
f
0.185
0.195
0.210
0.007
0.008
0.008
ccc
34/39
1.60
0.047
0.05
Doc ID 15400 Rev 2
0.002
STCD22x0, STCD23x0, STCD24x0
Package mechanical data
Figure 27. Flip Chip 12-bump tape and reel specifications
12bFC
Doc ID 15400 Rev 2
35/39
Package mechanical data
STCD22x0, STCD23x0, STCD24x0
Figure 28. Flip Chip 16-bump tape and reel specifications
16bFC
36/39
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
9
Part numbering
Part numbering
Table 13.
Ordering information scheme
Example:
STCD
22
0
0
F3
5
F
Device type
STCD = clock distribution
Channels
22 = 2-channel(1)
23 = 3-channel(1)
24 = 4-channel
Enable polarity
STCD22x0 (user programmable)
0 = OPT1 sets EN1, OPT2 sets EN2
STCD23x0 (factory programmable)
0 = EN1, EN2, EN3
1 = EN1, EN2, EN3
2 = EN1, EN2, EN3
3 = EN1, EN2, EN3
STCD24x0 (user programmable)
0 = OPT1 sets EN1 and EN2, OPT2 sets EN3 and EN4
1 = OPT1 sets EN1, OPT2 sets EN2, EN3, and EN4(1)
Master clock request (MCREQ)
0 = MCREQ active low
Package
F3 = Flip chip, lead-free, pitch = 400 µm, bump = 250 µm
(12-bump for 2- or 3-channel, 16-bump for 4-channel)
Temperature range
5 = –20 °C to +85 °C
Shipping method
F = ECOPACK® package, tape & reel
1. Contact local ST sales office for availability.
For other options, or for more information on any aspect of this device, please contact the
ST sales office nearest you.
Doc ID 15400 Rev 2
37/39
Revision history
10
STCD22x0, STCD23x0, STCD24x0
Revision history
Table 14.
38/39
Document revision history
Date
Revision
Changes
26-Aug-2009
1
Initial release.
11-Jan-2010
2
Updated footnote 5 in Table 10: DC and AC characteristics.
Doc ID 15400 Rev 2
STCD22x0, STCD23x0, STCD24x0
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 15400 Rev 2
39/39