SLOS254E − JUNE 1999 − REVISED APRIL 2006 D Wide Bandwidth . . . 10 MHz D High Output Drive D D D D D D D Operational Amplifier − IOH . . . 57 mA at VDD − 1.5 V − IOL . . . 55 mA at 0.5 V High Slew Rate − SR+ . . . 16 V/µs − SR− . . . 19 V/µs Wide Supply Range . . . 4.5 V to 16 V Supply Current . . . 1.9 mA/Channel Ultralow Power Shutdown Mode IDD . . . 125 µA/Channel Low Input Noise Voltage . . . 8.5 nV√Hz Input Offset Voltage . . . 60 µV Ultra-Small Packages − 8 or 10 Pin MSOP (TLC080/1/2/3) − + description The first members of TI’s new BiMOS general-purpose operational amplifier family are the TLC08x. The BiMOS family concept is simple: provide an upgrade path for BiFET users who are moving away from dual-supply to single-supply systems and demand higher ac and dc performance. With performance rated from 4.5 V to 16 V across commercial (0°C to 70°C) and an extended industrial temperature range (−40°C to 125°C), BiMOS suits a wide range of audio, automotive, industrial, and instrumentation applications. Familiar features like offset nulling pins, and new features like MSOP PowerPAD packages and shutdown modes, enable higher levels of performance in a variety of applications. Developed in TI’s patented LBC3 BiCMOS process, the new BiMOS amplifiers combine a very high input impedance, low-noise CMOS front end with a high-drive bipolar output stage, thus providing the optimum performance features of both. AC performance improvements over the TL08x BiFET predecessors include a bandwidth of 10 MHz (an increase of 300%) and voltage noise of 8.5 nV/√Hz (an improvement of 60%). DC improvements include an ensured VICR that includes ground, a factor of 4 reduction in input offset voltage down to 1.5 mV (maximum) in the standard grade, and a power supply rejection improvement of greater than 40 dB to 130 dB. Added to this list of impressive features is the ability to drive ±50-mA loads comfortably from an ultrasmall-footprint MSOP PowerPAD package, which positions the TLC08x as the ideal high-performance general-purpose operational amplifier family. FAMILY PACKAGE TABLE PACKAGE TYPES NO. OF CHANNELS MSOP PDIP SOIC TSSOP TLC080 1 8 8 8 — TLC081 1 8 8 8 — TLC082 2 8 8 8 — — TLC083 2 10 14 14 — Yes TLC084 4 — 14 14 20 — TLC085 4 — 16 16 20 Yes DEVICE SHUTDOWN UNIVERSAL EVM BOARD Yes Refer to the EVM Selection Guide (Lit# SLOU060) Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerPAD is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. Copyright 2000−2006 Texas Instruments Incorporated !"#$%&'(!$" !) *+%%,"( ') $# -+./!*'(!$" 0'(,1 %$0+*() *$"#$%& ($ )-,*!#!*'(!$") -,% (2, (,%&) $# ,') ")(%+&,"() )('"0'%0 3'%%'"(41 %$0+*(!$" -%$*,))!"5 0$,) "$( ",*,))'%!/4 !"*/+0, (,)(!"5 $# '// -'%'&,(,%)1 WWW.TI.COM 1 SLOS254E − JUNE 1999 − REVISED APRIL 2006 TLC080 and TLC081 AVAILABLE OPTIONS PACKAGED DEVICES TA 0°C to 70°C −40°C to 125°C SMALL OUTLINE (D)† SMALL OUTLINE (DGN)† SYMBOL PLASTIC DIP (P) TLC080CD TLC081CD TLC080CDGN TLC081CDGN xxTIACW xxTIACY TLC080CP TLC081CP TLC080ID TLC081ID TLC080IDGN TLC081IDGN xxTIACX xxTIACZ TLC080IP TLC081IP — — — — TLC080AID TLC081AID TLC080AIP TLC081AIP † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC080CDR). TLC082 and TLC083 AVAILABLE OPTIONS PACKAGED DEVICES TA 0°C to 70°C −40°C to 125°C SMALL OUTLINE (D)† SYMBOL‡ PLASTIC DIP (N) PLASTIC DIP (P) (DGN)† SYMBOL‡ (DGQ)† TLC082CD TLC083CD TLC082CDGN — xxTIADZ — — TLC083CDGQ — xxTIAEB — TLC083CN TLC082CP — TLC082ID TLC083ID TLC082IDGN — xxTIAEA — — TLC083IDGQ — xxTIAEC — TLC083IN TLC082IP — TLC082AID TLC083AID — — — — — — — — — TLC083AIN TLC082AIP — MSOP † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC082CDR). ‡ xx represents the device date code. TLC084 and TLC085 AVAILABLE OPTIONS PACKAGED DEVICES TA 0°C to 70°C −40°C to 125°C SMALL OUTLINE (D)† PLASTIC DIP (N) TSSOP (PWP)† TLC084CD TLC085CD TLC084CN TLC085CN TLC084CPWP TLC085CPWP TLC084ID TLC085ID TLC084IN TLC085IN TLC084IPWP TLC085IPWP TLC084AID TLC085AID TLC084AIN TLC085AIN TLC084AIPWP TLC085AIPWP † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC084CDR). For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or see the TI web site at www.ti.com. 2 WWW.TI.COM SLOS254E − JUNE 1999 − REVISED APRIL 2006 TLC08x PACKAGE PINOUTS TLC080 D, DGN, OR P PACKAGE (TOP VIEW) NULL IN − IN + GND 1 8 2 7 3 6 4 5 SHDN VDD OUT NULL TLC081 D, DGN, OR P PACKAGE (TOP VIEW) NULL IN − IN + GND TLC083 DGQ PACKAGE (TOP VIEW) 1OUT 1IN − 1IN+ GND 1SHDN 1 2 3 4 5 10 9 8 7 6 VDD 2OUT 2IN − 2IN+ 2SHDN 1 20 2 19 3 18 4 17 5 16 6 7 15 14 8 13 9 12 10 11 7 3 6 4 5 NC VDD OUT NULL 1OUT 1IN − 1IN + GND 8 2 7 3 6 4 5 (TOP VIEW) (TOP VIEW) 1 14 2 13 3 12 4 11 5 10 6 9 7 8 VDD 2OUT 2IN − 2IN+ NC 2SHDN NC 1OUT 1IN − 1IN+ VDD 2IN+ 2IN − 2OUT 1 16 2 15 3 14 4 5 6 7 8 13 12 11 10 9 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN − 4IN+ GND 3IN+ 3IN − 3OUT (TOP VIEW) (TOP VIEW) 1OUT 1IN − 1IN+ VDD 2IN+ 2IN − 2OUT 1/2SHDN 1 VDD 2OUT 2IN − 2IN+ TLC085 PWP PACKAGE TLC085 D OR N PACKAGE 4OUT 4IN− 4IN+ GND 3IN+ 3IN− 3OUT NC NC NC 1 TLC084 D OR N PACKAGE (TOP VIEW) 1OUT 1IN− 1IN+ VDD 2IN+ 2IN− 2OUT NC NC NC 8 2 TLC083 D OR N PACKAGE 1OUT 1IN − 1IN+ GND NC 1SHDN NC TLC084 PWP PACKAGE 1 TLC082 D, DGN, OR P PACKAGE (TOP VIEW) 4OUT 4IN − 4IN+ GND 3IN + 3IN− 3OUT 3/4SHDN 1OUT 1IN− 1IN+ VDD 2IN+ 2IN− 2OUT 1/2SHDN NC NC 1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11 4OUT 4IN− 4IN+ GND 3IN+ 3IN− 3OUT 3/4SHDN NC NC NC − No internal connection TYPICAL PIN 1 INDICATORS Pin 1 Printed or Molded Dot Pin 1 Stripe Pin 1 Bevel Edges Pin 1 Molded ”U” Shape WWW.TI.COM 3 SLOS254E − JUNE 1999 − REVISED APRIL 2006 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V Differential input voltage range, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values, except differential voltages, are with respect to GND . DISSIPATION RATING TABLE PACKAGE θJC (°C/W) θJA (°C/W) TA ≤ 25°C POWER RATING D (8) 38.3 176 710 mW D (14) 26.9 122.3 1022 mW D (16) 25.7 114.7 1090 mW DGN (8) 4.7 52.7 2.37 W DGQ (10) 4.7 52.3 2.39 W N (14, 16) 32 78 1600 mW P (8) 41 104 1200 mW PWP (20) 1.40 26.1 4.79 W recommended operating conditions Single supply Supply voltage, VDD Split supply Common-mode input voltage, VICR Shutdown on/off voltage level‡ Operating free-air temperature, TA VIH VIL C-suffix I-suffix ‡ Relative to the voltage on the GND terminal of the device. 4 WWW.TI.COM MIN MAX 4.5 16 ±2.25 ±8 V GND VDD−2 V 2 0.8 0 70 −40 125 UNIT V °C SLOS254E − JUNE 1999 − REVISED APRIL 2006 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage TEST CONDITIONS VDD = 5 V, VIC = 2.5 V, VO = 2.5 V, RS = 50 Ω TLC080/1/2/3, TLC084/5 TLC080/1/2/3A, TLC084/5A TA† 25°C MIN IIB Input offset current Input bias current Common-mode input voltage VDD = 5 V, VIC = 2.5 V, VO = 2.5 V, RS = 50 Ω TLC08XI 3000 25°C 390 Full range IOH = − 35 mA 3 Full range 0 to 3.0 0 to 3.5 Full range 0 to 3.0 0 to 3.5 25°C 4.1 4.3 Full range 3.9 25°C 3.7 Full range 3.5 25°C 3.4 Full range 3.2 25°C 3.2 Full range IOL = 20 mA Full range 25°C IOL = 35 mA IOS Short-circuit output current IO Output current V 4 V 3.8 3.6 0.18 0.25 0.35 0.35 0.39 0.45 0.43 0.55 0.45 0.63 Full range 25°C IOL = 50 mA pA 3 25°C VIC = 2.5 V 50 700 25°C IOL = 1 mA pA 700 25°C Low-level output voltage 50 100 −40°C to 85°C µV V µV/°C V/°C 100 Full range RS = 50 Ω VIC = 2.5 V 1.9 25°C IOH = − 50 mA VOL 1400 UNIT 2000 TLC08XC IOH = − 20 mA High-level output voltage 1900 TLC08XC IOH = − 1 mA VOH 390 1.2 TLC08XI VICR MAX Full range 25°C IIO TYP V 0.7 −40°C to 85°C 0.7 Sourcing 25°C 100 Sinking 25°C 100 VOH = 1.5 V from positive rail VOL = 0.5 V from negative rail 25°C 57 25°C 55 mA mA † Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. WWW.TI.COM 5 SLOS254E − JUNE 1999 − REVISED APRIL 2006 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS AVD Large-signal differential voltage amplification ri(d) Differential input resistance CIC Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 10 kHz, VO(PP) = 3 V, RL = 10 kΩ AV = 10 CMRR Common-mode rejection ratio VIC = 0 to 3 V, RS = 50 Ω kSVR Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 4.5 V to 16 V, No load VIC = VDD /2, IDD Supply current (per channel) VO = 2.5 V, No load IDD(SHDN) Supply current in shutdown mode (per channel) (TLC080, TLC083, TLC085) SHDN ≤ 0.8 V TA† MIN TYP 25°C 100 120 Full range 100 dB 1000 GΩ 25°C 22.9 pF 0.25 Ω 25°C 25°C 80 Full range 80 25°C 80 Full range 80 25°C 110 dB 100 dB 1.8 Full range 25°C WWW.TI.COM UNIT 25°C Full range † Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. 6 MAX 2.5 3.5 125 mA 200 250 µA A SLOS254E − JUNE 1999 − REVISED APRIL 2006 operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS SR+ Positive slew rate at unity gain VO(PP) = 0.8 V, RL = 10 kΩ CL = 50 pF, SR− Negative slew rate at unity gain VO(PP) = 0.8 V, RL = 10 kΩ CL = 50 pF, Vn Equivalent input noise voltage In TA† 25°C MIN TYP 10 16 Full range 9.5 25°C 12.5 Full range 19 V/ s V/µs 10 25°C 12 f = 1 kHz 25°C 8.5 Equivalent input noise current f = 1 kHz 25°C 0.6 THD + N Total harmonic distortion plus noise VO(PP) = 3 V, RL = 10 kΩ and 250 Ω, f = 1 kHz t(on) t(off) Amplifier turnon time‡ Amplifier turnoff time‡ RL = 10 kΩ Gain-bandwidth product f = 10 kHz, RL = 10 kΩ V(STEP)PP = 1 V, AV = −1, CL = 10 pF, RL = 10 kΩ 0.1% V(STEP)PP = 1 V, AV = −1, CL = 47 pF, RL = 10 kΩ 0.1% 0.18 0.01% 0.39 RL = 10 kΩ, CL = 50 pF RL = 10 kΩ, CL = 0 pF RL = 10 kΩ, CL = 50 pF RL = 10 kΩ, CL = 0 pF ts φm Settling time Phase margin Gain margin UNIT V/ s V/µs f = 100 Hz AV = 1 AV = 10 MAX nV/√Hz fA /√Hz 0.002% 25°C 25 C AV = 100 0.012% 0.085% 25°C 0.15 µs 25°C 1.3 µs 25°C 10 MHz 0.18 0.01% 0.39 µss 25°C 32° 25°C 40° 2.2 25°C 3.3 dB † Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. ‡ Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current has reached half its final value. WWW.TI.COM 7 SLOS254E − JUNE 1999 − REVISED APRIL 2006 electrical characteristics at specified free-air temperature, VDD = 12 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage TEST CONDITIONS VDD = 12 V VIC = 6 V, VO = 6 V, RS = 50 Ω TLC0841/2/3, TLC084/5 TLC0841/2/3A, TLC084/5A TA† 25°C MIN IIB Input offset current Input bias current Common-mode input voltage VDD = 12 V VIC = 6 V, VO = 6 V, RS = 50 Ω TLC08xI 3000 25°C 390 Full range IOH = − 35 mA 2 Full range 0 to 10.0 0 to 10.5 Full range 0 to 10.0 0 to 10.5 25°C 11.1 11.2 10.8 Full range 10.7 25°C 10.6 Full range 10.3 25°C 10.3 −40°C to 85°C 10.2 Full range IOL = 20 mA Full range 25°C IOL = 35 mA IOS Short-circuit output current IO Output current 10.5 0.17 0.25 0.35 0.35 0.45 0.4 0.52 0.5 V 0.6 0.45 0.6 0.65 Sourcing 25°C 150 Sinking 25°C 150 VOH = 1.5 V from positive rail VOL = 0.5 V from negative rail 25°C 57 25°C 55 WWW.TI.COM V 10.7 −40°C to 85°C † Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. 8 V 11 Full range 25°C IOL = 50 mA pA 11 25°C 25°C VIC = 6 V 50 700 25°C IOL = 1 mA pA 700 25°C Low-level output voltage 50 100 Full range µV V µV/°C V/°C 100 Full range RS = 50 Ω VIC = 6 V 1.5 25°C IOH = − 50 mA VOL 1400 UNIT 2000 TLC08xC IOH = − 20 mA High-level output voltage 1900 TLC08xC IOH = − 1 mA VOH 390 1.2 TLC08xI VICR MAX Full range 25°C IIO TYP mA mA SLOS254E − JUNE 1999 − REVISED APRIL 2006 electrical characteristics at specified free-air temperature, VDD = 12 V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS AVD Large-signal differential voltage amplification ri(d) Differential input resistance CIC Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 10 kHz, VO(PP) = 8 V, RL = 10 kΩ AV = 10 CMRR Common-mode rejection ratio VIC = 0 to 10 V, RS = 50 Ω kSVR Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 4.5 V to 16 V, No load VIC = VDD /2, IDD Supply current (per channel) VO = 7.5 V, No load IDD(SHDN) Supply current in shutdown mode (TLC080, TLC083, TLC085) (per channel) SHDN ≤ 0.8 V TA† MIN TYP 25°C 120 140 Full range 120 MAX UNIT dB 25°C 1000 GΩ 25°C 21.6 pF 0.25 Ω 25°C 25°C 80 Full range 80 25°C 80 Full range 80 25°C 110 dB 100 dB 1.9 Full range 25°C Full range 2.9 3.5 125 mA 200 250 µA A † Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. WWW.TI.COM 9 SLOS254E − JUNE 1999 − REVISED APRIL 2006 operating characteristics at specified free-air temperature, VDD = 12 V (unless otherwise noted) PARAMETER TEST CONDITIONS SR+ Positive slew rate at unity gain VO(PP) = 2 V, RL = 10 kΩ CL = 50 pF, SR− Negative slew rate at unity gain VO(PP) = 2 V, RL = 10 kΩ CL = 50 pF, Vn Equivalent input noise voltage In TA† 25°C MIN TYP 10 16 Full range 9.5 25°C 12.5 Full range 19 V/ s V/µs 10 25°C 14 f = 1 kHz 25°C 8.5 Equivalent input noise current f = 1 kHz 25°C 0.6 THD + N Total harmonic distortion plus noise VO(PP) = 8 V, RL = 10 kΩ and 250 Ω, f = 1 kHz t(on) t(off) Amplifier turnon time‡ Amplifier turnoff time‡ RL = 10 kΩ Gain-bandwidth product f = 10 kHz, RL = 10 kΩ V(STEP)PP = 1 V, AV = −1, CL = 10 pF, RL = 10 kΩ 0.1% V(STEP)PP = 1 V, AV = −1, CL = 47 pF, RL = 10 kΩ 0.1% 0.17 0.01% 0.29 RL = 10 kΩ, CL = 50 pF RL = 10 kΩ, CL = 0 pF RL = 10 kΩ, CL = 50 pF RL = 10 kΩ, CL = 0 pF ts φm Settling time Phase margin Gain margin UNIT V/ s V/µs f = 100 Hz AV = 1 AV = 10 MAX nV/√Hz fA /√Hz 0.002% 25°C 25 C AV = 100 0.005% 0.022% 25°C 0.47 µs 25°C 2.5 µs 25°C 10 MHz 0.17 0.01% 0.22 µss 25°C 37° 25°C 42° 3.1 25°C 4 dB † Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. ‡ Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current has reached half its final value. 10 WWW.TI.COM SLOS254E − JUNE 1999 − REVISED APRIL 2006 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO IIO Input offset voltage vs Common-mode input voltage 1, 2 Input offset current vs Free-air temperature 3, 4 IIB VOH Input bias current vs Free-air temperature 3, 4 High-level output voltage vs High-level output current 5, 7 VOL Zo Low-level output voltage vs Low-level output current 6, 8 Output impedance vs Frequency 9 IDD PSRR Supply current vs Supply voltage 10 Power supply rejection ratio vs Frequency 11 CMRR Common-mode rejection ratio vs Frequency 12 Vn VO(PP) Equivalent input noise voltage vs Frequency 13 Peak-to-peak output voltage vs Frequency 14, 15 Crosstalk vs Frequency 16 Differential voltage gain vs Frequency 17, 18 Phase vs Frequency 17, 18 Phase margin vs Load capacitance 19, 20 Gain margin vs Load capacitance 21, 22 Gain-bandwidth product vs Supply voltage SR Slew rate vs Supply voltage vs Free-air temperature 24 25, 26 vs Frequency 27, 28 THD + N Total harmonic distortion plus noise vs Peak-to-peak output voltage 29, 30 φm 23 Large-signal follower pulse response 31, 32 Small-signal follower pulse response 33 Large-signal inverting pulse response 34, 35 Small-signal inverting pulse response 36 Shutdown forward isolation vs Frequency 37, 38 Shutdown reverse isolation vs Frequency 39, 40 vs Supply voltage Shutdown supply current vs Free-air temperature Shutdown pulse 41 42 43, 44 WWW.TI.COM 11 SLOS254E − JUNE 1999 − REVISED APRIL 2006 TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 1500 VDD = 5 V TA = 25° C VDD = 12 V TA = 25° C 1300 600 400 200 0 −200 −400 1100 900 700 500 300 100 −100 −300 −600 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 −500 0 VICR − Common-Mode Input Voltage − V 1 2 3 4 8 9 10 11 12 IIO −20 −40 −60 −80 −100 IIB −120 VDD = 12 V −140 IIO −100 −55 −40 −25 −10 5 20 35 50 65 80 95 110 125 4.5 TA = 70°C TA = 25°C 4.0 TA = −40°C 3.5 TA = 125°C 3.0 2.5 11.0 TA = −40°C TA = 25°C 10.0 9.5 VDD = 12 V 9.0 0.8 0.7 TA = 125°C 0.6 TA = 70°C TA = 25°C 0.5 0.4 0.3 TA = −40°C 0.2 0.1 5 10 15 20 25 30 35 40 45 50 IOH - High-Level Output Current - mA 0 5 10 15 20 25 30 35 40 45 50 IOL - Low-Level Output Current - mA Figure 5 Figure 6 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT OUTPUT IMPEDANCE vs FREQUENCY 1000 0.9 0.8 TA = 125°C 0.7 TA = 70°C 0.6 TA = 25°C 0.5 0.4 0.3 TA = −40°C 0.2 0.1 100 VDD = 5 V and 12 V TA = 25°C 10 AV = 100 1 AV = 1 0.10 AV = 10 VDD = 12 V 0.0 10 15 20 25 30 35 40 45 50 IOH - High-Level Output Current - mA VDD = 5 V 0.9 0.0 0 VOL − Low-Level Output Voltage − V TA = 125°C TA = 70°C LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 1.0 1.0 Figure 7 0 −50 TA − Free−Air Temperature − °C 2.0 12.0 5 IIB 50 Figure 3 VDD = 5 V HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 0 100 5.0 −160 −55 −40 −25 −10 5 20 35 50 65 80 95 110 125 10.5 150 VOL − Low-Level Output Voltage − V 0 11.5 200 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT V OH − High-Level Output Voltage − V I IB / I IO − Input Bias and Input Offset Current − pA INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE Figure 4 V OH − High-Level Output Voltage − V 7 VDD = 5 V 250 Figure 2 TA − Free-Air Temperature − °C 12 6 300 VICR − Common-Mode Input Voltage − V Figure 1 20 5 Z o − Output Impedance − Ω 800 V IO − Input Offset Voltage − µ V V IO − Input Offset Voltage − µ V 1000 INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE I IB / I IO − Input Bias and Input Offset Current − pA INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 0 5 10 15 20 25 30 35 40 45 50 IOL - Low-Level Output Current - mA Figure 8 WWW.TI.COM 0.01 100 1k 100k 10k f - Frequency - Hz Figure 9 1M 10M SLOS254E − JUNE 1999 − REVISED APRIL 2006 TYPICAL CHARACTERISTICS SUPPLY CURRENT vs SUPPLY VOLTAGE TA = 25°C 1.8 TA = 125°C 1.6 TA = 70°C 1.4 AV = 1 SHDN = VDD Per Channel 1.2 1.0 4 5 6 140 120 VDD = 12 V 100 80 60 40 VDD = 5 V 20 0 7 8 9 10 11 12 13 14 15 VDD − Supply Voltage - V 0 10 V O(PP) − Peak-to-Peak Output Voltage − V 25 20 VDD = 12 V 10 VDD = 5 V 5 0 10 100 1k 1M 10M 100 80 60 40 20 0 100 10k VDD = 12 V 8 6 VDD = 5 V 4 THD+N < = 5% RL = 600 Ω TA = 25°C 2 0 100k 10k 100k 1M f - Frequency - Hz f − Frequency − Hz Figure 13 10k 100k f - Frequency - Hz 1M 10M PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 12 10 1k Figure 12 PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 10M Figure 14 12 10 VDD = 12 V 8 6 VDD = 5 V 4 2 0 10k THD+N < = 5% RL= 10 kΩ TA = 25°C 100k 1M f - Frequency - Hz 10M Figure 15 CROSSTALK vs FREQUENCY 0 −20 −40 Crosstalk − dB Hz V n − Equivalent Input Noise Voltage − nV/ 30 15 100k VDD = 5 V and 12 V TA = 25°C 120 Figure 11 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 35 10k 140 f − Frequency − Hz Figure 10 40 1k 100 V O(PP) − Peak-to-Peak Output Voltage − V I DD − Supply Current − mA TA = −40°C 2.0 CMRR − Common-Mode Rejection Ratio − dB PSRR − Power Supply Rejection Ratio − dB 2.4 2.2 COMMON-MODE REJECTION RATIO vs FREQUENCY POWER SUPPLY REJECTION RATIO vs FREQUENCY VDD = 5 V and 12 V AV = 1 RL = 10 kΩ VI(PP) = 2 V For All Channels −60 −80 −100 −120 −140 −160 10 100 1k 10k 100k f − Frequency − Hz Figure 16 WWW.TI.COM 13 SLOS254E − JUNE 1999 − REVISED APRIL 2006 DIFFERENTIAL VOLTAGE GAIN AND PHASE vs FREQUENCY DIFFERENTIAL VOLTAGE GAIN AND PHASE vs FREQUENCY 80 80 60 Gain A VD − Different Voltage Gain − dB 70 −45 50 Phase 40 −90 30 20 −135 10 0 −10 −20 1k VDD = ±2.5 V RL = 10 kΩ CL = 0 pF TA = 25°C 10k 100k −180 1M 70 Gain 60 Phase 40 20 −135 10 0 −10 VDD = ±6 V RL = 10 kΩ CL = 0 pF TA = 25°C 10k PHASE MARGIN vs LOAD CAPACITANCE 40° 25° Rnull = 50 Ω Rnull = 20 Ω VDD = 5 V RL = 10 kΩ TA = 25°C 30° Rnull = 100 Ω 25° Rnull = 20 Ω 15° VDD = 12 V RL = 10 kΩ TA = 25°C 10° 5° 0° 10 Rnull = 50 Ω 1.5 1 VDD = 5 V RL = 10 kΩ TA = 25°C Rnull = 20 Ω 0 10 100 100 CL − Load Capacitance − pF Figure 19 Figure 20 Figure 21 GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 3.5 3 Rnull = 50 Ω Rnull = 20 Ω 1.5 VDD = 12 V RL = 10 kΩ TA = 25°C 0 10 100 CL − Load Capacitance − pF Figure 22 22 CL = 11 pF 9.9 9.8 9.7 RL = 10 kΩ 9.6 9.5 9.4 RL = 600 Ω 9.3 20 RL = 600 Ω and 10 kΩ CL = 50 pF AV = 1 19 Slew Rate − 21 TA = 25°C SR − Slew Rate − V/ µ s GBWP - Gain Bandwidth Product - MHz Rnull = 100 Ω 2 SLEW RATE vs SUPPLY VOLTAGE 10.0 Rnull = 0 Ω 4 φ m − Phase Margin − dB 2 CL − Load Capacitance − pF 5 0.5 2.5 CL − Load Capacitance − pF 4.5 1 Rnull = 100 Ω 3 0.5 0° 10 100 GAIN MARGIN vs LOAD CAPACITANCE 2.5 Rnull = 50 Ω 20° Rnull = 0 Ω 3.5 G − Gain Margin − dB φ m − Phase Margin φ m − Phase Margin 4 Rnull = 0 Ω 35° 5° 14 GAIN MARGIN vs LOAD CAPACITANCE 45° 30° 10° −225 100M 10M Figure 18 Rnull = 0 Ω Rnull = 100 Ω 15° 1M f − Frequency − Hz PHASE MARGIN vs LOAD CAPACITANCE 20° −180 100k Figure 17 35° −90 30 f − Frequency − Hz 40° −45 50 −20 1k −225 100M 10M 0 Phase − ° 0 Phase − ° A VD − Different Voltage Gain − dB TYPICAL CHARACTERISTICS 18 17 16 9.2 14 9.1 13 9.0 Slew Rate + 15 12 4 5 6 7 8 9 10 11 12 13 14 15 16 VDD - Supply Voltage - V Figure 23 WWW.TI.COM 4 5 6 7 8 9 10 11 12 13 14 15 16 VDD - Supply Voltage - V Figure 24 SLOS254E − JUNE 1999 − REVISED APRIL 2006 TYPICAL CHARACTERISTICS SLEW RATE vs FREE-AIR TEMPERATURE Slew Rate − 20 SR − Slew Rate − V/ µ s 15 Slew Rate + 10 15 Slew Rate + 10 VDD = 12 V RL= 600 Ω and 10 kΩ CL = 50 pF AV = 1 5 5 0 −55 −35 −15 5 25 45 65 85 105 125 TA - Free-Air Temperature - °C 0 −55 −35 −15 5 25 45 65 85 105 125 TA - Free-Air Temperature - °C Figure 25 0.1 Total Harmonic Distortion + Noise − % VDD = 12 V VO(PP) = 8 V RL = 10 kΩ AV = 100 0.01 AV = 10 AV = 1 10k 1k AV = 1 0.001 100 100k 10k 1k 100k f − Frequency − Hz Figure 27 TOTAL HARMONIC DISTORTION PLUS NOISE vs PEAK-TO-PEAK OUTPUT VOLTAGE 10 10 VDD = 5 V AV = 1 f = 1 kHz 1 RL = 250 Ω 0.1 RL = 600 Ω 0.01 RL = 10 kΩ 0.001 0.0001 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 VDD = 12 V AV = 1 f = 1 kHz 1 RL = 250 Ω 0.1 RL = 600 Ω 0.01 0.001 RL = 10 kΩ 0.0001 0.5 2.5 4.5 6.5 8.5 10.5 VO(PP) − Peak-to-Peak Output Voltage − V VO(PP) − Peak-to-Peak Output Voltage − V Figure 28 Figure 29 Figure 30 LARGE SIGNAL FOLLOWER PULSE RESPONSE LARGE SIGNAL FOLLOWER PULSE RESPONSE SMALL SIGNAL FOLLOWER PULSE RESPONSE VI (1 V/Div) VI (5 V/Div) VO (500 mV/Div) VDD = 5 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VO (2 V/Div) VDD = 12 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 t − Time − µs t − Time − µs Figure 31 Figure 32 WWW.TI.COM VI(100mV/Div) V O − Output Voltage − V V O − Output Voltage − V V O − Output Voltage − V AV = 10 0.01 TOTAL HARMONIC DISTORTION PLUS NOISE vs PEAK-TO-PEAK OUTPUT VOLTAGE f − Frequency − Hz 0 AV = 100 0.1 Figure 26 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY 0.001 100 VDD = 5 V VO(PP) = 2 V RL = 10 kΩ Total Harmonic Distortion + Noise − % Slew Rate − 20 SR − Slew Rate − V/ µ s 1 25 VDD = 5 V RL= 600 Ω and 10 kΩ CL = 50 pF AV = 1 Total Harmonic Distortion + Noise − % 25 Total Harmonic Distortion + Noise − % TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY SLEW RATE vs FREE-AIR TEMPERATURE 2 VO(50mV/Div) VDD = 5 V and 12 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.10 t − Time − µs Figure 33 15 SLOS254E − JUNE 1999 − REVISED APRIL 2006 TYPICAL CHARACTERISTICS LARGE SIGNAL INVERTING PULSE RESPONSE LARGE SIGNAL INVERTING PULSE RESPONSE VI (5 V/div) VDD = 5 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C VI (100 mV/div) V O − Output Voltage − V V O − Output Voltage − V VI (2 V/div) V O − Output Voltage − V SMALL SIGNAL INVERTING PULSE RESPONSE VDD = 12 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C VDD = 5 V and 12 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C VO (50 mV/Div) VO (2 V/Div) VO (500 mV/Div) 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 2 0.2 0.4 0.6 0.8 Figure 35 Figure 36 SHUTDOWN FORWARD ISOLATION vs FREQUENCY 100 RL = 600 Ω 80 60 RL = 10 kΩ 40 140 VDD = 12 V CL= 0 pF TA = 25°C VI(PP) = 0.1, 8, 12 V 120 100 80 RL = 600 Ω 60 RL = 10 kΩ 40 20 10k 100k 1M f - Frequency - Hz 10M I DD(SHDN) − Shutdown Supply Current - µ A VDD = 12 V CL= 0 pF TA = 25°C VI(PP) = 0.1, 8, 12 V 100 RL = 600 Ω 60 RL = 10 kΩ 40 20 1k 10k 100k 1M f - Frequency - Hz Figure 40 80 RL = 600 Ω 60 RL = 10 kΩ 40 1k 10k 100k 1M f - Frequency - Hz 10M 100 100M 10M 100M 136 Shutdown On RL = open VIN = VDD/2 134 132 130 128 126 124 122 120 118 4 5 6 7 8 9 10 11 12 13 14 15 16 VDD - Supply Voltage - V Figure 41 WWW.TI.COM 1k 10k 100k 1M f - Frequency - Hz 10M 100M Figure 39 SHUTDOWN SUPPLY CURRENT vs SUPPLY VOLTAGE 140 80 100 Figure 38 SHUTDOWN REVERSE ISOLATION vs FREQUENCY 120 VDD = 5 V CL= 0 pF TA = 25°C VI(PP) = 0.1, 2.5, and 5 V 120 20 100 100M Figure 37 Sutdown Reverse Isolation - dB Sutdown Reverse Isolation - dB Sutdown Forward Isolation - dB Sutdown Forward Isolation - dB 120 1 SHUTDOWN REVERSE ISOLATION vs FREQUENCY 140 VDD = 5 V CL= 0 pF TA = 25°C VI(PP) = 0.1, 2.5, and 5 V 1k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Figure 34 20 16 0 2 t − Time − µs 140 100 1.2 1.4 1.6 1.8 t − Time − µs SHUTDOWN FORWARD ISOLATION vs FREQUENCY 100 1 t − Time − µs SHUTDOWN SUPPLY CURRENT vs FREE-AIR TEMPERATURE I DD(SHDN) − Shutdown Supply Current - µ A 0 180 AV = 1 VIN = VDD/2 160 140 VDD = 12 V 120 VDD = 5 V 100 80 60 −55 −25 5 35 65 95 TA - Free-Air Temperature - °C Figure 42 125 SLOS254E − JUNE 1999 − REVISED APRIL 2006 TYPICAL CHARACTERISTICS SHUTDOWN PULSE SHUTDOWN PULSE 5.5 4 Shutdown Pulse I DD − Supply Current − mA 5.0 4.5 4.0 2 VDD = 5 V CL= 8 pF TA = 25°C 3.5 3.0 2.5 0 IDD RL = 10 kΩ 2.0 1.5 −2 IDD RL = 600 Ω 1.0 6 5.5 SD Off Shutdown Pulse - V I DD − Supply Current − mA 6.0 6 −4 SD Off 5.0 4 Shutdown Pulse 4.5 4.0 2 VDD = 12 V CL= 8 pF TA = 25°C 3.5 3.0 2.5 0 IDD RL = 10 kΩ 2.0 1.5 −2 IDD RL = 600 Ω 1.0 Shutdown Pulse - V 6.0 −4 0.5 0.5 0.0 0.0 −6 0 10 20 30 40 50 t - Time - µs 60 70 −6 0 80 10 20 30 40 50 t - Time - µs 60 70 80 Figure 44 Figure 43 PARAMETER MEASUREMENT INFORMATION Rnull _ + RL CL Figure 45 APPLICATION INFORMATION input offset voltage null circuit The TLC080 and TLC081 has an input offset nulling function. Refer to Figure 46 for the diagram. − IN − OUT + IN + N2 N1 100 kΩ R1 VDD − NOTE A: R1 = 5.6 kΩ for offset voltage adjustment of ±10 mV. R1 = 20 kΩ for offset voltage adjustment of ±3 mV. Figure 46. Input Offset Voltage Null Circuit WWW.TI.COM 17 SLOS254E − JUNE 1999 − REVISED APRIL 2006 APPLICATION INFORMATION driving a capacitive load When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as shown in Figure 47. A minimum value of 20 Ω should work well for most applications. RF RG RNULL _ Input Output + CLOAD Figure 47. Driving a Capacitive Load offset voltage The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage: RF IIB− RG + − VI IIB+ V OO +V IO ǒ ǒ ǓǓ 1) R R F G VO + RS "I IB) R S ǒ ǒ ǓǓ 1) R R F G "I IB– Figure 48. Output Offset Voltage Model 18 WWW.TI.COM R F SLOS254E − JUNE 1999 − REVISED APRIL 2006 APPLICATION INFORMATION high speed CMOS input amplifiers The TLC08x is a family of high-speed low-noise CMOS input operational amplifiers that has an input capacitance of the order of 20 pF. Any resistor used in the feedback path adds a pole in the transfer function equivalent to the input capacitance multiplied by the combination of source resistance and feedback resistance. For example, a gain of −10, a source resistance of 1 kΩ, and a feedback resistance of 10 kΩ add an additional pole at approximately 8 MHz. This is more apparent with CMOS amplifiers than bipolar amplifiers due to their greater input capacitance. This is of little consequence on slower CMOS amplifiers, as this pole normally occurs at frequencies above their unity-gain bandwidth. However, the TLC08x with its 10-MHz bandwidth means that this pole normally occurs at frequencies where there is on the order of 5dB gain left and the phase shift adds considerably. The effect of this pole is the strongest with large feedback resistances at small closed loop gains. As the feedback resistance is increased, the gain peaking increases at a lower frequency and the 180_ phase shift crossover point also moves down in frequency, decreasing the phase margin. For the TLC08x, the maximum feedback resistor recommended is 5 kΩ; larger resistances can be used but a capacitor in parallel with the feedback resistor is recommended to counter the effects of the input capacitance pole. The TLC083 with a 1-V step response has an 80% overshoot with a natural frequency of 3.5 MHz when configured as a unity gain buffer and with a 10-kΩ feedback resistor. By adding a 10-pF capacitor in parallel with the feedback resistor, the overshoot is reduced to 40% and eliminates the natural frequency, resulting in a much faster settling time (see Figure 49). The 10-pF capacitor was chosen for convenience only. 2 VIN V O − Output Voltage − V 1 0 With CF = 10 pF 1.5 −1 V I − Input Voltage − V Load capacitance had little effect on these measurements due to the excellent output drive capability of the TLC08x. 10 pF 10 kΩ _ 1 + IN 0.5 VOUT 0 VDD = ±5 V AV = +1 RF = 10 kΩ RL = 600 Ω CL = 22 pF 50 Ω 600 Ω 22 pF −0.5 0 0.2 0.4 0.6 0.8 t - Time - µs 1 1.2 1.4 1.6 Figure 49. 1-V Step Response WWW.TI.COM 19 SLOS254E − JUNE 1999 − REVISED APRIL 2006 APPLICATION INFORMATION general configurations When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 50). RG RF − VO + VI R1 C1 f V O + V I ǒ 1) R R F G –3dB Ǔǒ + 1 2pR1C1 Ǔ 1 1 ) sR1C1 Figure 50. Single-Pole Low-Pass Filter If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier. C1 + _ VI R1 R1 = R2 = R C1 = C2 = C Q = Peaking Factor (Butterworth Q = 0.707) R2 f C2 RG RF RG = Figure 51. 2-Pole Low-Pass Sallen-Key Filter 20 WWW.TI.COM –3dB + ( 1 2pRC RF 1 2− Q ) SLOS254E − JUNE 1999 − REVISED APRIL 2006 APPLICATION INFORMATION shutdown function Three members of the TLC08x family (TLC080/3/5) have a shutdown terminal (SHDN) for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 125 µA/channel, the amplifier is disabled, and the outputs are placed in a high-impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to the voltage on the GND terminal of the device. Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to be pulled to VDD− (not system ground) to disable the operational amplifier. The amplifier’s output with a shutdown pulse is shown in Figure 43 and Figure 44. The amplifier is powered with a single 5-V supply and is configured as noninverting with a gain of 5. The amplifier turnon and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the single, dual, and quad are listed in the data tables. Figure 37 through Figure 40 show the amplifier’s forward and reverse isolation in shutdown. The operational amplifier is configured as a voltage follower (AV = 1). The isolation performance is plotted across frequency using 0.1 VPP, 2.5 VPP, and 5 VPP input signals at ±2.5 V supplies and 0.1 VPP, 8 VPP, and 12 VPP input signals at ±6 V supplies. circuit layout considerations To achieve the levels of high performance of the TLC08x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following. D Ground planes − It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance. D Proper power supply decoupling − Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors. D Sockets − Sockets can be used but are not recommended. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation. D Short trace runs/compact part placements − Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier. D Surface-mount passive components − Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible. WWW.TI.COM 21 SLOS254E − JUNE 1999 − REVISED APRIL 2006 APPLICATION INFORMATION general PowerPAD design considerations The TLC08x is available in a thermally-enhanced PowerPAD family of packages. These packages are constructed using a downset leadframe upon which the die is mounted [see Figure 52(a) and Figure 52(b)]. This arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see Figure 52(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be achieved by providing a good thermal path away from the thermal pad. DIE Thermal Pad Side View (a) DIE Bottom View (c) End View (b) NOTE B: The thermal pad is electrically isolated from all terminals in the package. Figure 52. Views of Thermally-Enhanced DGN Package The PowerPAD package allows for both assembly and thermal management in one manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the thermal pad must be soldered to a copper area underneath the package. Through the use of thermal paths within this copper area, heat can be conducted away from the package into either a ground plane or other heat dissipating device. Soldering the PowerPAD to the printed circuit board (PCB) is always required, even with applications that have low power dissipation. This soldering provides the necessary thermal and mechanical connection between the lead frame die pad and the PCB. Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the recommended approach. 22 WWW.TI.COM SLOS254E − JUNE 1999 − REVISED APRIL 2006 APPLICATION INFORMATION general PowerPAD design considerations (continued) The PowerPAD must be connected to the most negative supply voltage (GND pin potential) of the device. 1. Prepare the PCB with a top side etch pattern (see the landing patterns at the end of this data sheet). There should be etch for the leads as well as etch for the thermal pad. 2. Place five holes (dual) or nine holes (quad) in the area of the thermal pad. These holes should be 13 mils in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow. 3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps dissipate the heat generated by the TLC08x IC. These additional vias may be larger than the 13-mil diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad area to be soldered so that wicking is not a problem. 4. Connect all holes to the internal plane that is at the same potential as the ground pin of the device. 5. When connecting these holes to this internal plane, do not use the typical web or spoke via connection methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes under the TLC08x PowerPAD package should make their connection to the internal ground plane with a complete connection around the entire circumference of the plated-through hole. 6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five holes (dual) or nine holes (quad) exposed. The bottom-side solder mask should cover the five or nine holes of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the reflow process. 7. Apply solder paste to the exposed thermal pad area and all of the IC terminals. 8. With these preparatory steps in place, the TLC08x IC is simply placed in position and run through the solder reflow operation as any standard surface-mount component. This results in a part that is properly installed. For a given θJA, the maximum power dissipation is shown in Figure 53 and is calculated by the following formula: P Where: D + ǒ T Ǔ –T MAX A q JA PD = Maximum power dissipation of TLC08x IC (watts) TMAX = Absolute maximum junction temperature (150°C) TA = Free-ambient air temperature (°C) θJA = θJC + θCA θJC = Thermal coefficient from junction to case θCA = Thermal coefficient from case to ambient air (°C/W) WWW.TI.COM 23 SLOS254E − JUNE 1999 − REVISED APRIL 2006 APPLICATION INFORMATION general PowerPAD design considerations (continued) MAXIMUM POWER DISSIPATION vs FREE-AIR TEMPERATURE Maximum Power Dissipation − W 7 6 5 4 3 2 PWP Package Low-K Test PCB θJA = 29.7°C/W TJ = 150°C SOT-23 Package Low-K Test PCB θJA = 324°C/W DGN Package Low-K Test PCB θJA = 52.3°C/W SOIC Package Low-K Test PCB θJA = 176°C/W PDIP Package Low-K Test PCB θJA = 104°C/W 1 0 −55 −40 −25 −10 5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB. Figure 53. Maximum Power Dissipation vs Free-Air Temperature The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent power and output power. The designer should never forget about the quiescent heat generated within the device, especially multi-amplifier devices. Because these devices have linear output stages (Class A-B), most of the heat dissipation is at low output voltages with high output currents. The other key factor when dealing with power dissipation is how the devices are mounted on the PCB. The PowerPAD devices are extremely useful for heat dissipation. But, the device should always be soldered to a copper plane to fully use the heat dissipation properties of the PowerPAD. The SOIC package, on the other hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around the device, θJA decreases and the heat dissipation capability increases. The currents and voltages shown in these graphs are for the total package. For the dual or quad amplifier packages, the sum of the RMS output currents and voltages should be used to choose the proper package. 24 WWW.TI.COM SLOS254E − JUNE 1999 − REVISED APRIL 2006 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts, the model generation software used with Microsim PSpice. The Boyle macromodel (see Note 1) and subcircuit in Figure 54 are generated using the TLC08x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification D D D D D D Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). PSpice and Parts are trademarks of MicroSim Corporation. WWW.TI.COM 25 SLOS254E − JUNE 1999 − REVISED APRIL 2006 APPLICATION INFORMATION 99 3 VDD 9 RSS 92 FB + 10 J1 DP VC J2 IN + 11 VAD DC 12 C1 RD1 R2 − 53 HLIM − C2 6 − + + GA GCM VLIM 8 − − RO1 DE 5 + VE OUT *DEVICE=TLC08X_5V, OPAMP, PJF, INT * TLC08X_5V − 5V operational amplifier ”macromodel” subcircuit * created using Parts release 8.0 on 12/16/99 at 14:03 * Parts is a MicroSim product. * * connections: non-inverting input * inverting input * positive power supply * negative power supply * output * .subckt TLC08X_5V 1 2 3 4 5 * c1 11 12 4.6015E−12 c2 6 7 8.0000E−12 css 10 99 986.29E−15 dc 5 53 dy de 54 5 dy dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 13.984E6 −1E3 1E3 14E6 −14E6 ga gcm ioff iss hlim j1 j2 r2 rd1 rd2 ro1 ro2 rp rss vb vc ve vlim vlp vln .model .model .model .model .ends 6 0 0 3 90 11 12 6 4 4 8 7 3 10 9 3 54 7 91 0 dx dy jx1 jx2 0 11 12 402.12E−6 6 10 99 1.5735E−6 6 dc 1.212E−6 10 dc 130.40E−6 0 vlim 1K 2 10 jx1 1 10 jx2 9 100.00E3 11 2.4868E3 12 2.4868E3 5 10 99 10 4 2.8249E3 99 1.5337E6 0 dc 0 53 dc 1.5537 4 dc .84373 8 dc 0 0 dc 117.60 92 dc 117.60 D(Is=800.00E−18) D(Is=800.00E−18 Rs=1m Cjo=10p) PJF(Is=80.000E−15 Beta=1.2401E−3 Vto=−1) PJF(Is=80.000E−15 Beta=1.2401E−3 Vto=−1) Figure 54. Boyle Macromodel and Subcircuit 26 − RD2 54 4 − 7 60 + − + DLP 91 + VLP 90 RO2 VB IN − GND − + ISS RP 2 1 DLN EGND + WWW.TI.COM VLN TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR SLVS041I – SEPTEMBER 1991 – REVISED AUGUST 2003 D D D D D D D D PACKAGE (TOP VIEW) Power-On Reset Generator Automatic Reset Generation After Voltage Drop Low Standby Current . . . 20 µA RESET Output Defined When VCC Exceeds 1 V Precision Threshold Voltage 4.55 V ±120 mV High Output Sink Capability . . . 20 mA Comparator Hysteresis Prevents Erratic Resets RESET VCC NC GND 1 8 2 7 3 6 4 5 NC NC NC NC NC–No internal connection LP PACKAGE (TOP VIEW) GND description/ordering information VCC The TL7757 is a supply-voltage supervisor designed for use in microcomputer and microprocessor systems. The supervisor monitors the supply voltage for undervoltage conditions. During power up, when the supply voltage, VCC, attains a value approaching 1 V, the RESET output becomes active (low) to prevent undefined operation. If the supply voltage drops below threshold voltage level (VIT–), the RESET output goes to the active (low) level until the supply undervoltage fault condition is eliminated. RESET PK PACKAGE (TOP VIEW) RESET GND VCC GND is in electrical contact with the tab. ORDERING INFORMATION SOIC (D) 0°C 70°C 0 C to 70 C SOT (PK) TO226 / TO-92 (LP) SOIC (D) –40°C 85°C –40 C to 85 C ORDERABLE PART NUMBER PACKAGE† TA SOT (PK) TO226 / TO-92 (LP) Tube of 75 TL7757CD Reel of 2500 TL7757CDR Reel of 1000 TL7757CPK Bulk of 1000 TL7757CLP Reel of 2000 TL7757CLPR Tube of 75 TL7757ID Reel of 2500 TL7757IDR Reel of 1000 TL7757IPK Bulk of 1000 TL7757ILP Reel of 2000 TL7757ILPR TOP-SIDE MARKING 7757C T7 TL7757C 7757I 7I TL7757I † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2003, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR SLVS041I – SEPTEMBER 1991 – REVISED AUGUST 2003 equivalent schematic VCC RESET R2 R15 Q8 Q2 Q5 Q11 R12 R3 Q13 R5 R4 R6 Q20 Q9 Q7 R10 R8 R14 Q18 Q4 Q10 C1 Q12 R9 Q1 R7 Q21 R16 C2 Q6 Q3 Q19 Q17 R11 R1 Q15 Q14 Q16 R18 R13 GND ACTUAL DEVICE COMPONENT COUNT Transistors 27 Resistors 20 Capacitors 2 absolute maximum ratings over operating junction temperature range (unless otherwise noted)† Supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 20 V Off-state output voltage range (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 20 V Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA Package thermal impedance, θJA (see Notes 2 and 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97°C/W LP package . . . . . . . . . . . . . . . . . . . . . . . . . . 140°C/W PK package . . . . . . . . . . . . . . . . . . . . . . . . . . . 52°C/W Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values are with respect to network terminal ground. 2. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. 3. The package thermal impedance is calculated in accordance with JESD 51-7. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR SLVS041I – SEPTEMBER 1991 – REVISED AUGUST 2003 recommended operating conditions MIN MAX 1 7 UNIT VCC VOH Supply voltage High-level output voltage 15 V IOL Low-level output current 20 mA TA Operating free-air temperature TL7757C TL7757I 0 70 –40 85 V °C electrical characteristics at specified free-air temperature PARAMETER TEST CONDITIONS VIT– Negative-going input threshold voltage at VCC Vhys† Hysteresis at VCC VOL Low-level output voltage IOL = 20 mA, VCC = 4.3 V IOH High-level output current VCC = 7 V, See Figure 1 VOH = 15 V, Vres‡ Power-up reset voltage RL = 2.2 kkΩ,, VCC slew rate ≤ 5 V/µs ICC Supply current TA TL7757C MIN TYP MAX 25°C 4.43 4.55 4.67 0°C to 70°C 4.4 25°C 40 0°C to 70°C 30 25°C V 4.7 50 60 70 0.4 mV 0.8 0°C to 70°C V 0.8 25°C 1 0°C to 70°C 1 25°C 0.8 µA 1 0°C to 70°C V 1.2 25°C VCC = 4.3 V UNIT 1400 0°C to 70°C 2000 µA A 2000 VCC = 5.5 V 0°C to 70°C † This is the difference between positive-going input threshold voltage, VIT+, and negative-going input threshold voltage, VIT–. ‡ This is the lowest voltage at which RESET becomes active. 40 switching characteristics at specified free-air temperature PARAMETER TEST CONDITIONS TA 25°C tPLH Propagation delay time, low-to-high-level output VCC slew rate ≤ 5 V/µs, See Figures 2 and 3 tPHL Propagation delay time, high-to-low-level output See Figures 2 and 3 tr Rise time VCC slew rate ≤ 5 V/µs, See Figures 2 and 3 tf Fall time See Figures 2 and 3 tw(min) Minimum pulse duration at VCC for output response POST OFFICE BOX 655303 TL7757C MIN TYP MAX 3.4 5 0°C to 70°C 25°C 5 2 0°C to 70°C 25°C 5 0.4 0°C to 70°C 25°C 5 1 1 0.05 1 0°C to 70°C 1 25°C 5 0°C to 70°C 5 • DALLAS, TEXAS 75265 UNIT µs µs µs µs µs 3 TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR SLVS041I – SEPTEMBER 1991 – REVISED AUGUST 2003 electrical characteristics at specified free-air temperature PARAMETER TEST CONDITIONS VIT– Negative-going input threshold voltage at VCC Vhys† Hysteresis at VCC VOL Low-level output voltage IOL = 20 mA, VCC = 4.3 V IOH High-level output current VCC = 7 V, See Figure 1 VOH = 15 V, Vres‡ Power-up reset voltage RL = 2.2 kkΩ,, VCC slew rate ≤ 5 V/µs ICC Supply current VCC = 4.3 V TA TL7757I MIN TYP MAX 4.55 4.67 25°C 4.43 –40°C to 85°C 4.4 25°C 40 –40°C to 85°C 30 25°C 4.7 50 60 70 0.4 0.8 –40°C to 85°C 0.8 25°C 1 –40°C to 85°C 1 25°C 0.8 1 –40°C to 85°C 1.2 25°C 1400 –40°C to 85°C UNIT V mV V µA V 2000 2100 VCC = 5.5 V –40°C to 85°C † This is the difference between positive-going input threshold voltage, VIT+, and negative-going input threshold voltage, VIT–. ‡ This is the lowest voltage at which RESET becomes active. µA A 40 switching characteristics at specified free-air temperature PARAMETER TEST CONDITIONS TA 25°C tPLH Propagation delay time, low-to-high-level output VCC slew rate ≤ 5 V/µs, See Figures 2 and 3 tPHL Propagation delay time, high-to-low-level output See Figures 2 and 3 tr Rise time VCC slew rate ≤ 5 V/µs, See Figures 2 and 3 tf Fall time See Figures 2 and 3 tw(min) Minimum pulse duration at VCC for output response 4 POST OFFICE BOX 655303 TL7757I MIN TYP MAX 3.4 5 –40°C to 85°C 25°C 5 2 –40°C to 85°C 25°C 5 0.4 –40°C to 85°C 25°C 5 1 1 0.05 1 –40°C to 85°C 1 25°C 5 –40°C to 85°C 5 • DALLAS, TEXAS 75265 UNIT µs µs µs µs µs TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR SLVS041I – SEPTEMBER 1991 – REVISED AUGUST 2003 PARAMETER MEASUREMENT INFORMATION 15 V VCC + 5.5 V A TL7757 RESET – GND Figure 1. Test Circuit for Output Leakage Current VCC TL7757 Pulse Generator RL = 1 kΩ RESET 0.1 mF OUT GND CL = 100 pF (see Note A) NOTE A: Includes jig and probe capacitance Figure 2. Test Circuit for RESET Output Switching Characteristics 4.8 V VIT+ VCC (see Note A) 4.3 V VIT– tPLH tPHL 90% 50% 10% RESET 90% 50% 10% tr tf NOTE A: VCC slew rate ≤ 5 µs Figure 3. Switching Diagram POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR SLVS041I – SEPTEMBER 1991 – REVISED AUGUST 2003 TYPICAL CHARACTERISTICS† Table of Graphs FIGURE VCC ICC Supply voltage vs RESET output voltage 4 Supply current vs Supply voltage 5 ICC Supply current vs Free-air temperature 6 VOL Low-level output voltage vs Low-level output current 7 Low-level output voltage vs Free-air temperature 8 Output current vs Supply voltage 9 Input threshold voltage (negative-going VCC) vs Free-air temperature 10 VOL IOL VIT– Vres Vres Power-up reset voltage vs Free-air temperature 11 Power-up reset voltage and supply voltage vs Time 12 Propagation delay time 13 SUPPLY CURRENT vs SUPPLY VOLTAGE SUPPLY VOLTAGE vs RESET OUTPUT VOLTAGE 8 2 IIDD CC – Supply Current – mA 7 RESET Output Voltage – V TA = 25°C IO = 0 TA = 25°C IO = 0 6 5 4 3 2 Output Undefined 1.5 1 0.5 1 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 VCC – Supply Voltage – V VCC – Supply Voltage – V Figure 4 Figure 5 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR SLVS041I – SEPTEMBER 1991 – REVISED AUGUST 2003 TYPICAL CHARACTERISTICS† SUPPLY CURRENT vs FREE-AIR TEMPERATURE 120 RL = 0 IIDD CC – Supply Current – mA 1.44 1.4 1.36 1.32 1.28 0.040 0.036 VCC = 7 V 0.032 VCC = 5.5 V 0.028 0.024 0.020 –75 TA = 25°C 110 VCC = 4.3 V VOL VOL – Low-Level Output Voltage – mV 1.52 1.48 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 100 90 VCC = 1 V 80 70 60 VCC = 4.3 V 50 40 30 20 10 0 – 50 – 25 0 25 50 75 100 0 125 4 8 12 16 IOL – Low-Level Output Current – mA TA – Free-Air Temperature – °C Figure 7 Figure 6 OUTPUT CURRENT vs SUPPLY VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 0.02 120 VCC = 4.3 V TA = 25°C IOL = 20 mA 0.018 100 0.016 IIO O – Output Current – mA VOL VOL – Low-Level Output Voltage – mV 20 80 60 IOL = 8 mA 40 0.014 0.012 0.01 0.008 0.006 0.004 20 0.002 IOL = 1 mA 0 –100 – 50 0 50 100 150 0 0.75 0.8 TA – Free-Air Temperature – °C 0.85 0.9 0.95 1 1.05 VCC – Supply Voltage – V Figure 9 Figure 8 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR SLVS041I – SEPTEMBER 1991 – REVISED AUGUST 2003 TYPICAL CHARACTERISTICS† INPUT THRESHOLD VOLTAGE (NEGATIVE-GOING VCC) vs FREE-AIR TEMPERATURE POWER-UP RESET VOLTAGE vs FREE-AIR TEMPERATURE 1000 4.6 RL = 2.2 kΩ RL = 0 950 Vres – Power-Up Reset Voltage – mV Vres VIT– VIT – Input Threshold Voltage – V 4.59 4.58 4.57 4.56 4.55 4.54 4.53 4.52 900 850 800 750 700 650 4.51 4.5 –100 100 – 50 0 50 TA – Free-Air Temperature – °C 600 –100 150 – 50 Figure 10 100 150 PROPAGATION DELAY TIME 2 6 TA = 25°C RL = 2.2 kΩ TA = 25°C RL = 2.2 kΩ 5 VCC 4 1 Voltage – V Vres, VCC – RESET Voltage and Supply Voltage – V 50 Figure 11 POWER-UP RESET VOLTAGE AND SUPPLY VOLTAGE vs TIME 1.5 0 TA – Free-Air Temperature – °C VCC .5 RESET 0 3 RESET 2 1 – 0.5 0 –1 –1 0 0.5 1 1.5 2 t – Time – µs 2.5 3 0 2 Figure 12 4 6 8 10 12 t – Time – µs 14 16 Figure 13 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 18 TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR SLVS041I – SEPTEMBER 1991 – REVISED AUGUST 2003 APPLICATION INFORMATION TYPICAL TIMING DIAGRAM VIT– VCC VIT+ VIT+ TYPICAL APPLICATION DIAGRAM VIT– 5V Vres Vres 0.1 µF 0 VCC RESET TL7757 RESET 1 kΩ System Reset GND Output Undefined 0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 PACKAGE OPTION ADDENDUM www.ti.com 5-Dec-2006 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TL7757CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757CDE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757CDRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757CLP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757CLPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757CLPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757CLPRE3 ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757CPK ACTIVE SOT-89 PK 3 1000 Green (RoHS & no Sb/Br) CU SN Level-2-260C-1YEAR TL7757CPKG3 ACTIVE SOT-89 PK 3 1000 Green (RoHS & no Sb/Br) CU SN Level-2-260C-1YEAR TL7757ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757IDE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757IDRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757ILPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757ILPRE3 ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757IPK ACTIVE SOT-89 PK 3 1000 Green (RoHS & no Sb/Br) CU SN Level-2-260C-1YEAR TL7757IPKG3 ACTIVE SOT-89 PK 3 1000 Green (RoHS & no Sb/Br) CU SN Level-2-260C-1YEAR Lead/Ball Finish MSL Peak Temp (3) TL7757MD OBSOLETE SOIC D 8 TBD Call TI Call TI TL7757MDR OBSOLETE SOIC D 8 TBD Call TI Call TI TL7757MLP OBSOLETE TO-92 LP 3 TBD Call TI Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 5-Dec-2006 OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 MECHANICAL DATA MSOT002A – OCTOBER 1994 – REVISED NOVEMBER 2001 LP (O-PBCY-W3) PLASTIC CYLINDRICAL PACKAGE 0.205 (5,21) 0.175 (4,44) 0.165 (4,19) 0.125 (3,17) DIA 0.210 (5,34) 0.170 (4,32) Seating Plane 0.157 (4,00) MAX 0.050 (1,27) C 0.500 (12,70) MIN 0.104 (2,65) FORMED LEAD OPTION 0.022 (0,56) 0.016 (0,41) 0.016 (0,41) 0.014 (0,35) STRAIGHT LEAD OPTION D 0.135 (3,43) MIN 0.105 (2,67) 0.095 (2,41) 0.055 (1,40) 0.045 (1,14) 1 2 3 0.105 (2,67) 0.080 (2,03) 0.105 (2,67) 0.080 (2,03) 4040001-2 /C 10/01 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Lead dimensions are not controlled within this area D. FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92) E. Shipping Method: Straight lead option available in bulk pack only. Formed lead option available in tape & reel or ammo pack. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MSOT002A – OCTOBER 1994 – REVISED NOVEMBER 2001 LP (O-PBCY-W3) PLASTIC CYLINDRICAL PACKAGE 0.539 (13,70) 0.460 (11,70) 1.260 (32,00) 0.905 (23,00) 0.650 (16,50) 0.610 (15,50) 0.020 (0,50) MIN 0.098 (2,50) 0.384 (9,75) 0.335 (8,50) 0.748 (19,00) 0.217 (5,50) 0.433 (11,00) 0.335 (8,50) 0.748 (19,00) 0.689 (17,50) 0.114 (2,90) 0.094 (2,40) 0.114 (2,90) 0.094 (2,40) 0.169 (4,30) 0.146 (3,70) DIA 0.266 (6,75) 0.234 (5,95) 0.512 (13,00) 0.488 (12,40) TAPE & REEL 4040001-3 /C 10/01 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Tape and Reel information for the Format Lead Option package. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 5-Dec-2006 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TL7757CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757CDE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757CDRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757CLP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757CLPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757CLPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757CLPRE3 ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757CPK ACTIVE SOT-89 PK 3 1000 Green (RoHS & no Sb/Br) CU SN Level-2-260C-1YEAR TL7757CPKG3 ACTIVE SOT-89 PK 3 1000 Green (RoHS & no Sb/Br) CU SN Level-2-260C-1YEAR TL7757ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757IDE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757IDRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TL7757ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757ILPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757ILPRE3 ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type TL7757IPK ACTIVE SOT-89 PK 3 1000 Green (RoHS & no Sb/Br) CU SN Level-2-260C-1YEAR TL7757IPKG3 ACTIVE SOT-89 PK 3 1000 Green (RoHS & no Sb/Br) CU SN Level-2-260C-1YEAR Lead/Ball Finish MSL Peak Temp (3) TL7757MD OBSOLETE SOIC D 8 TBD Call TI Call TI TL7757MDR OBSOLETE SOIC D 8 TBD Call TI Call TI TL7757MLP OBSOLETE TO-92 LP 3 TBD Call TI Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 5-Dec-2006 OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 MECHANICAL DATA MSOT002A – OCTOBER 1994 – REVISED NOVEMBER 2001 LP (O-PBCY-W3) PLASTIC CYLINDRICAL PACKAGE 0.205 (5,21) 0.175 (4,44) 0.165 (4,19) 0.125 (3,17) DIA 0.210 (5,34) 0.170 (4,32) Seating Plane 0.157 (4,00) MAX 0.050 (1,27) C 0.500 (12,70) MIN 0.104 (2,65) FORMED LEAD OPTION 0.022 (0,56) 0.016 (0,41) 0.016 (0,41) 0.014 (0,35) STRAIGHT LEAD OPTION D 0.135 (3,43) MIN 0.105 (2,67) 0.095 (2,41) 0.055 (1,40) 0.045 (1,14) 1 2 3 0.105 (2,67) 0.080 (2,03) 0.105 (2,67) 0.080 (2,03) 4040001-2 /C 10/01 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Lead dimensions are not controlled within this area D. FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92) E. Shipping Method: Straight lead option available in bulk pack only. Formed lead option available in tape & reel or ammo pack. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MSOT002A – OCTOBER 1994 – REVISED NOVEMBER 2001 LP (O-PBCY-W3) PLASTIC CYLINDRICAL PACKAGE 0.539 (13,70) 0.460 (11,70) 1.260 (32,00) 0.905 (23,00) 0.650 (16,50) 0.610 (15,50) 0.020 (0,50) MIN 0.098 (2,50) 0.384 (9,75) 0.335 (8,50) 0.748 (19,00) 0.217 (5,50) 0.433 (11,00) 0.335 (8,50) 0.748 (19,00) 0.689 (17,50) 0.114 (2,90) 0.094 (2,40) 0.114 (2,90) 0.094 (2,40) 0.169 (4,30) 0.146 (3,70) DIA 0.266 (6,75) 0.234 (5,95) 0.512 (13,00) 0.488 (12,40) TAPE & REEL 4040001-3 /C 10/01 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Tape and Reel information for the Format Lead Option package. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265